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Abstract
Extending the mathematical framework of Sudha et al. (Phys Rev A 102:052419,
2020),we construct Lorentz invariant quantities of pure three-qubit states. Thismethod
serves as a bridge between the well-known local unitary (LU) invariants of an arbitrary
three-qubit pure state and the Lorentz invariants of its reduced two-qubit systems.

Keywords Three-qubit pure states · SL(2,C) canonical form · Lorentz invariants ·
Geometric picture

1 Introduction

The use of entanglement as a resource in quantum information processing tasks has
accelerated research efforts on its quantification, characterization, and control over the
past two decades [1–5]. While multipartite entanglement poses higher level of com-
plexity than the bipartite case, it enriches our theoretical understanding and paves way
for innovative applications in distributed quantum networks [6–12]. It has been recog-
nized that geometry associated with particular symmetry transformations plays a vital

B A. R. Usha Devi
ushadevi@bub.ernet.in

Sudha
tthdrs@gmail.com

H. Akshata Shenoy
akshata.shenoy@ug.edu.pl

H. S. Karthik
karthik.hs@ug.edu.pl

B. N. Karthik
karthikbnj@gmail.com

1 Department of Physics, Bangalore University, Bangalore 560 056, India

2 Inspire Institute Inc., Alexandria, VA 22303, USA

3 Department of Physics, Kuvempu University, Shankaraghatta, Karnataka 577 451, India

4 International Centre for Theory of Quantum Technologies, University of Gdánsk, Gdánsk, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-024-04454-2&domain=pdf


264 Page 2 of 17 A. R. U. Devi et al.

role in exploring multipartite entanglement—especially in the distribution of entan-
glement among the constituent subsystems [13–19]. Study of geometric invariants
and canonical forms of composite quantum states under local symmetry operations
on subsystems serves as a powerful tool to probe different manifestations of entangle-
ment. To this end, considerable progress has been evinced in exploring local invariant
quantities, canonical forms of equivalence classes of states under local unitary (LU)
transformations, stochastic local operations and classical communication (SLOCC)
associated with local SL(2,C) transformations [20–40].

An essential feature of entanglement is that it remains invariant under LU opera-
tions.Any twoarbitrary pure states |ψ〉 and |φ〉 areLUequivalent (written symbolically
as |ψ〉 ∼ |φ〉) if and only if they can be transformed into each other by local unitary
operations. A complete set of polynomial quantities that remain unaltered under LU
operations on subsystems are used to certifyLUequivalence ofmultipartite states. Rec-
ognizing normal/canonical form of a composite system by using LU transformations
on individual subsystems is advantageous in evaluating these polynomial invariants.

Acín et al. showed that a three-qubit pure state under LU transformations can be
reduced to a canonical form given by [16]:

|ψABC 〉 = λ0|0, 0, 0〉 + λ1e
iφ |1, 0, 0〉 + λ2|1, 0, 1〉 + λ3|1, 1, 0〉 + λ4|1, 1, 1〉

(1.1)

in terms of five real entanglement parameters λi ≥ 0, i = 0, 1, 2, 3, 4 satisfying∑4
i=0 λ2i = 1, and a phase φ ranging between 0 and π . This gives a minimal form

of pure three-qubit states containing only five terms and is helpful for evaluating LU
invariants.

We consider a set of five LU invariants [16] characterizing pure three-qubit states
(apart from normalization):

I1 = Tr [ρ2
BC ] = Tr [ρ2

A] = 1 − 2λ20(1 − λ20 − λ21),

I2 = Tr [ρ2
AC ] = Tr[ρ2

B] = 1 − 2λ20(1 − λ20 − λ21 − λ22) − 2�,

I3 = Tr [ρ2
AB] = Tr [ρ2

C ] = 1 − 2λ20(1 − λ20 − λ21 − λ23) − 2�,

I4 = Tr [(ρA ⊗ ρB) ρAB] = 1 + λ20

(
λ22λ

2
3 − λ21λ

2
4 − 2 λ22 − 3 λ23 − 3 λ24

)

−(2 − λ20) �
I5 = λ40λ

4
4 = τ 2

16
, (1.2)

where ρA = TrB,C |ψABC〉〈ψABC|, ρB = TrA,C |ψABC〉〈ψABC|, ρC =
TrA,B |ψABC〉〈ψABC|, ρAB = TrC |ψABC〉〈ψABC|, ρBC = TrA |ψABC〉〈ψABC|,
ρAC = TrB |ψABC〉〈ψABC| and

� ≡ |λ1λ4eiφ − λ2λ3|2. (1.3)

The first three invariants I1, I2, I3 are related to the squares of the three one-to-other
bipartite concurrencesC2

A(BC), C
2
B(AC), andC

2
C(AB), respectively [15, 41]. The fourth
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one, I4, is related to the Kempe invariant [6, 17]

I4 = 3Tr [(ρA ⊗ ρB) ρAB] − Tr [ρ3
A] − Tr [ρ3

B],
= 3Tr [(ρB ⊗ ρC ) ρBC ] − Tr [ρ3

B] − Tr [ρ3
C ],

= 3Tr [(ρA ⊗ ρC ) ρAC ] − Tr [ρ3
A] − Tr [ρ3

C ], (1.4)

which is symmetric under the permutation of qubits. This quantity, while alge-
braically independent of the other LU invariants, has no known implication toward
the classification of three-qubit entanglement [28].

Writing |ψABC〉 = ∑
i, j,k=0,1 ci jk |i, j, k〉 in the computational basis, the

invariant I5 (Cayley’s hyperdeterminant [42, 43]) is expressed as

I5 = 1

4

∣
∣ εi1 i2 εi3 i4 ε j1 j2 ε j3 j4 εk1 k3 εk2 k4 ci1 j1k1ci2 j2k2ci3 j3k3ci4 j4k4

∣
∣2 , (1.5)

where εi j denote antisymmetric tensor of rank-2; repeated indices are to be summed
over in (1.5). In Acín’s canonical form (1.1) of the three-qubit state, one obtains a
simple form I5 = λ40λ

4
4, which is related to the three-tangle τ = 4 λ20λ

2
4, a measure

of three-way entanglement of three qubits in a pure state [15].
Any two pure three-qubit states |ψ〉 and |φ〉 are SLOCC equivalent if and only if

they are mutually interconvertible by means of local invertible transformations:

|ψ〉 ∼ A ⊗ B ⊗ C |φ〉 (1.6)

where A, B, C ∈ SL(2,C) denote 2 × 2 complex matrices with determinant unity.
Because local protocols are unable to generate entanglement, invariant quantities under
local SL(2,C) transformations are used for classification and also quantification of
entanglement. Equivalence classes of pure three-qubit states under local invertible
operations were explored in the celebrated work by Dür et al. [14], where it was
shown that there exist two inequivalent tripartite entanglement classes—represented
by the Greenberger–Horne–Zeilinger (GHZ) state [44]

|GHZ〉 = 1√
2

(|0, 0, 0〉 + |1, 1, 1〉) (1.7)

and the W state [14]

|W〉 = 1√
3

(|1, 0, 0〉 + |0, 1, 0〉 + |0, 0, 1〉) . (1.8)

There has been a large effort toward gaining deeper insight into the structure of local
SL(2,C) invariant quantities, where three-qubit pure state is considered as a test bed
[15, 25, 27–31, 33, 36].

In this paper, we extend the mathematical framework of Ref. [38] to construct
Lorentz invariants of pure three-qubit states. In the following section, we describe the
basic formalismofRef. [38].Mainlywe highlight here that the transformation property
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of the real 4×4 matrix parametrization 	AB of a two-qubit density matrix ρAB paves
the way to identify Lorentz invariance of the eigenvalues μAB

α , α = 0, 1, 2, 3 of the
matrix �AB = G 	T

AB G 	AB . Section 3 is devoted to explore the properties of the
Lorentz invariant eigenvalues of�i j , i j = AB, BC, AC associated with the reduced
two-qubit density matrices ρi j of a pure three-qubit state. We recognize that (i) the
matrices�i j , i j = AB, BC, AC associatedwith a pure three-qubit state have atmost
two distinct Lorentz invariant eigenvalues; (ii) difference between the two eigenvalues
is symmetric under the interchange of qubits and is equal to the three-tangle τ of
the three-qubit state; (iii) the smallest Lorentz invariant eigenvalue of �i j is equal to
the squared concurrence C2

i j , i j = AB, BC, AC of the two-qubit subsystems. We
explicitly illustrate these features in pure permutation symmetric three-qubit states in
Subsect. 3.1. Construction of a set of five local SL(2,C) invariants, which turn out to
be the algebraic analogues of corresponding set of LU invariants of the three-qubit
pure state, is outlined in Subsect. 3.2. A summary of our results is given in Sect. 4.

2 Transformation of two-qubit state under local SL(2,C) operations

Let us consider an arbitrary two-qubit density matrix ρAB , expanded in the Hilbert–
Schmidt basis {σα ⊗ σβ, α, β = 0, 1, 2, 3}:

ρAB = 1

4

3∑

α, β=0

(	AB)α β

(
σα ⊗ σβ

)
,

(	AB)α β = Tr
[
ρAB (σα ⊗ σβ)

]
(2.1)

where

σ0 =
(
1 0
0 1

)

, σ1 =
(
0 1
1 0

)

, σ2 =
(
0 −i
i 0

)

, σ3 =
(
1 0
0 −1

)

. (2.2)

It is convenient to express the expansion coefficients (	AB)μ ν in (2.1) as a 4× 4 real
matrix:

	AB =

⎛

⎜
⎜
⎝

1 sB1 sB2 sB3
sA1 t AB11 t AB12 t AB13
sA2 t AB21 t AB22 t AB23
sA3 t AB31 t AB32 t AB33

⎞

⎟
⎟
⎠ . (2.3)

Here sA, sB are Minkowski four vectors with components sAα , sBα, α = 0, 1, 2, 3,
respectively, and T AB = (t ABi j ), i, i = 1, 2, 3 denotes the two-qubit correlation
matrix:

sAα = (	AB)α 0 = Tr [ρAB (σα ⊗ σ0) ] = Tr [ρA σα] , (2.4)

sBα = (	AB)0 α = Tr [ρAB (σ0 ⊗ σα) ] = Tr [ρB σα] , α = 0, 1, 2, 3 (2.5)

t ABi j = (	AB)i j = Tr
[
ρAB (σi ⊗ σ j )

]
, i, j = 1, 2, 3. (2.6)
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Under local SL(2,C) operations, the two-qubit state ρAB transforms as

ρAB −→ ρ̄AB = (A ⊗ B) ρAB (A† ⊗ B†)

Tr
[
ρAB (A† A ⊗ B† B)

] (2.7)

where A, B ∈ SL(2,C) denote 2 × 2 complex matrices with unit determinant. As a
result, one finds that

	AB −→ 	̄AB = L A 	AB LT
B(

L A 	AB LT
B

)
00

(2.8)

where LA, LB ∈ SO(3, 1) are 4 × 4 proper orthochronous Lorentz transformation
matrices [45] corresponding to A, B ∈ SL(2,C), respectively, and the superscript ‘T ’
denotes transpose operation.

We construct a 4 × 4 real matrix

�AB = G 	T
AB G 	AB, (2.9)

where G = diag (1,−1,−1,−1) denotes the Minkowski metric [45]. It is readily
identified that the matrix �AB undergoes a similarity transformation (up to an overall
factor) [38]:

�AB → �̄AB = G 	̄T
AB G 	̄AB

= G
(
L A 	AB LT

B

)T
G LA 	AB L

T
B

= G LB 	T
AB LT

A G LA 	AB L
T
B

= (G LB G) G 	T
AB

(
LT
A G LA

)
	AB L

T
B

=
(
LT
B

)−1
�AB LT

B (2.10)

where the defining property [45] LT G L = G of Lorentz transformation is used.
The matrix�AB , constructed using the real matrix parametrization	AB of the two-

qubit density matrix ρAB (see (2.1), (2.3)), exhibits the following important properties
(see Theorem of Ref. [38] on the nature of eigenvalues and eigenvectors of the matrix
�AB):

(i) It possesses non-negative eigenvalues μAB
0 ≥ μAB

1 ≥ μAB
2 ≥ μAB

3 ≥ 0.
(ii) Four-eigenvector X associated with the highest eigenvalueμAB

0 of the matrix �AB

satisfies one of the following Lorentz invariant properties:

XT G X > 0 (2.11)

or

XT G X = 0. (2.12)
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The condition (2.12) is accompanied by the observation that the matrix �AB has
only two eigenvalues μAB

0 , μAB
2 with μAB

0 ≥ μAB
2 , both of which are doubly

degenerate.
(iii) Suppose the eigenvector X satisfies the Lorentz invariant condition (2.11). Then

there exist suitable SL(2,C) transformations A1, B1 ∈ SL(2,C) (with correspond-
ing Lorentz transformations LA1 , LB1 ∈ SO(3,1), respectively) such that the
matrix �AB assumes a diagonal canonical form:

�̄
(Ic)
AB =

(
LT
BIc

)−1
�AB LT

BIc
= diag

(
μAB
0 , μAB

1 , μAB
2 , μAB

3

)
. (2.13)

(iv) Associated with the standard form �̄
(Ic)
AB , it is seen that [38]

ρAB −→ ρ̄
Ic
AB = (AIc ⊗ BIc ) ρAB (A†

Ic
⊗ B†

Ic
)

Tr
[
ρAB (A†

Ic
AIc ⊗ B†

Ic
BIc )

]

reduces to the Bell diagonal form

ρ̄
Ic
AB = 1

4

⎛

⎝σ0 ⊗ σ0 +
∑

i=1,2

√
μAB
i

μAB
0

σi ⊗ σi ±
√

μAB
3

μAB
0

σ3 ⊗ σ3

⎞

⎠ (2.14)

under local SL(2,C) operations. Here the sign ± is chosen based on
sgn[det(	AB)] = ±.

(v) Whenever the eigenvector X obeys the condition (2.12), suitable local SL(2,C)
transformations AI Ic , BI Ic ∈ SL(2,C) (associated Lorentz transformations
denoted, respectively, by LAI Ic

, LBI Ic
∈ SO(3,1)) exist such that the real

symmetric matrix �AB takes the following canonical form:

�̄
(I Ic)
AB =

(
LT
BI Ic

)−1
�AB LT

BI Ic
=

⎛

⎜
⎜
⎝

φAB
0 0 0 φAB

0 − μAB
0

0 μAB
2 0 0

0 0 μAB
2 0

μAB
0 − φAB

0 0 0 2μAB
0 − φAB

0 ,

⎞

⎟
⎟
⎠

(2.15)

where

φAB
0 =

(
LBI Ic

�AB LT
BI Ic

)

00
. (2.16)

(vi) Consequently, the canonical form of the two-qubit density matrix is given by

ρAB −→ ρ̄
I Ic
AB = (AI Ic ⊗ BI Ic ) ρAB (A†

I Ic
⊗ B†

I Ic
)

Tr
[
ρAB (A†

I Ic
AI Ic ⊗ B†

I Ic
BI Ic )

] ,
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= 1

4

[
σ0 ⊗ σ0 + (1 − γ AB

0 ) σ0 ⊗ σ3 + γ AB
2 (σ1 ⊗ σ1 − σ2 ⊗ σ2)

+ γ AB
0 σ3 ⊗ σ3

]
(2.17)

where

γ AB
0 = μAB

0

φAB
0

, γ AB
2 =

√
μAB
2

φAB
0

, 0 ≤
(
γ AB
2

)2 ≤ γ AB
0 ≤ 1. (2.18)

(vii) Corresponding to the canonical form �̄
(Ic)
AB (see (2.13)), an elegant geometric visu-

alization in terms of an ellipsoid inscribed inside the Bloch sphere [38], with

semiaxes lengths (i)

(√
μAB
1

μAB
0

,

√
μAB
2

μAB
0

,

√
μAB
3

μAB
0

)

and with center coinciding with that

of the Bloch sphere, obeying the equation

(
μAB
0

μAB
1

)

x2 +
(

μAB
0

μAB
2

)

y2 +
(

μAB
0

μAB
3

)

z2 = 1. (2.19)

Associated with the Lorentz canonical structure �̄
(I Ic)
AB (see (2.15)), a shifted

spheroid [38], with semiaxes lengths (

√
γ AB
1 ,

√
γ AB
1 ,

√
γ AB
0 ) (see (2.18)) and

center (0, 0, (1 − γ AB
0 )) inside the Bloch sphere, satisfying the equation

(x2 + y2)

γ AB
1

+
(
z − (1 − γ AB

0 )
)2

γ AB
0

= 1. (2.20)

represents the set of all two-qubit states on the SL(2,C) orbit of ρ̄
I Ic
AB (see (2.17)).

(viii) The eigenvaluesμAB
α , α = 0, 1, 2, 3 of the 4×4matrix�AB are Lorentz invariant,

i.e., they are unchanged under local SL(2,C) operations.

In the following section, we construct local SL(2,C) invariants, by exploiting
the Lorentz transformation properties of the real matrices 	AB, 	BC , and 	AC

characterizing the two-qubit subsystems of a pure three-qubit state.

3 Lorentz invariants of pure three-qubit state

Let us write the two-qubit reduced density matrices ρAB , ρBC and ρAC of a pure
three-qubit state as

ρAB = TrC |ψABC〉〈ψABC| = 1

4

3∑

α, β=0

(	AB)α β

(
σα ⊗ σβ

)
, (3.1)

123
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ρBC = TrA |ψABC〉〈ψABC| = 1

4

3∑

α, β=0

(	BC )α β

(
σα ⊗ σβ

)
, (3.2)

ρAC = TrB |ψABC〉〈ψABC| = 1

4

3∑

α, β=0

(	AC )α β

(
σα ⊗ σβ

)
. (3.3)

We employ Acín’s canonical form (1.1) of the pure three-qubit state, for evaluating
the 4 × 4 real matrices 	AB, 	BC and 	AC explicitly:

	AB =

⎛

⎜
⎜
⎝

1 2 (λ2 λ4 + λ1λ3 cosφ) −2 λ1 λ3 sin φ 1 − 2 (λ23 + λ24)
2 λ0 λ1 cosφ 2 λ0 λ3 0 2 λ0 λ1 cosφ

2 λ0 λ1 sin φ 0 −2 λ0 λ3 2 λ0 λ1 sin φ

2 λ20 − 1 −2 (λ2 λ4 + λ1λ3 cosφ) 2 λ1 λ3 sin φ 1 − 2 (λ21 + λ22)

⎞

⎟
⎟
⎠ , (3.4)

	BC =

⎛

⎜
⎜
⎝

1 2 (λ3 λ4 + λ1λ2 cosφ) −2 λ1 λ2 sin φ 1 − 2 (λ22 + λ24)
2 (λ2 λ4 + λ1λ3 cosφ) 2 (λ2 λ3 + λ1λ4 cosφ) −2 λ1 λ4 sin φ −2 (λ2 λ4 − λ1λ3 cosφ)

−2 λ1 λ3 sin φ −2 λ1 λ4 sin φ 2 (λ2 λ3 − λ1λ4 cosφ) −2 λ1 λ3 sin φ

1 − 2 (λ23 + λ24) −2 (λ3 λ4 − λ1λ2 cosφ) −2 λ1 λ2 sin φ 1 − 2 (λ22 + λ23)

⎞

⎟
⎟
⎠ ,

(3.5)

	AC =

⎛

⎜
⎜
⎝

1 2 (λ3 λ4 + λ1λ2 cosφ) −2 λ1 λ2 sin φ 1 − 2 (λ22 + λ24)
2 λ0 λ1 cosφ 2 λ0 λ2 0 2 λ0 λ1 cosφ

2 λ0 λ1 sin φ 0 −2 λ0 λ2 2 λ0 λ1 sin φ

2 λ20 − 1 −2 (λ3 λ4 + λ1λ2 cosφ) 2 λ1 λ2 sin φ 1 − 2 (λ21 + λ23)

⎞

⎟
⎟
⎠ . (3.6)

Let us recall the formula for the concurrence CAB of an arbitrary two-qubit state
ρAB introduced by Wootters [41]:

CAB = max {0, νAB
1 − νAB

2 − νAB
3 − νAB

4 } (3.7)

where νAB
i , i = 1, 2, 3, 4 are the square roots of the eigenvalues of

ρAB ρ̃AB = ρAB (σ2 ⊗ σ2) ρT
AB (σ2 ⊗ σ2) (3.8)

in decreasing order. While the matrix ρAB ρ̃AB is non-hermitian, it has only real and
positive eigenvalues [41].

To gain further insight into the structure of the non-hermitian matrix ρAB ρ̃AB , we
express the spin flipped two-qubit density matrix ρ̃AB = (σ2 ⊗ σ2) ρT

AB (σ2 ⊗ σ2) in
the basis {σα ⊗ σβ, α, β = 0, 1, 2, 3} to obtain

ρ̃AB = 1

4

3∑

α,β=0

(
	

′
AB

)

α β
σα ⊗ σβ (3.9)

where the 4 × 4 real matrix 	
′
AB characterizing the spin flipped two-qubit density

matrix ρ̃AB is found to be [46]

	
′
AB = G 	AB G. (3.10)
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We thus recognize (see (2.1),(3.9), (3.10) and (2.9)) that

Tr[ρAB ρ̃AB] = 1

4
Tr [G 	T

AB G 	AB] = 1

4
Tr [�AB]. (3.11)

Evidently, Tr [�AB] ≥ 0 as the 4 × 4 real matrix �AB = G 	T
AB G 	AB is non-

negative [38] and this, in turn, justifies that trace of the non-hermitian matrix ρAB ρ̃AB

(LHS of (3.11)) is also positive.
In a pure entangled three-qubit state, every pair of qubits are

entangled with the remaining qubit. Thus, the two-qubit subsys-
tem density matrix of a pure three-qubit state has at most
two nonzero eigenvalues. As a result, the matrix ρi j ρ̃i j has only two nonzero eigen-

values
(
ν
i j
1

)2
,
(
ν
i j
2

)2
, i j = AB, BC, AC . Thus, the squared concurrence C2

i j of

two-qubit subsystem state ρi j of a three-qubit pure state simplifies to

C2
i j = (ν

i j
1 − ν

i j
2 )2, i j = AB, BC, AC . (3.12)

We are interested in recognizing local SL(2,C) invariants of three-qubit pure state,
which are useful in determining the Lorentz invariant eigenvalues of the matrices
�AB, �BC , and �AC . In Acín’s canonical form (1.1), the matrices �AB, �BC and
�AC have the following explicit structure:

�AB =

⎛

⎜
⎜
⎝

4 λ20(λ
2
2 + λ23 + λ24) 4 λ20 λ2 λ4 0 4 λ20 λ22−4 λ20 λ2 λ4 4 λ20 λ23 0 −4 λ20 λ2 λ4

0 0 4 λ20 λ23 0
−4 λ20 λ22 −4 λ20 λ2 λ4 0 4 λ20(λ

2
3 − λ22 + λ24)

⎞

⎟
⎟
⎠

(3.13)

�BC =

⎛

⎜
⎜
⎝

4 λ20 (λ23 + λ24) + 4�) 4 λ20 λ3 λ4 0 4 λ20 λ23−4 λ20 λ3 λ4 4� 0 −4 λ20 λ3 λ4
0 0 4� 0

−4 λ20 λ23 −4 λ20 λ3 λ4 0 4 λ20 (λ24 − λ23) + 4�)

⎞

⎟
⎟
⎠

(3.14)

�AC =

⎛

⎜
⎜
⎝

4 λ20(λ
2
2 + λ23 + λ24) 4 λ20 λ3 λ4 0 4 λ20 λ23−4 λ20 λ3 λ4 4 λ20 λ22 0 −4 λ20 λ3 λ4

0 0 4 λ20 λ22 0
−4 λ20 λ23 −4 λ20 λ3 λ4 0 4 λ20(λ

2
2 − λ23 + λ24)

⎞

⎟
⎟
⎠ .

(3.15)

• We find that these matrices �AB , �BC , and �AC have at most two distinct
eigenvalues:

μAB
0 = μAB

1 = 4 λ20 (λ23 + λ24), μAB
2 = μAB

3 = 4 λ20 λ23, (3.16)

μBC
0 = μBC

1 = 4 (� + λ20 λ24), μBC
2 = μBC

3 = 4�, (3.17)
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μAC
0 = μAC

1 = 4 λ20 (λ22 + λ24), μAC
2 = μAC

3 = 4 λ20 λ22. (3.18)

• We notice an interesting feature that the differences between the largest and the
smallest eigenvalues of �AB , �BC , �AC are identically equal to the three-tangle τ

of the three-qubit state:

μ
i j
0 − μ

i j
2 = 4 λ20 λ24 = τ, i j = AB, BC, AC . (3.19)

This reveals the fact that the LU invariant I5 = τ 2

16 of the three-qubit state (see last
line of (1.2)) is a permutation symmetric local SL(2,C) invariant. It is worth noting
that

√
I5 = λ20 λ24 is equal to the product [15] νAB

1 νAB
2 = νBC

1 νBC
2 = νAC

1 νAC
2

of the square root of the eigenvalues of ρi j ρ̃i j , i j = AB, BC, AC . Thus,

μ
i j
0 − μ

i j
2 = 4 ν

i j
1 ν

i j
2 . (3.20)

• The Lorentz invariant eigenvalues of �AB , �BC and �AC can be determined using
I5 along with three more invariants given by

K1 = 1

4
Tr[ �AB] = 1

2
(μAB

0 + μAB
2 )

K2 = 1

4
Tr[ �BC ] = 1

2
(μBC

0 + μBC
2 )

K3 = 1

4
Tr[ �AC ] = 1

2
(μAC

0 + μAC
2 ). (3.21)

Substituting (3.11) in (3.21), we obtain

K1 = Tr[ρAB ρ̃AB] = (νAB
1 )2 + (νAB

2 )2,

K2 = Tr[ρBC ρ̃BC ] = (νBC
1 )2 + (νBC

2 )2,

K3 = Tr[ρAC ρ̃AC ] = (νAC
1 )2 + (νAC

2 )2. (3.22)

We proceed to prove the following theorem:

Theorem 1 The squared concurrence C2
i j of the two-qubit subsystem ρi j of a pure

three-qubit state is equal to the smallest Lorentz invariant eigenvalue μ
i j
2 of the 4× 4

matrix �i j = G 	T
i j G 	i j , i j = AB, BC, AC .

Proof Using (3.20), (3.21) and (3.22), we connect the eigenvalues of�AB, �BC , �AC

with those of
ρAB ρ̃AB, ρBC ρ̃BC , ρAC ρ̃AC , respectively:

4 ν
i j
1 ν

i j
2 = μ

i j
0 − μ

i j
2 ,

[
(ν

i j
1 )2 + (ν

i j
2 )2

]
= 1

2
(μ

i j
0 + μ

i j
2 ), i j = AB, BC, AC . (3.23)
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We thus obtain (see (3.12))

μ
i j
2 =

(
ν
i j
1 − ν

i j
2

)2 = C2
i j , i j = AB, BC, AC . (3.24)

The above theorem offers an interesting alternate method to evaluate concurrences of
two-qubit subsystems ρi j , i j = AB, BC, AC of a pure three-qubit state, in terms of
the smallest Lorentz invariant eigenvalues of �i j . ��
• With the help of the following Lorentz transformations

LB =

⎛

⎜
⎜
⎜
⎜
⎝

τ+2C2
AC

2CAC
√

τ

CAC√
τ

0
√

τ

2CAC

−1 −1 0 −1
0 0 −1 0

τ−2C2
AC

2CAC
√

τ
−CAC√

τ
0

√
τ

2CAC

⎞

⎟
⎟
⎟
⎟
⎠

(3.25)

and

LC =

⎛

⎜
⎜
⎜
⎜
⎝

τ+2C2
AB

2CAB
√

τ

CAB√
τ

0
√

τ

2CAB

−1 −1 0 −1
0 0 −1 0

τ−2C2
AB

2CAB
√

τ
−CAB√

τ
0

√
τ

2CAB

⎞

⎟
⎟
⎟
⎟
⎠

(3.26)

it is seen that

(
LT
B

)−1
�AB L

T
B = �̄

(I Ic)
AB =

⎛

⎜
⎜
⎝

C2
AB + τ 0 0 0
0 C2

AB 0 0
0 0 C2

AB 0
0 0 0 C2

AB + τ

⎞

⎟
⎟
⎠ (3.27)

(
LT
C

)−1
�BC L

T
C = �̄

(I Ic)
BC =

⎛

⎜
⎜
⎝

C2
BC + τ 0 0 0
0 C2

BC 0 0
0 0 C2

BC 0
0 0 0 C2

BC + τ

⎞

⎟
⎟
⎠ (3.28)

(
LT
C

)−1
�AC L

T
C = �̄

(I Ic)
AC =

⎛

⎜
⎜
⎝

C2
AC + τ 0 0 0
0 C2

AC 0 0
0 0 C2

AC 0
0 0 0 C2

AC + τ

⎞

⎟
⎟
⎠ . (3.29)

It follows that (see (2.16),(2.18))

γ
i j
0 = 1, γ

i j
2 = Ci j

√
C2
i j + τ

, i j = AB, BC, AC . (3.30)

A spheroid inside the Bloch sphere (see Fig. 1) with semiaxes lengths
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Fig. 1 Spheroid centered at the
origin of the Bloch sphere with
semiaxes lengths(

C√
C2+τ

, C√
C2+τ

, 1

)

, for

C = 0.8 and τ = 0.5 (Color
figure online)

(
Ci j√
C2
i j+τ

,
Ci j√
C2
i j+τ

, 1

)

and origin (0,0,0) (see (2.20), (3.30) offers geometrical visu-

alization of the reduced two-qubit systems of the three-qubit pure state |ψABC 〉
given in (1.1).

3.1 Permutation symmetric three-qubit pure states

It is well known that permutation symmetric states offer conceptual clarity and compu-
tational simplicity in the analysis of local invariants [34, 39, 47–49]. In this subsection,
we illustrate the effectiveness of our framework to evaluate concurrence and tangle
in pure three-qubit permutation symmetric states, where we make use of the explicit
parametrization given by Meill and Meyer [34] recently.

Consider a one-parameter family of three-qubit permutation symmetric state [34,
39]:

|ψsym(β)〉 = 1√
2 + cosβ

(√
3 cos

β

2
|0A 0B 0C 〉 + sin

β

2
|W 〉

)

(3.31)

where 0 < β ≤ π . We find that [39]

�sym(β) = �AB(β) = �(β)BC = �AC (β)

=

⎛

⎜
⎜
⎝

2 u(β) 0 0 u(β)

0 u(β) 0 0
0 0 u(β) 0

−u(β) 0 0 0

⎞

⎟
⎟
⎠ , u(β) =

[
1 − cosβ

3(2 + cosβ)

]2
. (3.32)

123



Lorentz invariants of pure three-qubit states Page 13 of 17 264

The Lorentz invariant eigenvalues of �sym(β) are equal, i.e.,

μ0(β) = μ2(β) =
[

1 − cosβ

3(2 + cosβ)

]2
, (3.33)

and hence, the concurrence of ρsym(β) = ρAB(β) = ρBC (β) = ρAC (β) is given by

C(β) = 1 − cosβ

3(2 + cosβ)
, (3.34)

in perfect agreement with the result given by Meill and Meyer [34]. Substitution of
(3.33) in the LHS of (3.19) confirms that the three-tangle τ(β) for the state (3.31) is
zero.

We proceed further with a three-parameter family of pure three-qubit permutation
symmetric state [34]

|ψsym(y, β, φ)〉 = N
(
|0 〉⊗ 3 + y ei φ |β〉⊗ 3

)
, (3.35)

where |β〉 = cos β
2 |0〉 + sin β

2 |1〉, 0 < y ≤ 1, 0 ≤ φ ≤ 2π, 0 < β ≤ π. We
evaluate the matrix �sym(y, β, φ) ≡ �AB(y, β, φ) = �BC (y, β, φ) = �AC (y, β, φ)

in the state (3.35) (see Ref. [39] for details):

�sym(y, β, φ) = B(y, β, φ)

⎛

⎜
⎜
⎝

3 + cosβ sin β 0 1 + cosβ

− sin β (1 + cosβ) 0 − sin β

0 0 (1 + cosβ) 0
−(1 + cosβ) − sin β 0 (1 − cosβ)

⎞

⎟
⎟
⎠

(3.36)

where

B(y, β, φ) = y2(1 − cosβ)2

2
(
1 + y2 + 2 y cos φ cos3 β

2

)2 . (3.37)

The Lorentz invariant eigenvalues of �sym(y, β, φ) are found to be

μ0(y, β, φ) = 2B(y, β, φ), μ2(y, β, φ) = B(y, β, φ) (1 + cosβ). (3.38)

The concurrence for the two-qubit subsystem density matrices ρsym(y, β, φ) =
ρAB(y, β, φ) = ρBC (y, β, φ) = ρAC (y, β, φ) drawn from the three-qubit pure
symmetric state (3.35) is thus given by

C(y, β, φ) = √
B(y, β, φ) (1 + cosβ)

= 2 y sin β sin β
2(

1 + y2 + 2 y cos φ cos3 β
2

) (3.39)
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which matches exactly with the formula derived in Ref. [34].
Substituting (3.38) in (3.19), we evaluate the three-tangle τ(y, β, φ) in (3.35) to

obtain

τ(y, β, φ) = μ0(y, β, φ) − μ2(y, β, φ)

= B(y, β, φ)(1 − cosβ)

=
(

2 y sin3 β
2

1 + y2 + 2 y cos φ cos3 β
2

)2

, (3.40)

in agreement with the expression for τ 2 given in Ref. [34] for the state (3.35).

3.2 LU versus local SL(2,C) invariants of pure three-qubit state

Taking a closer look at the set of five LU invariants (1.2) of pure three-qubit states,
it is seen that I1 = Tr[ρ2

AB], I2 = Tr[ρ2
AC ], I3 = Tr[ρ2

AB] get replaced by their
local SL(2,C) counterparts (see (3.22)) K1 = Tr[ρAB ρ̃AB], K2 = Tr[ρBC ρ̃BC ],
K3 = Tr[ρAC ρ̃AC ]. It is seen that the LU invariant I5 = τ 2/16 enjoys a higher
level of invariance, by remaining unchanged when a three-qubit pure state undergoes
local SL(2,C) transformation. Thus, we have four local SL(2,C) invariants, which
encode information about the entanglement content in the three-qubit pure state since
it is possible to reconstruct concurrences CAB, CBC , CAC and three-tangle τ using
them.On the other hand, theKempe invariant I4 given by (1.4) (which is a permutation
symmetric extension of the LU invariant I4 listed in (1.2)) is known to be algebraically
independent of concurrences and three tangles [28]. In order to complete the set of
SLOCC invariants, we study the structure of I4 with an intention to find its Lorentz
invariant analogue. Using (2.1), (2.4), (2.5), we obtain

I4 = Tr [(ρA ⊗ ρB) ρAB] = 1

4

(
sTA 	AB sB

)
. (3.41)

We consider [50]

K4 = Tr [(ρA ⊗ ρB) ρ̃AB] = 1

4

(
sTA G 	AB G sB

)
. (3.42)

to be the Lorentz invariant analogue replacing I4. Thus, we have the following set of
five local SL(2,C) invariants

K1 = 2 Tr[ρAB ρ̃AB] = 4 λ20 λ23 + 2 λ20λ
2
4 = C2

AB + τ

2
,

K2 = 2 Tr[ρBC ρ̃BC ] = 4 � +2 λ20λ
2
4 = C2

BC + τ

2
,

K3 = 2 Tr[ρAC ρ̃AC ] = 4 λ20 λ22 + 2 λ20 λ24 = C2
AC + τ

2
,

K4 = Tr [(ρA ⊗ ρB) ρ̃AB] = λ20

(
� + λ22λ

2
3 − λ21λ

2
4 + λ23 + λ24

)
,
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K5 ≡ I5 = λ40 λ44 = τ 2

16
, (3.43)

which are the algebraic counterparts of the LU invariants of the three-qubit pure state.

4 Summary

In this paper, we have extended the mathematical framework of Ref. [38] to explore
local SL(2,C) invariants of pure three-qubit states. Thismethod enables one to evaluate
concurrences and tangle in terms of the Lorentz invariant eigenvalues of the 4×4 real
positive matrices �i j = G 	T

i j G 	i j , constructed from the real parametrizations 	i j

of the two-qubit subsystem density matrices ρi j , i j = AB, BC,CA of a pure state of
three qubits. In particular, we have shown that (i) the matrices �i j evaluated in a pure
three-qubit state have at most two distinct eigenvalues, (ii) the squared concurrence
C2
i j is equal to the least eigenvalue of �i j , and (iii) the three-tangle τ is equal to the

difference between the highest and the smallest eigenvalues of�i j . This is illustrated in
the example of permutation symmetric three-qubit pure states. Finally, we have given
a set of five local SL(2,C) invariants {K1, K2, K3, K4, K5}, which are the natural
algebraic generalizations of Acín’s LU invariants {I1, I2, I3, I4, I5}.
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