
Quantum Information Processing (2024) 23:126
https://doi.org/10.1007/s11128-024-04340-x

Degenerate perturbation theory to quantum search

Dezheng Zhang1 · Xuanmin Zhu1 · Yuanchun Deng1 · Runping Gao1 ·
Qun Wei2 · Zijiang Luo3

Received: 28 September 2023 / Accepted: 3 March 2024 / Published online: 26 March 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
We utilize degenerate perturbation theory to investigate continuous-time quantum
search on second-order truncated simplex lattices. In this work, we show that the
construction of the Hamiltonian must consider the structure of the lattice. This idea
enables effective application of degenerate perturbation theory to third- and higher-
order lattices. We identify two constraints on the reduction of the dimension of the
Hamiltonian. In addition, we elucidate the influence of the distinct configurations of
marked vertices on the quantum search.

Keyword Grover’s algorithm · Quantum search · Quantum random walk ·
Continuous-time quantum walk · Truncated simplex lattice

1 Introduction

Grover’s algorithm is a powerful algorithm utilized for quantum search in an unstruc-
tured database [1–3]. Continuous-time quantum walk (CTQW) was introduced to
address the search problems in the structured databases by quantizing the classical
walk through simulating the classical Markov process [4]. Continuous-time quantum
walk has successfully solved the quantum search problems on complete graphs, hyper-
cubes, d-dimensional lattice graphs and other types of graphs with substantial speedup
[5–10]. Moreover, it has been extended to information transmission in networks [8,
11].

Truncated simplex lattices are of particular interest due to their effectively nonin-
tegral dimensionality. Continuous-time quantum walks have also gained considerable
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Fig. 1 a A zeroth-order
5-dimensional simplex lattice is
a 6-dimensional complete graph.
b A first-order 5-dimensional
simplex lattice is obtained by
replacing each vertex of a
zeroth-order 5-dimensional
simplex lattice with a
5-dimensional complete graph

attention for their application in quantum search algorithms on truncated simplex
lattices [12–14]. Initially, the study of the quantum search in this area was focused
on zeroth-order lattices [5]. Subsequently, Thomas G Wong studied first-order trun-
cated simplex lattices [7], and Wang Yunkai et al. studied quantum search on second-
and higher-order lattices [15, 16]. Zhu Xuanmin et al. explored quantum search for
searching a set of marked vertices [17].

In the CTQW, the evolution of the system relies on the jumping rate γ which
represents the probability of the transition between the adjacent vertices per unit time
[18, 19]. Taking an appropriate value at γ , known as the critical jumping rate γc, the
system can evolve into the target state at an appropriate time. The common approach
for determining the critical jumping rate γc involves calculating the squared overlaps
of the Hamiltonian’s eigenstates with the basis states [5, 7, 15–17]. As the order of
the lattice increases, this method cannot be easily implemented.

In order to determine γc more accurately, Thomas G. Wong introduced degener-
ate perturbation theory to continuous-time quantum walk [20–22]. He provided the
schemes of degenerate perturbation theory to determine γc on complete graphs, first-
order truncated simplex lattices, and hypercubes [23]. In cases involving weighted
graphs and multiple configurations of marked vertices, quantum search schemes uti-
lizing degenerate perturbation theory have also been proposed [24, 25].

However, the existing schemes cannot be used directly to obtain the γc on the
second-order and higher-order lattices. To address this, we present a scheme for
implementing degenerate perturbation theory in quantum searches on second-order
and third-order lattices. The results of our investigations emphasize the importance of
the lattice structure when constructing the leading-order terms of Hamiltonian. The
dimension of the Hamiltonian can also be reduced to simplify the computational pro-
cess by eliminating uncorrelated vertices in the evolution. The influence of different
configurations of marked vertices on the quantum search is further explored by six
simulation experiments with distinct configurations on the second-order lattice.

This paper is structured as follows. In Sect. 2, we explore the application of degen-
erate perturbation theory to quantum search on a second-order lattice. We study the
quantum search on third-order lattices, and present two constraints aimed at reducing
the dimension of the Hamiltonian in Sect. 3. In Sect. 4, we discuss quantum search
scenarios with different configurations of marked vertices on the second-order lattice.
Finally, we give our conclusions in Sect. 5.
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Fig. 2 A second-order truncated 5-dimensional simplex lattice. It is obtained by replacing each vertex in
Fig. 1b with a 5-dimensional complete graph. Vertices that evolving identically are labeled with the same
letter. The red vertex labeled a corresponds to the marked state |a〉

2 Quantum search on the second-order lattices

Truncated simplex lattices are derived from complete graphs. A complete graph con-
sisting of M vertices can be referred to as a M-dimensional complete graph. And
a (M + 1)-dimensional complete graph can be referred to as a zeroth-order trun-
cated M-dimensional simplex lattice, as illustrated in Fig. 1a. Each vertex in the
(M + 1)-dimensional complete graph is linked to the remaining M vertices on the
graph. A first-order M-dimensional lattice is obtained by replacing each vertex in
the zeroth-order lattice with a M-dimensional complete graph, resulting in a total of
N = M(M+1) vertices, as shown in Fig. 1b. Similarly, a second-orderM-dimensional
lattice is obtained by replacing each vertex in a first-order latticewith aM-dimensional
complete graph, resulting in a total of N = M2(M + 1) vertices, as shown in Fig. 2
[12]. An r th-order M-dimensional lattice is obtained by replacing each vertex of the
(r − 1)th-order M-dimensional lattice with an M-dimensional complete graph. Each
vertex in the simplex lattice has a degree of M .

Without the marked vertex, the Hamiltonian of the system can be expressed as
follows:

H = −γ L. (1)

L = A − D is the graph Laplacian [25], where A is the adjacency matrix (Ai j = 1
if the vertex i is connected to vertex j directly, and Ai j = 0 otherwise), and D is the
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diagonal degree matrix (Di j = deg(i)). With the marked vertex, the Hamiltonian can
be represented as [26]:

H = −γ L −
∑

i∈marked

|i〉 〈i | , (2)

where |i〉 is the marked state.
In regular graphs, all vertices have the same degree. The diagonalmatrix D becomes

amultiple of the identitymatrix, and it does not influence the quantum search. Then the
Laplacian operator L can be replaced by the adjacencymatrix A [27]. TheHamiltonian
can be expressed as H = −γ A − ∑

i∈marked |i〉 〈i |.
The initial state is chosen the one with the equal probability distributed among

the N vertices, as: |ψ(0)〉 = 1√
N

∑N
i=1 |i〉. While |a〉 is the marked state, based

on the symmetry of the lattice, the second-order lattice can be seen as a system
evolving in a 20-dimensional invariant subspace [16]. This subspace consists of the
following basis states: |a〉, |b〉 = 1√

M−1

∑
i∈b |i〉, |e〉 = 1√

(M−2)(M−1)

∑
i∈e |i〉,

|v〉 = 1√
(M−3)(M−2)(M−1)

∑
i∈v |i〉, and so on. The vertices corresponding to dif-

ferent states are represented by 20 different letters, and the vertices with the same
evolution are denoted by the same letter, as shown in Fig. 2. The Hamiltonian is

H = −γ A − |a〉 〈a| (3)

where |a〉 〈a| is considered as an oracle. The adjacency matrix expressed in the 20-
dimensional subspace is shown in Table 1.

Since |ψ(0)〉 ≈ |v〉 for large M , the objective of the quantum search is to achieve
the system evolution from |v〉 to |a〉. The quantum search on the second-order lattice
is structured into three sequential stages: from |v〉 to |e〉, then to |b〉, and ultimately
to |a〉. We denote the critical jumping rates of these three stages as γc1, γc2, and γc3,
respectively.

The search Hamiltonian can be represented by a weighted graph, as shown in
Fig. 3a [22]. Based on the lattice structure, the sets {| f 〉 , |g〉 , |h〉 , | j〉 , |k〉} are deemed
irrelevant to the search.Therefore,wedisregard the subsystem {| f 〉 , |g〉 , |h〉 , | j〉 , |k〉}
in the weighted graph and focus solely on the last part depicted in Fig. 3b, which serves
as the leading-order term H (0)

1 in the first stage. The leading-order term H (0)
1 can be

expressed as

H (0)
1 =

(
H (0)
ab−cde 0

0 H (0)
lmn−opq−r tuv

)
, (4)
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Fig. 3 a A graphical representation of the Hamiltonian for the second-order truncated five-dimensional
simplex lattice. b The leading-order term for the first stage of the algorithm. c The leading-order term for
the second stage of the algorithm. d The leading-order term for the third stage of the algorithm
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where

H (0)
ab−cde = −γ

⎛

⎜⎜⎜⎜⎝

1
γ

√
M1 0 0 0√

M1 M2 0 1 0
0 0 0 1

√
M2

0 1 1 0
√
M2

0 0
√
M2

√
M2 M2

⎞

⎟⎟⎟⎟⎠
, (5)

H (0)
lmn−opq−r tuv = −γ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
√
M2 0 0 0 0 0 0 0

1 0
√
M2 0 1 0 0 0 0 0√

M2
√
M2 M3 0 0 0 0 1 0 0

0 0 0 0 1
√
M2 0 0 0 0

0 1 0 1 0
√
M2 0 0 0 0

0 0 0
√
M2

√
M2 M3 0 0 1 0

0 0 0 0 0 0 1 1 1
√
M3

0 0 0 0 0 0 1 0 1
√
M3

0 0 0 0 0 1 1 1 0
√
M3

0 0 0 0 0 0
√
M3

√
M3

√
M3 M3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

and the edge connecting c and l is disregarded now. The eigenstates of H (0)
ab−cde and

H (0)
lmn−opq−r tuv can be expressed as

|spab−cde〉 = αa |a〉 + αb |b〉 + αc |c〉 + αd |d〉 + αe |e〉 , (7)∣∣splmn−opq−r tuv

〉 = αl |l〉 + αm |m〉 + αn |n〉 + αo |o〉 + αp |p〉
+αq |q〉 + αr |r〉 + αt |t〉 + αu |u〉 + αv |v〉 . (8)

The eigenvalues Eab−cde and Elmn−opq−r tuv of H (0)
ab−cde and H (0)

lmn−opq−r tuv are the
corresponding energies. The two lowest energies of the two subsystems are denoted as
E0,ab−cde and E0,lmn−opq−r tuv , with the eigenstates |spe1〉 ≈ |e〉 and |spv1〉 ≈ |v〉,
respectively. To ensure the system evolution from |v〉 to |e〉, it is imperative that
E0,ab−cde = E0,lmn−opq−r tuv holds based on the results in Appendix A. As shown
in Fig. 4, and the critical jumping rate γc1 = 3/M is determined by E0,ab−cde =
E0,lmn−opq−r tuv . For the second-order lattice, the edges that scale less than

√
M in

Fig. 3b cannot be excluded and the approximationM−l ≈ M and
√
M − l ≈ √

M are
not applicable, which are different with the quantum search on the first-order lattices
[22].

The total Hamiltonian is defined as H1 = H (0)
1 + H (1)

1 , where the perturbation

term H (1)
1 is expressed by the edge connecting the vertices c and l, symbolizing the

interaction between the subsystems {a, b, c, d, e} and {l,m, n, o, p, q, r , t, u, v}, as
the dashed line in Fig. 3b. By using the basis {|spe1〉 , |spv1〉}, the whole Hamil-
tonian can be expressed as H1 = H1,spv1,spv1|spv1〉〈spv1| + H1,spv1,spe1|spv1〉〈spe1| +
H1,spe1,spv1|spe1〉〈spv1| + H1,spe1,spe1|spe1〉〈spe1| . The eigenstates of H1 on this two-
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Fig. 4 γc1 is determined when E0,ab−cde = E0,lmn−opq−r tuv

Table 2 On the second-order lattice, when the target state is |a〉, the values of γ1 are required in order to
ensure P1 ≥ 50%

M γc1 = 3/M γ1 = γc1 + ε1
|ε1|
γc1

× 100%

100 0.03 2.8 × 10−2 ∼ 3.2 × 10−2 6.67%

1000 0.003 2.94 × 10−3 ∼ 3.06 × 10−3 2%

10000 0.0003 2.98 × 10−4 ∼ 3.02 × 10−4 0.67%

dimensional subspace are

|φ1−〉 = 1√
2
(|spv1〉 + |spe1〉), (9)

|φ1+〉 = 1√
2
(|spv1〉 − |spe1〉). (10)

The eigenvalues are denoted as E1− and E1+, respectively. Therefore, we have
|spv1〉 ≈ (|φ1−〉 + |φ1+〉)/√2, |spe1〉 ≈ (|φ1−〉 − |φ1+〉)/√2 and |ψ(t1)〉 =
e−i H1t1 |spv1〉 ≈ (|φ1−〉 + e−i	E1t1 |φ1+〉)/√2, where 	E1 = E1+ − E1−, and
t1 represents the time in the first stage. The probability of the system evolving to
|spe1〉 is |〈spe1|ψ(t)〉|2 ≈ (1 − cos	E1t1)/2. When M is large, |spe1〉 ≈ |e〉 and
|spv1〉 ≈ |v〉. Then, the system evolves from |v〉 to |e〉 at the time t1 = π/(E1+−E1−).

We represent the success probability of the system evolution from |v〉 to |e〉 as
P1. To study the stability of this algorithm, we assume that the jumping rate γ1 is
3/M + ε1 instead of 3/M . When M = 100, the range of ε1 that ensures P1 ≥ 50% is
[−2× 10−3, 2× 10−3]. Similarly, for M = 1000 and M = 10000, in order to ensure
P1 ≥ 50%, the value of ε1 should fall in the intervals of [−6 × 10−5, 6 × 10−5] and
[−2 × 10−6, 2 × 10−6] respectively. The detailed results are given in Table 2.
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Fig. 5 γc2 is determined when
E0,ab = E0,cde

In the second stage of the algorithm, the system evolves from |ψ(t1)〉 ≈ |e〉 to |b〉.
The leading-order term H (0)

2 of the Hamiltonian is shown in Fig. 3c. We approximate
M − l ≈ M and

√
M − l ≈ √

M while excluding edges with weights less than
√
M .

The leading-order term of the Hamiltonian can be expressed as

H (0)
2 =

(
H (0)
ab 0
0 H (0)

cde

)
, (11)

where

H (0)
ab = −γ

(
1/γ

√
M√

M M

)
, (12)

H (0)
cde = −γ

⎛

⎝
0 0

√
M

0 0
√
M√

M
√
M M

⎞

⎠ . (13)

We obtained γc2 = 2/M by equating the lowest energy E0,ab of H
(0)
ab to the lowest

energy E0,cde of H
(0)
cde, as depicted in Fig. 5.

By using the whole Hamiltonian H2 = H (0)
2 + H (1)

2 , we have the eigenstates of the
system |φ2∓〉 = 1√

2
(|spb2〉 ± |spe2〉), where |spb2〉 and |spe2〉 are the eigenvectors

of the lowest energies E0,ab and E0,cde. And the eigenvalues of |φ2∓〉 are E2− and
E2+, respectively. The system evolves from |spe2〉 ≈ |e〉 to |spb2〉 ≈ |b〉 at the time
t2 = π/(E2+ − E2−), which can be obtained using a similar method for the derivation
of t1.

Wedenote the probability of successful evolution of this stage as P2 and chooseγ2 =
2/M+ε2.WhenM = 100, 1000, and 10000, to ensure P2 ≥ 50%, the ranges of ε2 are
[−1.5×10−3, 1.5×10−3], [−5.5×10−3, 5.5×10−5] and [−1.9×10−6, 1.9×10−6],
respectively. The detailed results are shown in Table 3.
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Table 3 On the second-order lattice, when the target state is |a〉, the values of γ2 are required in order to
ensure P2 ≥ 50%

M γc2 = 2/M γ2 = γc2 + ε2
|ε2|
γc2

× 100%

100 0.02 1.85 × 10−2 ∼ 2.15 × 10−2 7.5%

1000 0.002 1.945 × 10−3 ∼ 2.055 × 10−3 2.75%

10000 0.0002 1.981 × 10−4 ∼ 2.019 × 10−4 0.95%

Table 4 On the second-order lattice, when the target state is |a〉, the values of γ3 are required in order to
ensure P3 ≥ 50%

M γc3 = 1/M γ3 = γc3 + ε3
|ε3|
γc3

× 100%

100 0.01 0.75 × 10−2 ∼ 1.25 × 10−2 25%

1000 0.001 0.945 × 10−3 ∼ 1.055 × 10−3 5.5%

10000 0.0001 0.981 × 10−4 ∼ 1.019 × 10−4 1.9%

In the third stage of the algorithm, the initial state is |b〉, and the target state is |a〉. As
presented in Fig. 3d, in the subspace spanned by the basis states |a〉 and |b〉, the leading-
order term H (0)

3 = − (|a〉〈a| + γ M |b〉〈b|). We obtained the critical jumping rate
γc3 = 1/M by setting the two eigenvalues to be equal. By introducing the perturbation

H (1)
3 = −

(
γ
√
M|a〉〈b| + γ

√
M|b〉〈a|

)
, we obtain the eigenstates and eigenvalues

of the whole Hamiltonian H3 = H (0)
3 + H (1)

3 :

|φ3−〉 = 1√
2
(|a〉 + |b〉), E3− = −1 −

√
1

M
, (14)

|φ3+〉 = 1√
2
(|a〉 − |b〉), E3+ = −1 +

√
1

M
. (15)

The system evolves into |a〉 when t3 = π/(E3+ − E3−) = π
√
M

2 .
Assuming the success probability of this stage as P3, we consider γ3 = 1/M + ε3.

To ensure P3 ≥ 50% when M = 100, 1000, and 10000, ε3 must fall in the intervals of
[−2.5×10−3, 2.5×10−3], [−5.5×10−5, 5.5×10−5], and [−1.9×10−6, 1.9×10−6],
respectively (Table 4).

For the three-stage quantum search on the second-order lattice,we have obtained the
three critical jumping rates γc1 = 3/M , γc2 = 2/M and γc3 = 1/M . The probability
of a successful search on the second-order lattice is depicted in Fig. 6. As M increases,
the success probability is close to 100%.

123



Degenerate perturbation theory to quantum search Page 11 of 27 126

Fig. 6 Success probabilities of
the quantum search on the
second- and third-order
truncated M-simplex lattices

3 Rules for using degenerate perturbation theory

In the second-order lattice, the structure formed by the set {|a〉 , |b〉 , |c〉 , |d〉 , |e〉} is
referred to as a first-order complete subgraph, which is denoted as A1 in Fig. 7a. Simi-
larly, the structure formed by the set {|l〉 , |m〉 , |n〉 , |o〉 , |p〉 , |q〉 , |r〉 , |t〉 , |u〉 , |v〉} is
also a first-order complete subgraph denoted byC1. It can be observed that the second-
order lattice is constructed by M + 1 first-order complete subgraphs, as depicted in
Fig. 7a. A1, B1, and C1 represent distinct first-order complete subgraphs.

The first stage of the quantum search on the second-order lattice takes place between
the first-order complete subgraphs, from C1 to A1. C1 can evolve directly to A1
without going through B1. Moreover, the initial state approximates a superposition of
states within C1, making the presence or absence of B1 inconsequential to the initial
state. The marked vertex in not in B1, in the quantum search process, the probability
of evolving to B1 is small and can be ignored. Therefore, we determined the critical
jumping rate γc1 = 3/M by considering only the two first-order complete subgraphs
C1 and A1 to account for degeneracy.

In the first stage of the search on the second-order lattice, there are two differences
from the approach proposed in zeroth- and first-order lattice search. First, because
the two sets {|a〉 , |b〉} and {|r〉 , |t〉 , |u〉 , |v〉} are not directly connected, the critical
jumping rate γc1 cannot be determined by considering only these two subsystems.
Second, the elements with a value of 1 in the leading-order Hamiltonian cannot be
omitted, and the approximations M − l ≈ M and

√
M − l ≈ √

M are unavailable.
The reason is that these approximations result in a significant change in the graph
structure represented by the resulting matrix, compared to the original structure. In
zeroth- and first-order structures, these changes are minor. In second-order and even
higher-order structures, these changes are so substantial that the critical jumping rate
cannot be accurately determined with these approximations.

In the first-order complete subgraph A1, the structures that formed by the vertices
{|a〉 , |b〉} and {|c〉 , |d〉 , |e〉} are referred to as zeroth-order complete subgraphs, as
depicted in Fig. 7b. A2 and B2 represent two categories of zeroth-order complete
subgraphs.
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Fig. 7 Degenerate perturbation theory on second-order lattices
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Fig. 8 A third-order truncated five-dimensional simplex lattice. Vertices that evolving identically are labeled
with the same letter. The red vertex is the marked vertex a

In the second stage of the quantum search, the evolution from |e〉 to |b〉 can be
approximated as the evolution from B2 to A2. This stage occurs between two zeroth-
order complete subgraphs. The third search stage from |b〉 to |a〉 occurs between two
vertices in the zeroth-order complete subgraph A2, as shown in Fig. 7c. The structures
involved in these two stages are simpler. Regardless of whether we retain the weighted
edge 1 and make the approximations M − l ≈ M and

√
M − l ≈ √

M , we can obtain
the exact value of γc.

To prove the generality of the above method, we have extended the application
of degenerate perturbation theory to the third-order lattice. A third-order lattice is
constructed by replacing each vertex of a second-order lattice with an M-dimensional
complete graph, as depicted in Fig. 8. By symmetry, the system of the third-order
lattice evolves in a 67-dimensional invariant subspace. This subspace comprises the
states |a〉, . . ., |z〉, |a1〉, . . ., |z1〉 and |a2〉, . . ., |o2〉, as shown in Fig. 8.

The structures formed by the vertices corresponding to the sets {|a〉 , . . . , |e〉},
{|p〉 , . . . , |d1〉} and {|e1〉 , . . . , |o2〉} are referred to as second-order complete sub-
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graphs. And the third-order lattice can be regarded as M + 1 interconnected
second-order complete subgraphs, as depicted in Fig. 9a. A1, B1, and C1 represent
three types of second-order complete subgraphs.

The quantum search on the third-order lattice is a four-stage algorithm. When M is
large, the first stage of the quantum search on the third-order lattice can be seen as the
evolution from the second-order complete subgraphC1 to A1. Hence, we consider A1
andC1 to account for degeneracy and determine the critical jumping rate γc1,3rd−order .

Subsequently, the following stages of the quantum search follow a similar evolution
as the one on the second-order lattice: at the second stage, the degeneracy of the first-
order complete subgraphs represented by A2 and B2 in A1 are considered to determine
γc2,3rd−order , as depicted in Fig. 9b; at the third stage, we consider the degeneracy of
the zeroth-order complete subgraphs represented by A3 and B3 in A2 in order to
determine γc3,3rd−order , as shown in Fig. 9c; at the fourth stage, we consider the
degeneracy of the vertices a and b in A3 to determine γc4,3rd−order , as illustrated
in Fig. 9d. The critical jumping rates γc of the three stages as depicted in Fig. 10:
γc1,3rd−order ≈ 4/M , γc2,3rd−order ≈ 3/M , γc3,3rd−order ≈ 2/M . For the fourth
stage, γc4,3rd−order = 1/M can be directly computed as discussed in Sect. 2.

It is important to note that at the first and second stages, the edges with a weight
of 1 in the second-order complete subgraphs and the first-order complete subgraphs
cannot be omitted. Additionally, the approximations M − l ≈ M and

√
M − l ≈ √

M
are not applicable.

In the construction of leading-order terms based on different orders of complete
subgraphs, we observed the correlation between the use of degenerate perturbation
theory and the lattice structure. To demonstrate the dependency of degenerate pertur-
bation theory on the structure, we have added two simulation experiments involving a
set of marked vertices. In the first experiment, for a second-order lattice, we select |e〉
as the marked state which contains (M − 1)(M − 2) vertices, as depicted in Fig. 11.
The search Hamiltonian is

H = −γ A − |e〉 〈e| . (16)

This quantum search is a one stage algorithm. Here, we use two schemes to deter-
mine the critical jumping rate. The first scheme closely resembles the one discussed in
Sect. 2. The leading-order term of the Hamiltonian aligns with the one given by Eq.4,
differing only in

H (0)
ab−cde = −γ

⎛

⎜⎜⎜⎜⎝

0
√
M1 0 0 0√

M1 M2 0 1 0
0 0 0 1

√
M2

0 1 1 0
√
M2

0 0
√
M2

√
M2

1
γ

+ M2

⎞

⎟⎟⎟⎟⎠
. (17)

The critical jumping rate γc,marked(e) is determined by the two lowest ener-
gies E0,ab−cde and E0,lmn−opq−r tuv of the subsystems {|a〉 , |b〉 , |c〉 , |d〉 , |e〉} and
{|l〉 , |m〉 , |n〉 , |o〉 , |p〉 , |q〉 , |r〉 , |t〉 , |u〉 , |v〉}, respectively. And γc,marked(e) = M as
illustrated in Fig. 12a.
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Fig. 9 Degenerate perturbation theory on third-order lattice
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Fig. 10 In quantum search on the third-order lattice, γc1,3rd−order ≈ 4/M , γc2,3rd−order ≈ 3/M , and
γc3,3rd−order ≈ 2/M can be obtained through numerical calculations

Based on the lattice structure shown in Fig. 11, the set {|r〉 , |t〉 , |u〉 , |v〉} is
connected to the set {|c〉 , |d〉 , |e〉} through the set {|l〉 , |m〉 , |n〉}. The two kinds
of sets {|a〉 , |b〉} and {|o〉 , |p〉 , |q〉} are unrelated to the evolution. Therefore, we
only retain the parts of {|c〉 , |d〉 , |e〉} and {|l〉 , |m〉 |n〉 , |r〉 |t〉 , |u〉 , |v〉} in the
leading-order term, as shown in Fig. 13. We consider this method as the second
scheme. By setting the lowest energy of {|c〉 , |d〉 , |e〉} equal to the lowest energy
of {|l〉 , |m〉 |n〉 , |r〉 |t〉 , |u〉 , |v〉}, the critical jumping rate γ ′

c,marked(e) = M can be
determined, as illustrated in Fig. 12b. This result is consistent with the first scheme.
Further calculations confirm that the system indeed has a high probability of evolving
to |e〉 when γmarked(e) = M .

It is found that the success of the second scheme can be attributed to the fact
that after omitting {|a〉 , |b〉} and {|o〉 , |p〉 , |q〉}, the structures corresponding to the
sets {|c〉 , |d〉 , |e〉} and {|l〉 , |m〉 , |n〉 , |r〉 , |t〉 , |u〉 , |v〉} share the same overall shape,
despite containing different types of vertices. The same overall shapes of the two
subsystems are called structural consistency.

Now, we summarize the guidelines of using degenerate perturbation theory for the
quantum search on an r th-order lattice. Here, we provide several definitions: (1) The
(r − 1)th-order complete subgraph is defined as the secondary structure of an r th-
order lattice, and similarly, a (r − 2)th-order complete subgraph is considered as the
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Fig. 11 In the second-order lattice, we consider |e〉 as the marked state. The vertices that undergo the same
evolution are represented by the same letter

Fig. 12 In the second-order lattice, M = 100, and |e〉 is the marked state. aWe use {|a〉 , |b〉 , |c〉 , |d〉 , |e〉}
and {|l〉 , |m〉 , |n〉 , |o〉 , |p〉 , |q〉 , |r〉 , |t〉 , |u〉 , |v〉} to construct the Hamiltonian. b We use {|c〉 , |d〉 , |e〉}
and {|l〉 , |m〉 , |n〉 , |r〉 , |t〉 , |u〉 , |v〉} to construct the Hamiltonian
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Fig. 13 When considering |e〉 as
the marked state, the
leading-order term that only
involves {|c〉 , |d〉 , |e〉} and
{|l〉 , |m〉 , |n〉 , |r〉 , |t〉 , |u〉 , |v〉}
is shown. The dashed lines from
the vertices c connect to the
other structures formed by the
set
{|l〉 , |m〉 , |n〉 , |r〉 , |t〉 , |u〉 , |v〉}

secondary structure of the (r − 1)th-order complete subgraph. (2) We designate the
secondary structure associated with the initial state as the ”initial secondary structure”
and the secondary structure associated with the target state as the ”target secondary
structure”. (3) When some vertices within the (r − 1)th-order complete subgraph are
excluded, we still refer to the resulting structure as a secondary structure of the r th-
order lattice. (4) The set of basis states associated with a complete graph is referred to
as a basis group, like {|a〉 , |b〉} and {|o〉 , |p〉 , |q〉}.

The first step of the quantum search is to identify the initial and target secondary
structures. Afterward, we eliminate the basis groups unrelated to the search. Finally,
we establish degeneracy between the remaining components of the two secondary
structures to determine the critical jumping rate. A basis group can be considered as
a set unrelated to the search and can be omitted only when it satisfies the following
two constraints:

(1) The basis group is not part of the shortest path between the initial and target
states. (2) After the omission of the basis groups, structural consistency can still be
retained in the initial and target secondary structures. Following these two constraints,
we can effectively reduce the dimension of the Hamiltonian through this omission,
resulting in simplified computations.

We consider the search on the third-order lattice with the marked state |o〉 in Fig. 14
as an example to demonstrate the above guidelines. The Hamiltonian of the system is

H = −γ A − |o〉 〈o| . (18)

We have determined the critical jumping rates by using the above two schemes, as
illustrated in Fig. 15. The two schemes all provide the correct critical jumping rate
M2. It has been demonstrated that when γmarked(o) = M2, the system can effectively
evolve from the state |o2〉 to the state |o〉 with a high probability.

4 The impact of varying the positions of marked vertices

In the second-order lattice, the marked vertex labeled as a can be positioned dif-
ferently, as illustrated in Fig. 16. This variation leads to an increase in the dimension
of the invariant subspace from 20 to 47, which includes states {|a〉 , . . . , |z〉} and
{|a1〉 , . . . , |u1〉}.
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Fig. 14 In the third-order truncated five-dimensional simplex lattice, |o〉 is the marked state

The initial state is the uniform superposition of all states, given by |ψ(0)〉 =
1√
N

∑N
i=1 |i〉. When M is large, we have |ψ(0)〉 ≈ |u1〉.

The evolution of the system still has three stages, from |ψ(0)〉 ≈ |u1〉 to | j〉, then to
|c〉, and finally to |a〉, as shown in Fig. 17. The critical jumping rates of the three stages
are γ ′

c1 = 3/M , γ ′
c2 = 2/M and γ ′

c3 = 1/M , respectively. This result is consistent
with the findings in Sect. 2. It can be observed that in the second-order lattice, when
there is one marked vertex, the different positions of the marked vertex does not affect
the values of the critical jumping rates.

For the two quantum searches on the second-order lattice where there is only one
marked vertex, as shown in Figs. 2 and 16, further calculations reveal that the time
required for each stage is approximately the same. The corresponding structures of
the two different marked vertices for each stage are identical, which implies that the
different positions of the marked vertex have no effect on the search.

To further investigate the impact of the marked vertices’ positions on quantum
search, we consider the quantum search on the second-order lattice with two marked
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Fig. 15 In the third-order lattice, when |o〉 is the marked state, we displayed the target and initial secondary
structures, as well as the modified versions of these structures obtained after omitting specific basis groups
that are unrelated to the search

vertices. And five different configurations are analyzed, as depicted in Fig. 18. The
corresponding results of the analysis are presented in Table 5.

In Fig. 18b and c, the two marked vertices are located in the same first-order com-
plete subgraph, resulting in γc1,Fig(b) = γc1,Fig(c) = 4/M for the first stage. In
Fig. 18d and e, the two marked vertices are in two different first-order complete sub-
graphs, leading to γc1,Fig(d) = γc1,Fig(e) = 3/M for the first stage. For the second
stage, in Fig. 18b–e, the twomarked vertices are situated on different zeroth-order com-
plete subgraphs, yielding γc2,Fig(b) = γc2,Fig(c) = γc2,Fig(d) = γc2,Fig(e) = 2/M .
With the above results, we can consider the searches in Fig. 18b and c as equivalent,
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Fig. 16 Another case where there’s only one marked vertices on a second-order lattice

as well as the searches in Fig. 18d and e. Therefore, we conclude that changing the
positions of the marked vertices does not affect the search, as long as the number of
marked vertices and the corresponding secondary structures remain constant.

In comparison toFig. 18b and c, the twomarkedvertices inFig. 18a are positionedon
one zeroth-order complete subgraph. In the second search stage in Fig. 18a, the target
secondary structure consists of only one zeroth-order complete subgraph, whereas
in Fig. 18b and c, the target secondary structure involves two zeroth-order complete
subgraphs. This distinct configuration results in γc2,Fig(a) = 3/M in Fig. 18a, which
is different from γc2,Fig(b) = γc2,Fig(c) = 2/M in Fig. 18b and c. This finding aligns
with [25], stating that the numerator of γc increases by 1 when the number of marked
vertices on the same target secondary structure increases by 1. This local difference has
an impact on the overall search process. So in Fig. 18b and c, γc1,Fig(b) = γc1,Fig(c) =
4/M , while in Fig. 18a, γc1,Fig(a) = (4 + 1)/M = 5/M . Thus, we conclude that
different evolution in lower-order substructures will influence the evolution in higher-
order structures.

It is observed that in Fig. 18d and e, the critical jumping rates of each stage are
identical to the case with only one marked vertex. Furthermore, we have obtained that
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Fig. 17 The evolution to the
target state on the second lattice
when the marked vertex is
positioned differently
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Fig. 18 Five configurations of the two marked vertices in the second-order lattice, where M = 5. The
vertices that evolve identically are represented by the same letter
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Table 5 The five cases of search with two marked vertices, shown in Fig.18, with the subspace dimension,
the three stages’ critical jumping rate(γc), and evolution

Case Dimension γc Evolution

Fig. 18a 47 γc1,Fig(a) = 5/M |u1〉 −→ | j〉
γc2,Fig(a) = 3/M | j〉 −→ |c〉
γc3,Fig(a) = 1/M |c〉 −→ 1√

2
(|a〉 + |b〉)

Fig. 18b 47 γc1,Fig(b) = 4/M |u1〉 −→ | j〉
γc2,Fig(b) = 2/M | j〉 −→ 1√

2
(|c〉 + | f 〉)

γc3,Fig(b) = 1/M 1√
2
(|c〉 + | f 〉) −→ 1√

2
(|a〉 + |d〉)

Fig. 18c 27 γc1,Fig(c) = 4/M |a1〉 −→ | f 〉
γc2,Fig(c) = 2/M | f 〉 −→ |c〉
γc3,Fig(c) = 1/M |c〉 −→ |a〉

Fig. 18d 11 γc1,Fig(d) = 3/M |k〉 −→ |e〉
γc2,Fig(d) = 2/M |e〉 −→ |b〉
γc3,Fig(d) = 1/M |b〉 −→ |a〉

Fig. 18e 47 γc1,Fig(e) = 3/M |u1〉 −→ 1√
2
(| j〉 + |t〉)

γc2,Fig(e) = 2/M 1√
2
(| j〉 + |t〉) −→ 1√

2
(|c〉 + |m〉)

γc3,Fig(e) = 1/M 1√
2
(|c〉 + |m〉) −→ 1√

2
(|a〉 + |l〉)

in Fig. 18d and e, the number of stages, and the time are the same as the ones in the
previously discussed cases with one marked vertex. This result implies that when the
marked vertices are located in different secondary structures, the searches among these
substructures do not affect each other. In Fig. 18d and e, the search can be viewed as
two parallel processes searching for a singlemarked vertex on the second-order lattice.
Similarly, in Fig. 18b and c, the two second stages of search processes are equivalent to
two parallel processes searching for a single marked vertex on a first-order subgraph.

This observation is further supported by the search illustrated in Fig. 19. There
are three marked vertices, with a and b situated in the same zeroth-order complete
graph, while d is located in another zeroth-order complete graph. When M is large
enough, the initial state |ψ(0)〉 ≈ |m〉. According to the results presented in Fig. 19b,
when we want the system to evolve toward {|a〉 , |b〉}, the jumping rate should be
γc1,marked(a&b) ≈ 3/M . This aligns with the case of having only a and b as marked
verticeswithout themarked vertex d on the first-order lattice.When the system evolves
toward |d〉, the jumping rate γc1,marked(d) ≈ 2/M . Thismatches the scenario of having
a single marked vertex on the first-order lattice. Therefore, we can conclude that the
search for different secondary structures does not interfere with each other when the
marked vertices are located in distinct secondary structures.
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Fig. 19 a The scenario of three marked vertices in the first-order lattice. b The critical jumping rates of the
first stage

5 Conclusion

In this paper, degenerate perturbation theory is applied to quantum search on the
second-order truncated simplex lattice to determine the critical jumping rate γc. With
the γc, the system can evolve into the target state at an appropriate time. The construc-
tion of the leading-order term of the Hamiltonian must consider the lattice structure.
Specifically, when the lattice order exceeds 1, edges with weight 1 in the secondary
structure, as well as l in M − l and

√
M − l, cannot be omitted.

From the results of the quantum search on the second- and third-order lattices, we
have observed that the basis groups can be disregarded if they satisfy the following
two constraints: (1) They are not part of the shortest path between the initial state and
the target state. (2) After the omission of the basis groups, the structural consistency
can still be retained. By employing this omission, the calculations can be substantially
simplified.

Wehave also shown that the change in the position of the singlemarked vertex on the
second-order lattice has no impact on the three-stage search. To examine the influence
of the marked vertices’ positions on the search, five distinct configurations of two
marked vertices have been studied. Our results reveal three rules regarding the impact
of different configurations: (1)When the number of marked vertices and the secondary
structures they are located in remain constant, the variations of their positions do not
affect the search. (2) Different evolution in lower-order substructures have an influence
on the evolution in higher-order structures. (3) The search for different secondary
structures does not interfere with each other when the marked vertices are located
on separate secondary structures. Our research provides support for the application
of degenerate perturbation theory in continuous-time quantum walk and may be a
valuable reference for its implementation in other structures.
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A Appendix

This section provides an example illustrating the necessity of aligning the energies of
the two ground states of the two interacted subsystems. Without loss of generality, we
consider a quantum system in a two-dimensional Hilbert space. The Hilbert space of
this system is spanned by the basis states {|0〉 , |1〉}. Here, |0〉 and |1〉 are the two states
of the two subsystems which equivalent to the subsystems mentioned in the main text,
such as {ab − cde} and {lmn − opq − r tuv}.

Without loss of generality, the initial state is |1〉, the marked state is |0〉. and the

Hamiltonian is expressed as H =
[
E1 1
1 E2

]
. The Hamiltonian can be divided into

two parts H = H (0) + H (1), where the leading-order term H (0) =
[
E1 0
0 E2

]
and the

perturbation term H (1) =
[
0 1
1 0

]
. Without the perturbation, the energies of the two

subsystems are E1 and E2, respectively.
The eigenstates and eigenvalues of the whole Hamiltonian H = H (0) + H (1) are

|φ−〉 = ((α − β) |0〉 + |1〉)/γ1, E− = (E1 + E2 − 2β)/2, (19)

|φ+〉 = ((α + β) |0〉 + |1〉)/γ2, E+ = (E1 + E2 + 2β)/2. (20)

where α = (	E)/2, β = √	E2 + 4/2, γ1 = √
2β2 − 2αβ, γ2 = √

2β2 + 2αβ and
	E = E2 − E1. From the above two equations, we have |0〉 = (|φ−〉 − |φ+〉)/√2
and |1〉 = ((α + β)|φ−〉 − (α − β)|φ+〉)/√	E2 + 2. With the initial state |1〉, the
evolution of the system is described by |ψ(t)〉 = e−i Ht |1〉. And we have |ψ(t)〉 =
((α + β)|φ−〉 − e−i	E ′t (α − β)|φ+〉)/√	E2 + 2, where 	E ′ = E+ − E− = 2β.
The probability of the system evolving into the marked state |0〉 is

|〈0|ψ(t1)〉|2 = 1

2
(1 − 2 − 	E2

2 + 	E2 cos	E ′t). (21)

.
The probability can attain its maximal value 1 when 	E = 0 (E1 = E2), and

t = π/	E ′. In conclusion, the system can only evolve from one state to the other one
if the corresponding energies of the two subsystems are equal without the perturbation
term.
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