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Abstract
By generalizing the stabilizer quantum error-correcting codes, entanglement-assisted
quantum error-correcting (EAQEC) codes were introduced, which could be derived
from any classical linear codes via the relaxation of self-orthogonality conditions with
the aid of pre-shared entanglement between the sender and the receiver. In this paper,
three classes of entanglement-assisted quantum error-correcting maximum-distance-
separable (EAQMDS) codes are constructed through generalized Reed–Solomon
codes. Under our constructions, the minimum distances of our EAQMDS codes are
much larger than those of the known EAQMDS codes of the same lengths that con-
sume the same number of bits. Furthermore, some of the lengths of the EAQMDS
codes are not divisors of q2 −1, which are completely new and unlike all those known
lengths existed before.

Keywords EAQEC codes · EAQMDS codes · MDS codes · Generalized
Reed–Solomon codes

1 Introduction

Over recent decades, the quantum information science has developed very rapidly.
Quantum error-correcting (QEC) codeswere introduced in order tominimize the deco-
herence phenomenon over the quantum information channel. After Calderbank et al.
[3] gave a connection between classical linear error-correcting codes and QEC codes,
the research of QEC codes has made rapidly progress. By utilizing self-orthogonal
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classical error-correcting codes, a number of QEC codes with favorable parameters
have been derived (see [13, 20–22, 25, 26, 41] and the relevant references therein).
Nevertheless, the self-orthogonality condition forms an obstacle to the construction
of QEC codes. Later, a breakthrough had been made by Brun et al. [2], where
entanglement-assisted (EA) stabilizer formalism was proposed, which utilizes pre-
shared entanglement among the sender as well as the receiver to construct QEC codes.
The associated codes are known as entanglement-assisted quantum error-correcting
(EAQEC) codes thatmaybe constructed fromarbitrary classical linear error-correcting
codes without the self-orthogonality constraint. After that, numerous researchers have
been working on constructing EAQEC codes with good parameters via classical linear
error-correcting codes (see [9, 11, 15, 17, 38] and the references therein).

Suppose that q is a prime power, an [[n, k, d; c]]q EAQEC code can correct at
most � d−1

2 � errors by encoding k information qudits into n channel qudits with the
assistance of c copies of maximally entangled states. In particular, if c = 0, it is the so-
called standard [[n, k, d]]q QEC code. Analogous to the quantum Singleton bound for
the parameters of QEC codes, the more general entanglement-assisted (EA)-quantum
Singleton bound for the parameters of EAQEC codes is available to us in the following.

Theorem 1.1 [1, 2, 10, 23] (EA-quantum Singleton bound) For any [[n, k, d; c]]q ,
EAQEC code with d ≤ n+2

2 must satisfy

n − k + c ≥ 2(d − 1),

where 0 ≤ c ≤ n−1. Furthermore, it is indeed the quantum Singleton bound if c = 0.

Specifically, an EAQEC code is called an EAQMDS code if it exactly satisfy this
bound. Recently, by using constacyclic codes (including cyclic codes and negacyclic
codes), generalized Reed–Solomon(GRS) codes as well as extended GRS codes,
numerous EAQMDS codes have been constructed in a variety of ways. In [7], due
to classical MDS codes of a certain code length, Fan et al. derived several classes
of EAQMDS codes with a small number of pre-shared maximally entangled states.
Subsequently, Lu et al. [28] determined the number of maximally entangled states
via the decomposition of the defining set of BCH codes and many EAQMDS codes
with larger minimum distances were constructed. This approach was extended to con-
stacyclic codes by Lu et al. [29] and Chen et al. [4], respectively, and several new
classes of EAQMDS codes were derived. Thereafter, by using the decomposition of
the defining set of constacyclic codes, many classes of EAQMDS codes of lengths
dividing q2 ±1 have been derived (see [5, 6, 16, 19, 27, 30, 34, 36, 37, 40, 42] and the
relevant references therein). At the same time, due to the excellent algebraic structure
of the GRS codes, a significant number of EAQMDS codes were also constructed
from GRS codes. In [11], Guenda et al. developed a relationship between the hull
of the classical linear error-correcting codes and the number of maximally entangled
states which is needed to construct EAQEC codes. Additionally, by studying the hull
of the GRS codes, they also derived some new EAQMDS codes. Inspired by the ideas
of [11], many classes of MDS codes with hulls of arbitrary dimensions were studied
by Luo et al. [32] via GRS codes, and new classes of EAQMDS codes were obtained.
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Besides, a number of other EAQMDS codes were derived via GRS codes as well as
extended GRS codes (see [8, 14, 24, 31, 35, 39]).

Notably, the lengths of most EAQMDS codes mentioned above are divisors of
q2±1. Therefore, scholars are also committed to construct EAQMDS codes of lengths
not dividing q2±1.Guo et al. [12] extended the lengths of EAQMDScodes by adding 1
to the lengths in [14], so the lengthsmay not divide q2±1. Jin et al. [18] derived several
new classes of EAQMDS codes fromGRS codes over finite fields of odd characteristic
q, whose lengths may not be divisors of q2 ± 1 and can reach (q + 1)(q − 3). Very
recently, Wang and Li [44] constructed two classes of EAQMDS codes of the lengths
that are sums of two divisors of q2 − 1 from GRS codes.

Going on the line of the above work, we construct three classes of EAQMDS codes
with parameters [[n, n − 2d + c + 2, d; c]]q based on GRS codes as follows:

(1) n = b(q2−1)
a + q2−1

a , a|(q + 1), a + b ≡ 1 (mod 2), 2 ≤ d ≤ a+b+1
2 · q+1

a and
c = b + 1.

(2) n = b(q2−1)
a + q2−1

a , a|(q + 1), a + b ≡ 0 (mod 2), 2 ≤ d ≤ a+b+2
2 · q+1

a − 1
and c = b + 1.

(3) n = b(q2−1)
a , a|(q − 1), (a, b) �= (q − 1, q − 1), 2 ≤ d ≤ b(q−1)

a + 1 and c = b.

Compared to standard QEC codes, the EAQEC codes enhance communication
capabilities at the expense of pre-shared entanglement. In this paper, it is worth noting
that some of the lengths of EAQMDS codes are the sum of two divisors of q2 − 1,
which implies that the lengths of our codesmight not be divisors of q2−1. Some of the
lengths are new and have never been covered by the lengths available in the literature.
This extends the length of theEAQMDScodes.Also, comparedwith knownEAQMDS
codes, our codes have larger minimum distances, which enhance the error-correction
capability. The paper is structured as follows. Some basic concepts and results about
GRS codes and EAQEC codes are reviewed in Sect. 2. In Sect. 3, three new classes of
EAQMDS codes are obtained from GRS codes. Section4 gives a conclusion.

2 Preliminaries

Let Fq2 be the finite field with q
2 elements, where q is a prime power. A q2-ary linear

code C is denoted by [n, k, d]q2 if its length is n, its dimension is k and its minimum
distance is d, which is a linear subspace of F

n
q2
. Moreover, the minimum distance d

of the code C must satisfy the following well-known bound.

Theorem 2.1 [33] (Singleton bound) An [n, k, d] linear code C over Fq2 must satisfy

n − k ≥ d − 1.

A linear code is called an maximum-distance-separable (MDS) code if the equality
holds.
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For any two vectors x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) belong to
F
n
q2
, their Euclidean and Hermitian inner product are defined as

〈x, y〉E = x0y0 + x1y1 + · · · + xn−1yn−1,

and

〈x, y〉H = x0y
q
0 + x1y

q
1 + · · · + xn−1y

q
n−1,

respectively. The Euclidean dual code and the Hermitian dual code of a linear code C
with parameters [n, k, d]q2 is respectively defined by

C⊥E = {x ∈ F
n
q2 |〈x, y〉E = 0,∀ y ∈ C},

C⊥H = {x ∈ F
n
q2 |〈x, y〉H = 0,∀ y ∈ C}.

The code C is said to beEuclidean (Hermitian) self-orthogonal if C ⊆ C⊥E ( C ⊆ C⊥H ).
Let a = (α1, α2, . . . , αn) ∈ F

n
q2

and v = (v1, v2, . . . , vn) ∈ (F∗
q2

)n , where
α1, α2, . . . , αn are n distinct elements ofFq2 and v1, v2, . . . , vn are n nonzero elements
of Fq2 (vi can be the same). For each integer k with 1 ≤ k ≤ n, let

F
n
q2 [x]k = { f (x) ∈ F

n
q2 [x]|deg( f (x)) ≤ k − 1}.

Then, the GRS code of length n and dimension k is defined as:

GRSk(a, v) = {v1 f (α1), v2 f (α2), . . . , vn f (αn)| f or all f (x) ∈ F
n
q2 [x]k}.

As everyone knows, the GRS code is exactly an MDS code with parameters [n, k, n−
k + 1] over Fq2 , and it has a generator matrix shown below.

Gk =

⎛
⎜⎜⎜⎝

v1 v2 · · · vn
v1α1 v2α2 · · · vnαn

...
...

. . .
...

v1α
k−1
1 v2α

k−1
2 · · · vnα

k−1
n

⎞
⎟⎟⎟⎠ .

The following famous result illustrates the dual code of a GRS code.

Theorem 2.2 [33] The dual code of GRSk(a, v) is GRSn−k(a, v
′
) for a vector v

′ =
{v′

1, v
′
2, . . . , v

′
n}, such that v

′
i �= 0 for any 1 ≤ i ≤ n.

Remark 2.1 According to Theorem 2.2, the dual code of an [n, k, n − k + 1]q2
GRSk(a, v) is still an [n, n − k, k + 1]q2 GRS code. Additionally, the parity-check

matrix of GRSn−k(a, v
′
) is the generator matrix of GRSk(a, v).
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For any η ∈ Fq2 , the conjugate of η is defined as η = ηq . Let A = (ai j )m×n be an

m × n matrix over Fq2 and define the conjugate of A by A = (ai j )m×n . Suppose that

A† is the conjugate transpose of A, where A† = (A)T and AT denotes the transpose
of A.

Finally, we give a method to construct EAQEC codes using classical linear error-
correcting codes under the Hermitian case.

Theorem 2.3 [2, 43] Let C be an [n, k, d]q2 classical linear error-correcting code,
whose parity-check matrix is H and H† is the conjugate transpose of H; then, one
can get an [[n, 2k − n + c, d; c]]q EAQEC code, where c = rank(HH†).

3 New EAQMDS codes fromGRS codes

In this section, assume that q is a prime power. We will derive three classes of q-ary
EAQMDS codes by utilizing GRS codes over Fq2 . Let ξ be a fixed primitive element

of Fq2 . Suppose that t = q2−1
a , where a|(q + 1) or a|(q − 1). Let β = ξa , then

ord(β) = t .

3.1 New EAQMDS codes of length n = b(q2−1)
a + q2−1

a with a|(q + 1)

In this subsection, we will obtain new q-ary EAQMDS codes of length n = b(q2−1)
a +

q2−1
a with a|(q+1) fromGRS codes. In the following, we will consider GRS codes of

length n by splitting a+b into two cases, i.e., a+b ≡ 1 (mod 2) and a+b ≡ 0 (mod 2).

3.1.1 The case a + b ≡ 1 (mod 2)

To begin with, we give some significant lemmas that will take on essential roles in our
constructions.

Lemma 3.1 Suppose that a+b ≡ 1 (mod 2) andm = a−b+1
2 . If b ≤ min{a−3, q−3},

then there exists a vectorρ = (ρ0, ρ1, . . . , ρb) ∈ (F∗
q)

b+1 such that the following sums

b∑
l=0

ρl ,

b∑
l=0

ξmltρl ,

b∑
l=0

ξ (m+1)ltρl , . . . ,

b∑
l=0

ξ (m+b−1)ltρl

are all nonzeros.

Proof We have to proof that there exists a vector ϕ = (ϕ0, ϕ1, . . . , ϕb) ∈ (F∗
q)

b+1

such that the group of equations below has a nonzero solution ρ = (ρ0, ρ1, . . . , ρb) ∈
(F∗

q)
b+1.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑b
l=0 ρl = ϕ0,

∑b
l=0 ξmltρl = ϕ1,

∑b
l=0 ξ (m+1)ltρl = ϕ2,

. . .

∑b
l=0 ξ (m+b−1)ltρl = ϕb.

(3.1)

Let ζ = ξ t . Denote

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
1 ζm · · · ζ bm

1 ζm+1 · · · ζ b(m+1)

...
...

. . .
...

1 ζm+b−1 · · · ζ b(m+b−1)

⎞
⎟⎟⎟⎟⎟⎠

.

The system of Eq. (3.1) could be characterized by the matrix form

AρT = (ϕ0, ϕ1, . . . , ϕb)
T = ϕT .

It can be easily derived that det(A) �= 0 due to the fact that A is a Vandermonde
matrix and 1, ζm, ζm+1, . . ., ζm+b−1 are all different because of ζ is a primitive a-th
root of unity. Hence, for a fixed vector ϕ, the system of Eq. (3.1) has a sole solution
ρ = (ρ0, ρ1, . . . , ρb) ∈ (Fq)

b+1. Next, we will proof that the system of Eq. (3.1) has
a nonzero solution.

Let φ0 = (1, 1, . . . , 1), φi = (1, ξ t(m+i−1), . . . , ξ tb(m+i−1)), for i = 1, . . . , b.
Then, the system of Eq. (3.1) is changed to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ0ρ
T = ϕ0,

φ1ρ
T = ϕ1,

φ2ρ
T = ϕ2,

...

φbρ
T = ϕb.

(3.2)

It can be trivially verified that φq
i = φb+1−i , for i = 1, . . . , b. Hence, by taking the

q-th powers of all the equations in (3.2), one can get
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φ0ρ
T = ϕ0,

φbρ
T = ϕ1,

φb−1ρ
T = ϕ2,
...

φ2ρ
T = ϕb−1,

φ1ρ
T = ϕb.

(3.3)

Let

λ =
{

ξq+1, q is a power of 2,

ξ
q+1
2 , q is an odd prime power .

It is easy to proof that λq = −λ. We now divide b into two cases as follows:
(1) If b is odd, then it can be easily proved that the system of Eq. (3.2) is equivalent

to the system of Eq. (3.4) according to (3.3).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0ρ
T = ϕ0,

(φ1 + φb)ρ
T = 2ϕ1,

...

(φ b−1
2

+ φ b+3
2

)ρT = 2ϕ b−1
2

,

φ b+1
2

ρT = ϕ b+1
2

,

φ1−φb
λ

ρT = 0,

...
φ b−1

2
−φ b+3

2
λ

ρT = 0.

(3.4)

Denote

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ0
φ1 + φb

...

φ b−1
2

+ φ b+3
2

φ b+1
2

φ1−φb
λ
...

φ b−1
2

−φ b+3
2

λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Obviously, each element of the matrix B belongs to Fq , then the system of Eq. (3.4)
is represented as BρT = (ϕ0, 2ϕ1, . . . , 2ϕ b−1

2
, ϕ b+1

2
, 0, . . . , 0)T . Suppose that

U = {ρ ∈ F
b
q |BρT = (ϕ0, 2ϕ1, . . . , 2ϕ b−1

2
, ϕ b+1

2
, 0, . . . , 0)T }.

For any given nonzero elements ϕ0, ϕ1, . . . , ϕ b+1
2

, the system of Eq. (3.4) in U has a
sole solution.

When ϕ0, ϕ1, . . . , ϕ b+1
2

take all nonzero elements over Fq , respectively, then one
obtains

|U | = (q − 1)
b+3
2 .

Let

Ui = {ρ ∈ F
b
q |ρi = 0, BρT = (ϕ0, 2ϕ1, . . . , 2ϕ b−1

2
, ϕ b+1

2
, 0, . . . , 0)T },

where i = 0, 1, . . . , b, and

S = {ρ ∈ (F∗
q)

b|BρT = (ϕ0, 2ϕ1, . . . , 2ϕ b−1
2

, ϕ b+1
2

, 0, . . . , 0)T }.

If ρi = 0, then ϕ0, 2ϕ1, . . . , 2ϕ b−1
2

, ϕ b+1
2

must meet a linear equation with nonzero
coefficients. So

|Ui | = (q − 1)
b+1
2 .

Accordingly, S = U \ (U0 ∪U1 ∪ · · · ∪Ub). Hence, |S| = |U | − ∑b
i=0 |Ui | + χ due

to the inclusion-exclusion principle, where χ ≥ 0. So

|S| = (q − 1)
b+3
2 − (b + 1)(q − 1)

b+1
2 + χ.

It is obvious that |S| > 0 because of b ≤ q − 3.
(2) If b is even, then the system of Eq. (3.2) is an equivalence of the following

system of Eq. (3.5). The remainder of the proof quite comparable to the case b is odd
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and we omit it here. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0ρ
T = ϕ0,

(φ1 + φb)ρ
T = 2ϕ1,

...

(φ b
2

+ φ b+2
2

)ρT = 2ϕ b
2
,

φ1−φb
λ

ρT = 0,

...
φ b
2
−φ b+2

2
λ

ρT = 0.

(3.5)

Therefore, there exists a vector ρ = (ρ0, ρ1, . . . , ρb) ∈ (F∗
q)

b+1 such that

b∑
l=0

ρl ,

b∑
l=0

ξmltρl ,

b∑
l=0

ξ (m+1)ltρl , . . . ,

b∑
l=0

ξ (m+b−1)ltρl

are all nonzeros.

Lemma 3.2 Let a+b ≡ 1 (mod 2) and b ≤ a−3. If 0 ≤ i, j ≤ a+b+1
2 · q+1

a −2 with
(i, j) �= (0, 0), then t |(qi + j) if and only if qi + j = υt with a−b+1

2 ≤ υ ≤ a+b−1
2 .

Proof As 0 ≤ i, j ≤ a+b+1
2 · q+1

a −2with (i, j) �= (0, 0), then 0 ≤ i, j ≤ q−1− q+1
a

and 0 < qi + j ≤ q2 − 1 − (q+1)2

a . If t |(qi + j), then an integer υ exists such that
qi + j = υt with 0 < υ < a − 1. Also, we have

qi + j = q[υ(q + 1)

a
− 1] + [q − υ(q + 1)

a
].

Then,

i = υ(q + 1)

a
− 1, j = q − υ(q + 1)

a
.

Since 0 ≤ i, j ≤ a+b+1
2 · q+1

a − 2, one can get

a − b − 1

2
+ a

q + 1
≤ υ ≤ a + b + 1

2
− a

q + 1
,

which implies that a−b+1
2 ≤ υ ≤ a+b−1

2 . Therefore, t |(qi + j) if and only if qi + j =
υt with a−b+1

2 ≤ υ ≤ a+b−1
2 .
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Lemma 3.3 Let n = b(q2−1)
a + q2−1

a , and b ≤ min{a − 3, q − 3}. Assume that
τ = (1, β, β2, . . . , β t−1) ∈ F

t
q2

and a = (τ , ξτ , ξ2τ , . . . , ξbτ ) ∈ F
n
q2
. Let

v = (v0, v0, . . . , v0, . . . , vb, vb, . . . , vb)(1×(b+1)t) ∈ (F∗
q2)

n,

where v
q+1
l = ρl with 0 ≤ l ≤ b, and ρ = (ρ0, ρ1, . . . , ρb) ∈ (F∗

q)
b+1 is a vector

satisfy Lemma 3.1. Then, 〈aqi+ j , vq+1〉E �= 0 if and only if (i, j) = (0, 0) or qi + j =
υt with a−b+1

2 ≤ υ ≤ a+b−1
2 , where 0 ≤ i, j ≤ a+b+1

2 · q+1
a − 2.

Proof If (i, j) = (0, 0), it follows from Lemma 3.1 that

〈aqi+ j , vq+1〉E = 〈a0, vq+1〉E = t(vq+1
0 + · · · + v

q+1
b ) = t(ρ0 + · · · + ρb) �= 0.

If (i, j) �= (0, 0), then

〈aqi+ j , vq+1〉E =
b∑

l=0

ξ (qi+ j)lv
q+1
l

t−1∑
s=0

βs(qi+ j).

Notably,

t−1∑
s=0

βs(qi+ j) =
{
0, t � (qi + j),
t, t | (qi + j).

Based on Lemma 3.2,
∑t−1

s=0 βs(qi+ j) = t if and only if qi + j = υt with a−b+1
2 ≤

υ ≤ a+b−1
2 , then by Lemma 3.1, one can get 〈aqi+ j , vq+1〉E = t

∑b
l=0 ξυtlv

q+1
l =

t
∑b

l=0 ξυtlρl �= 0. The result holds.

Theorem 3.1 Let n = b(q2−1)
a + q2−1

a , where q is a prime power, b ≤ min{a−3, q−3},
a|(q+1) and a+b ≡ 1 (mod 2), then one can get an EAQMDS code with parameters
[[n, n − 2d + c + 2, d; c]]q , where 2 ≤ d ≤ a+b+1

2 · q+1
a and c = b + 1.

Proof Assume that there exists a GRS code, denoted as GRSk(a, v), associated with
vectors a and v, where a and v are given in Lemma 3.3. One can get GRSk(a, v) has
a generator matrix as below.

Gk =

⎛
⎜⎜⎜⎜⎝

v0 v0 · · · v0 · · · vb · · · vb
v0 v0β · · · v0β

t−1 · · · vbξ
b · · · vb(ξ

bβ t−1)

v0 v0β
2 · · · v0(β

t−1)2 · · · vb(ξ
b)2 · · · vb(ξ

bβ t−1)2

. . . . . . . . . . . . . . . . . . . . . . . .

v0 v0β
k−1 · · · v0(β

t−1)k−1 · · · vb(ξ
b)k−1 · · · vb(ξ

bβ t−1)k−1

⎞
⎟⎟⎟⎟⎠

.
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According to Theorem 2.2, there exists aGRSn−k(a, v
′
)with parameters [n, n−k, k+

1], whose parity-check matrix is Gk . By calculation, one can get

GkG
†
k =

⎛
⎜⎜⎜⎜⎝

σ0,0 σ1,0 · · · σk−1,0
σ0,1 σ1,1 · · · σk−1,1
σ0,2 σ1,2 · · · σk−1,2
. . . . . . . . . . . .

σ0,k−1 σ1,k−1 · · · σk−1,k−1

⎞
⎟⎟⎟⎟⎠

,

where σi, j = 〈aqi+ j , vq+1〉E .
Based on Lemma 3.3, σi, j �= 0 if and only if (i, j) = (0, 0) or qi + j = υt with

a−b+1
2 ≤ υ ≤ a+b−1

2 .
If there exist i1 = i2 = i such that qi + j1 = υ1t and qi + j2 = υ2t , where

j1 �= j2, then j1− j2 = (υ1−υ2)t . In fact, | j1− j2| < q−1. However, |(υ1−υ2)t | =
|(υ1 − υ2)

q+1
a (q − 1)| ≥ q − 1. So σi, j �= 0 cannot appear in the same row of the

matrix.
If there exist j1 = j2 = j such that qi1 + j = υ1t and qi2 + j = υ2t , where

i1 �= i2, then q(i1− i2) = (υ1−υ2)t = (υ1−υ2)
q2−1
a . Therefore, q|(υ1−υ2), which

contradicts to the fact that |υ1 − υ2| ≤ b − 1 < q. So σi, j �= 0 cannot appear in the
same column of the matrix.

Hence, for 0 ≤ i, j ≤ a+b+1
2 · q+1

a − 2, σi, j �= 0 cannot occur in the same row and

column of the matrix. Consequently, rank(GkG
†
k) = b + 1. According to Theorem

2.3, the EAQMDS codes are derived.

Remark 3.1 Taking b = 0 in Theorem 3.1, then amust be odd. Let a = 2�+1 (� ≥ 1),
then one can get EAQMDS codes with the following parameters:

• [[ q2−1
2�+1 ,

q2−1
2�+1 − 2d + 3, d; 1]]q , where 2 ≤ d ≤ �+1

2�+1 (q + 1).

Actually, EAQMDS codes with the same length had also been constructed in [7]

and [24]. Taking n = q2−1
2�+1 in Theorem 3 of [7] and c = 1 in Theorem 3.7 of [24], we

can derive the following two subclasses of EAQMDS codes:

• [[ q2−1
2�+1 ,

q2−1
2�+1 − 2d + 3, d; 1]]q , where 2 ≤ d ≤ 2( q+1

2�+1 − 1).

• [[ q2−1
2�+1 ,

q2−1
2�+1 − 2d + 3, d; 1]]q , where q+1

2�+1 + 2 ≤ d ≤ �+1
2�+1 (q + 1).

By comparing our results with the same length as in [7], due to �+1
2�+1 (q + 1) >

2( q+1
2�+1 − 1), one can see that the minimum distance of our EAQMDS code is larger

than theirs. While comparing our results with [24], one can easily see that our codes
have the same largest minimum distance as theirs within such case, but the minimum
distance d has a wider value range.

Remark 3.2 Let a ≡ 2 (mod 4) and b = a
2 , then a + b ≡ 1 (mod 2). According to

Theorem 3.1, EAQMDS codes can be obtained with the following parameters:

• [[ q2−1
2 + q2−1

a ,
q2−1
2 + q2−1

a − 2d + c+ 2, d; c]]q , where 2 ≤ d ≤ 3(q+1)
4 + q+1

2a ,
c = a

2 + 1.
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In fact, EAQMDS codes of length n = q2−1
2 + q2−1

a had already been studied in
[44], but the value of c in [44] is incorrect. It should be a

2 + 1( b2 + 1 for their length).
Besides, it can be easily seen that our EAQMDS codes coincide with theirs. Therefore,
the result of ours is a generalization of theirs.

Remark 3.3 Let a ≡ 0 (mod 4) and b = a
2 + 1, then a + b ≡ 1 (mod 2). Due to

Theorem 3.1, one can get EAQMDS codes with parameters as follows:

• [[ q2−1
2 + 2(q2−1)

a ,
q2−1
2 + 2(q2−1)

a −2d+c+2, d; c]]q , where 2 ≤ d ≤ 3(q+1)
4 + q+1

a ,
c = a

2 + 2.

EAQMDS codes of length n = q2−1
2 + 2(q2−1)

a had been studied in [44], but the c
in [44] is different from ours.

Example 3.1 We show some of the new EAQMDS codes of length n = b(q2−1)
a + q2−1

a
with a + b ≡ 1 (mod 2) obtained from Theorem 3.1 whose lengths are not divisors
of q2 − 1 in Table 1,

3.1.2 The case a + b ≡ 0 (mod 2)

Likewise, we will first give some useful lemmas that will serve essential roles in the
construction.

Lemma 3.4 Suppose that a+b ≡ 0 (mod 2) and m = a−b
2 . If b ≤ min{a−4, q −3},

then there exists a vector ρ = (ρ0, ρ1, . . . , ρb) ∈ (F∗
q)

b+1 such that the following
sums

b∑
l=0

ξ (mt−q−1)lρl ,

b∑
l=0

ξ [(m+1)t−q−1]lρl ,
b∑

l=0

ξ [(m+2)t−q−1]lρl , . . . ,
b∑

l=0

ξ [(m+b)t−q−1]lρl

are all nonzeros.

Proof We have to proof that there exists a vector ϕ = (ϕ1, . . . , ϕb+1) ∈ (F∗
q)

b+1 such
that the group of equations below has a nonzero solution ρ = (ρ0, ρ1, . . . , ρb) ∈
(F∗

q)
b+1. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑b
l=0 ξ (mt−q−1)lρl = ϕ1,

∑b
l=0 ξ [(m+1)t−q−1]lρl = ϕ2,

∑b
l=0 ξ [(m+2)t−q−1]lρl = ϕ3,

. . .

∑b
l=0 ξ [(m+b)t−q−1]lρl = ϕb+1.

(3.6)
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Table 1 New EAQMDS codes

of length n = b(q2−1)
a + q2−1

a
with a + b ≡ 1 (mod 2)

q a b [[n, k, d; c]]q d

8 9 4 [[35, 42 − 2d, d; 5]]8 2 ≤ d ≤ 7

9 5 2 [[48, 53 − 2d, d; 3]]9 2 ≤ d ≤ 8

10 3 [[32, 38 − 2d, d; 4]]9 2 ≤ d ≤ 7

10 5 [[48, 56 − 2d, d; 6]]9 2 ≤ d ≤ 8

11 6 3 [[80, 86 − 2d, d; 4]]11 2 ≤ d ≤ 10

12 7 [[80, 90 − 2d, d; 8]]11 2 ≤ d ≤ 10

13 7 2 [[72, 77 − 2d, d; 3]]13 2 ≤ d ≤ 10

7 4 [[120, 127 − 2d, d; 5]]13 2 ≤ d ≤ 12

14 3 [[48, 54 − 2d, d; 4]]13 2 ≤ d ≤ 9

14 5 [[72, 80 − 2d, d; 6]]13 2 ≤ d ≤ 10

14 7 [[96, 106 − 2d, d; 8]]13 2 ≤ d ≤ 11

14 9 [[120, 132 − 2d, d; 10]]13 2 ≤ d ≤ 12

16 17 2 [[35, 40 − 2d, d; 3]]16 2 ≤ d ≤ 10

17 4 [[75, 82 − 2d, d; 5]]16 2 ≤ d ≤ 11

17 6 [[105, 114 − 2d, d; 7]]16 2 ≤ d ≤ 12

17 8 [[135, 146 − 2d, d; 9]]16 2 ≤ d ≤ 13

17 10 [[165, 178 − 2d, d; 11]]16 2 ≤ d ≤ 14

17 12 [[195, 210 − 2d, d; 13]]16 2 ≤ d ≤ 15

17 9 4 [[160, 167 − 2d, d; 5]]17 2 ≤ d ≤ 14

9 6 [[224, 233 − 2d, d; 7]]17 2 ≤ d ≤ 16

18 3 [[64, 70 − 2d, d; 4]]17 2 ≤ d ≤ 11

18 7 [[128, 138 − 2d, d; 8]]17 2 ≤ d ≤ 13

18 9 [[160, 172 − 2d, d; 10]]17 2 ≤ d ≤ 14

18 11 [[192, 206 − 2d, d; 12]]17 2 ≤ d ≤ 15

18 13 [[224, 240 − 2d, d; 14]]17 2 ≤ d ≤ 16

19 5 2 [[216, 221 − 2d, d; 3]]19 2 ≤ d ≤ 16

10 3 [[144, 150 − 2d, d; 4]]19 2 ≤ d ≤ 14

10 5 [[216, 224 − 2d, d; 6]]19 2 ≤ d ≤ 16

10 7 [[288, 298 − 2d, d; 8]]19 2 ≤ d ≤ 18

20 5 [[108, 116 − 2d, d; 6]]19 2 ≤ d ≤ 13

20 7 [[144, 154 − 2d, d; 8]]19 2 ≤ d ≤ 14

20 11 [[216, 230 − 2d, d; 12]]19 2 ≤ d ≤ 16

20 13 [[252, 268 − 2d, d; 14]]19 2 ≤ d ≤ 17

20 15 [[288, 306 − 2d, d; 16]]19 2 ≤ d ≤ 18

23 6 3 [[352, 358 − 2d, d; 4]]23 2 ≤ d ≤ 20

8 5 [[396, 404 − 2d, d; 6]]23 2 ≤ d ≤ 21

12 7 [[352, 362 − 2d, d; 8]]23 2 ≤ d ≤ 20

12 9 [[440, 452 − 2d, d; 10]]23 2 ≤ d ≤ 22

24 9 [[220, 232 − 2d, d; 10]]23 2 ≤ d ≤ 17

24 13 [[308, 324 − 2d, d; 14]]23 2 ≤ d ≤ 19
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Table 1 continued q a b [[n, k, d; c]]q d

24 15 [[352, 370 − 2d, d; 16]]23 2 ≤ d ≤ 20

24 17 [[396, 416 − 2d, d; 18]]23 2 ≤ d ≤ 21

24 19 [[440, 462 − 2d, d; 20]]23 2 ≤ d ≤ 22

Let ζ = ξmt−q−1. Denote

A =

⎛
⎜⎜⎜⎜⎜⎝

1 ζ · · · ζ b

1 ζ ξ t · · · ζ bξbt

1 ζ ξ2t · · · ζ bξb(2t)

...
...

. . .
...

1 ζ ξbt · · · ζ bξb(bt)

⎞
⎟⎟⎟⎟⎟⎠

.

The system of Eq. (3.6) could be characterized by the matrix form

AρT = (ϕ1, ϕ2, . . . , ϕb+1)
T = ϕT .

It is easy to show that det(A) �= 0 due to the fact that A is a Vandermonde matrix
and ζ, ζ ξ t , ζ ξ2t , . . ., ζ ξbt are all different. Hence, for a fixed vector ϕ, the system of
Eq. (3.6) has a unique solution ρ = (ρ0, ρ1, . . . , ρb) ∈ (Fq)

b+1. Next, we will proof
that the system of Eq. (3.6) has a nonzero solution.

Let φi = (1, ξ (m+i−1)t−q−1, . . . , ξ [(m+i−1)t−q−1]b), for i = 1, . . . , b + 1. Then,
the system of Eq. (3.6) is becoming

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1ρ
T = ϕ1,

φ2ρ
T = ϕ2,

φ3ρ
T = ϕ3,

...

φb+1ρ
T = ϕb+1.

(3.7)

It can be trivially verified that φq
i = φb+2−i , for i = 1, . . . , b+1. Hence, by taking

the q-th powers of all the equations in (3.7), one can get

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φb+1ρ
T = ϕ1,

φbρ
T = ϕ2,

φb−1ρ
T = ϕ3,
...

φ2ρ
T = ϕb,

φ1ρ
T = ϕb+1.

(3.8)
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Let

λ =
{

ξq+1, q is a power of 2,

ξ
q+1
2 , q is an odd prime power .

It is easy to prove that λq = −λ. We now divide b into two cases as follows:
(1) If b is odd, then it is easy to get that the system of Eq. (3.7) is equivalent to the

system of Eq. (3.9) according to (3.8).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ1 + φb+1)ρ
T = 2ϕ1,

...

(φ b+1
2

+ φ b+3
2

)ρT = 2ϕ b+1
2

,

φ1−φb+1
λ

ρT = 0,

...
φ b+1

2
−φ b+3

2
λ

ρT = 0.

(3.9)

Denote

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1 + φb+1
...

φ b+1
2

+ φ b+3
2

φ1−φb+1
λ
...

φ b+1
2

−φ b+3
2

λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It can be easily derived that each element of the matrix B belongs to Fq , then
the system of Eq. (3.9) may be represented as BρT = (2ϕ1, . . . , 2ϕ b+1

2
, 0, . . . , 0)T .

Suppose that

U = {ρ ∈ F
b+1
q |BρT = (2ϕ1, . . . , 2ϕ b+1

2
, 0, . . . , 0)T }.

For any provided nonzero elements ϕ1, . . . , ϕ b+1
2

, the system of Eq. (3.9) in U has

a sole solution. When ϕ1, . . . , ϕ b+1
2

take all nonzero elements over Fq , respectively,
then one obtains

|U | = (q − 1)
b+1
2 .
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Suppose that

Ui = {ρ ∈ F
b+1
q |ρi = 0, BρT = (2ϕ1, . . . , 2ϕ b+1

2
, 0, . . . , 0)T },

where i = 0, 1, . . . , b, and

S = {ρ ∈ (F∗
q)

b+1|BρT = (2ϕ1, . . . , 2ϕ b+1
2

, 0, . . . , 0)T }.

If ρi = 0, then 2ϕ1, . . . , 2ϕ b+1
2

must meet a linear equation with nonzero coefficients.
So

|Ui | = (q − 1)
b−1
2 .

Consequently, S = U \ (U0 ∪ U1 ∪ · · · ∪ Ub−1). Hence, we have |S| = |U | −∑b
i=0 |Ui | + χ by the inclusion–exclusion principle, where χ ≥ 0. So

|S| = (q − 1)
b+1
2 − (b + 1)(q − 1)

b−1
2 + χ.

It is obvious that |S| > 0 because of b ≤ q − 3.
(2) If b is even, then the system of Eq. (3.7) is equivalent to the following system

of Eq. (3.10). The remainder of the proof quite comparable to the case b is odd and
we omit it here. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0ρ
T = ϕ0,

(φ1 + φb−1)ρ
T = 2ϕ1,

...

(φ b−2
2

+ φ b+2
2

)ρT = 2ϕ b−2
2

,

φ b
2
ρT = ϕ b

2
,

φ1−φb−1
λ

ρT = 0,

...
φ b−2

2
−φ b+2

2
λ

ρT = 0.

(3.10)

Therefore, there exists a vector ρ = (ρ0, ρ1, . . . , ρb) ∈ (F∗
q)

b+1 such that

b∑
l=0

ξ (mt−q−1)lρl ,

b∑
l=0

ξ [(m+1)t−q−1]lρl ,
b∑

l=0

ξ [(m+2)t−q−1]lρl , . . . ,
b∑

l=0

ξ [(m+b)t−q−1]lρl

are all nonzeros.
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Lemma 3.5 Let a + b ≡ 0 (mod 2) and b ≤ a − 4. If 0 ≤ i, j ≤ a+b+2
2 · q+1

a − 3
with (i, j) �= (0, 0), then t |(qi + j + q + 1) if and only if qi + j + q + 1 = υt with
a−b
2 ≤ υ ≤ a+b

2 .

Proof As 0 ≤ i, j ≤ a+b+2
2 · q+1

a − 3 with (i, j) �= (0, 0), one can obtain that

0 ≤ i, j ≤ q−2− q+1
a and 0 < qi+ j+q+1 ≤ q2−1− (q+1)2

a . If t |(qi+ j+q+1),
then an integer υ exists such that qi+ j+q+1 = υt with 0 < υ < a−1. In addition,
we have

qi + j + q + 1 = q[υ(q + 1)

a
− 1] + [q − υ(q + 1)

a
].

Then,

i = υ(q + 1)

a
− 2, j = q − υ(q + 1)

a
− 1.

Due to 0 ≤ i, j ≤ a+b+2
2 · q+1

a − 3, we have

a − b − 2

2
+ q + 1

a
≤ υ ≤ a + b + 2

2
− q + 1

a
,

which indicates that a−b
2 ≤ υ ≤ a+b

2 . Therefore, t |(qi + j + q + 1) if and only if
qi + j + q + 1 = υt with a−b

2 ≤ υ ≤ a+b
2 .

Lemma 3.6 Let n = b(q2−1)
a + q2−1

a , and b ≤ min{a − 4, q − 3}. Assume that
τ = (1, β, β2, . . . , β t−1) ∈ F

t
q2

and a = (τ , ξτ , ξ2τ , . . . , ξbτ ) ∈ F
n
q2
. Let

v = (v0, v0β, . . . , v0β
t−1, . . . , vb, vbβ, . . . , vbβ

t−1)(1×(b+1)t) ∈ (F∗
q2)

n,

where v
q+1
l = ρl with 0 ≤ l ≤ b, and ρ = (ρ0, ρ1, . . . , ρb) ∈ (F∗

q)
b+1 is a vector

satisfy Lemma 3.4. Then, 〈aqi+ j , vq+1〉E �= 0 if and only if qi + j + q + 1 = υt with
a−b
2 ≤ υ ≤ a+b

2 , where 0 ≤ i, j ≤ a+b+2
2 · q+1

a − 3.

Proof If (i, j) = (0, 0), then

〈aqi+ j , vq+1〉E = 〈a0, vq+1〉E =
b∑

l=0

v
q+1
l

t−1∑
s=0

βs(q+1).

Note that t � (q + 1), then
∑t−1

s=0 βs(q+1) = 0. Therefore, 〈aqi+ j , vq+1〉E = 0.
If (i, j) �= (0, 0), then

〈aqi+ j , vq+1〉E =
b∑

l=0

ξ (qi+ j)lv
q+1
l

t−1∑
s=0

βs(qi+ j+q+1).
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Note that

t−1∑
s=0

βs(qi+ j+q+1) =
{
0, t � (qi + j + q + 1),
t, t | (qi + j + q + 1).

According to Lemma 3.5,
∑t−1

s=0 βs(qi+ j+q+1) = t if and only if qi + j + q +
1 = υt with a−b

2 ≤ υ ≤ a+b
2 , then by Lemma 3.4, one can get 〈aqi+ j , vq+1〉E =

t
∑b

l=0 ξ (υt−q−1)lv
q+1
l = t

∑b
l=0 ξ (υt−q−1)lρl �= 0.

Theorem 3.2 Let n = b(q2−1)
a + q2−1

a , where q is a prime power, b ≤ min{a−4, q−3},
a|(q+1) and a+b ≡ 0 (mod 2). Then, one can get an EAQMDS code with parameters
[[n, n − 2d + c + 2, d; c]]q , where 2 ≤ d ≤ a+b+2

2 · q+1
a − 1 and c = b + 1.

Proof Suppose that there exists a GRS code, denoted as GRSk(a, v), associated with
vectors a and v, where a and v are given in Lemma 3.6. One can get GRSk(a, v) has
a generator matrix as below.

Gk =

⎛
⎜⎜⎜⎜⎝

v0 v0β · · · v0β
t−1 · · · vb · · · vbβ

t−1

v0 v0β
2 · · · v0(β

t−1)2 · · · vbξ
b · · · vbξ

b(β t−1)2

. . . . . . . . . . . . . . . . . . . . . . . .

v0 v0β
k−1 · · · v0(β

t−1)k−1 · · · vb(ξ
b)k−2 · · · vb(ξ

b)k−2(β t−1)k−1

v0 v0β
k · · · v0(β

t−1)k · · · vb(ξ
b)k−1 · · · vb(ξ

b)k−1(β t−1)k

⎞
⎟⎟⎟⎟⎠

.

According to Theorem 2.2, there exists a GRSn−k(a, v
′
) with parameters [n, n −

k, k + 1], whose parity-check matrix is Gk . By calculation, one can obtain that

GkG
†
k =

⎛
⎜⎜⎜⎜⎝

σ0,0 σ1,0 · · · σk−1,0
σ0,1 σ1,1 · · · σk−1,1
σ0,2 σ1,2 · · · σk−1,2
. . . . . . . . . . . .

σ0,k−1 σ1,k−1 · · · σk−1,k−1

⎞
⎟⎟⎟⎟⎠

.

where σi, j = 〈aqi+ j , vq+1〉E .
According to Lemma 3.6, σi, j �= 0 if and only if qi + j + q + 1 = υt with

a−b
2 ≤ υ ≤ a+b

2 .
If there exist i1 = i2 = i such that qi+ j1+q+1 = υ1t and qi+ j2+q+1 = υ2t ,

where j1 �= j2, then j1 − j2 = (υ1 − υ2)t . In fact, | j1 − j2| < q − 1. However,
|(υ1 − υ2)t | = |(υ1 − υ2)

q+1
a (q − 1)| ≥ q − 1. It is a contradiction. So σi, j �= 0

cannot appear in the same row of the matrix.
If there exist j1 = j2 = j such that qi1+ j+q+1 = υ1t and qi2+ j+q+1 = υ2t ,

where i1 �= i2, then q(i1− i2) = (υ1−υ2)t = (υ1−υ2)
q2−1
a . Therefore, q|(υ1−υ2),

which contradicts to the fact that |υ1 −υ2| ≤ b < q. So σi, j �= 0 cannot appear in the
same column of the matrix.
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Table 2 A comparison between quantum MDS codes and EAQMDS codes

Parameters d References

[[b′
(q − 1), b

′
(q − 1) − 2d + 2, d]]q 2 ≤ d ≤ � b

′
q−1
q+1 � + 1 [13]

[[b′
(q − 1), b

′
(q − 1) − 2d + 2 + c, d; c]]q 2 ≤ d ≤ � q+b

′+1
2 �, c = b

′
Ours

Hence, for 0 ≤ i, j ≤ a+b+2
2 · q+1

a − 3, σi, j �= 0 cannot occur in the same row and

column of the matrix. Consequently, rank(GkG
†
k) = b + 1. According to Theorem

2.2, the EAQMDS codes are derived.

Remark 3.4 Taking b = 0 in Theorem 3.2, then a must be even. Let a = 2� (� ≥ 2),
then one can get EAQMDS codes with the following parameters:

• [[ q2−1
2� ,

q2−1
2� − 2d + 3, d; 1]]q , where 2 ≤ d ≤ �+1

2� (q + 1) − 1.

In fact, EAQMDS codes with the same length had also been constructed in [7] and

[24]. Taking n = q2−1
2� in Theorem 3 of [7] and c = 1 in Theorem 3.3 of [24], we can

derive two subclasses of EAQMDS codes as follows:

• [[ q2−1
2� ,

q2−1
2� − 2d + 3, d; 1]]q , where 2 ≤ d ≤ q+1

�
− 2.

• [[ q2−1
2� ,

q2−1
2� − 2d + 3, d; 1]]q , where q+1

2� + 2 ≤ d ≤ �+1
2� (q + 1).

Comparing our results of the same length as in [7], one can see that the minimum
distance of our EAQMDS codes is larger than theirs because of q+1

2 ≥ q+1
�

− 2 when
� ≥ 2. Comparing our results with [24], it can be easily seen that the largest minimum
distance of ours is one less than theirs, but the minimum distance d has a wider value
range.

By taking a = q + 1 in Theorems 3.1 and 3.2, respectively, the following corollary
is clearly established.

Corollary 3.1 Let q be a prime power, and b
′ ≤ q − 2, then one can get a [[b′

(q −
1), b

′
(q − 1) − 2d + 2 + c, d; c]]q EAQMDS code, where 2 ≤ d ≤ � q+b

′+1
2 � and

c = b
′
.

Remark 3.5 QuantumMDS codes of the length in Corollary 3.1 had been constructed
in Theorem 5 of [13]. Compared with it, the minimum distance of our EAQMDS code
is much larger than that of the quantum MDS code of the same length in [13] (see
Table 2).

Example 3.2 We show some of the new EAQMDS codes of length n = b(q2−1)
a + q2−1

a
with a + b ≡ 0 (mod 2) obtained from Theorem 3.2 whose lengths are not divisors
of q2 − 1 in Table 3.
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Table 3 New EAQMDS codes

of length n = b(q2−1)
a + q2−1

a
with a + b ≡ 0 (mod 2)

q a b [[n, k, d; c]]q d

7 8 2 [[18, 23 − 2d, d; 3]]7 2 ≤ d ≤ 5

8 4 [[30, 37 − 2d, d; 5]]7 2 ≤ d ≤ 6

8 9 1 [[14, 18 − 2d, d; 2]]8 2 ≤ d ≤ 5

9 3 [[28, 34 − 2d, d; 4]]8 2 ≤ d ≤ 6

9 5 [[42, 50 − 2d, d; 6]]8 2 ≤ d ≤ 7

9 5 1 [[32, 36 − 2d, d; 2]]9 2 ≤ d ≤ 7

10 2 [[24, 29 − 2d, d; 3]]9 2 ≤ d ≤ 6

10 6 [[56, 65 − 2d, d; 7]]9 2 ≤ d ≤ 8

11 12 4 [[50, 57 − 2d, d; 5]]11 2 ≤ d ≤ 8

12 6 [[70, 79 − 2d, d; 7]]11 2 ≤ d ≤ 9

12 8 [[90, 101 − 2d, d; 9]]11 2 ≤ d ≤ 10

13 7 1 [[48, 52 − 2d, d; 2]]13 2 ≤ d ≤ 9

7 3 [[96, 102 − 2d, d; 4]]13 2 ≤ d ≤ 11

14 2 [[36, 41 − 2d, d; 3]]13 2 ≤ d ≤ 8

14 4 [[60, 67 − 2d, d; 5]]13 2 ≤ d ≤ 9

14 8 [[108, 119 − 2d, d; 9]]13 2 ≤ d ≤ 11

14 10 [[132, 145 − 2d, d; 11]]13 2 ≤ d ≤ 12

16 17 1 [[30, 34 − 2d, d; 2]]16 2 ≤ d ≤ 9

17 3 [[60, 66 − 2d, d; 4]]16 2 ≤ d ≤ 10

17 5 [[90, 98 − 2d, d; 6]]16 2 ≤ d ≤ 11

17 7 [[120, 132 − 2d, d; 8]]16 2 ≤ d ≤ 12

17 9 [[150, 162 − 2d, d; 10]]16 2 ≤ d ≤ 13

17 11 [[180, 194 − 2d, d; 12]]16 2 ≤ d ≤ 14

17 13 [[210, 226 − 2d, d; 14]]16 2 ≤ d ≤ 15

17 9 1 [[64, 68 − 2d, d; 2]]17 2 ≤ d ≤ 11

9 3 [[128, 134 − 2d, d; 4]]17 2 ≤ d ≤ 13

9 5 [[192, 200 − 2d, d; 6]]17 2 ≤ d ≤ 15

18 4 [[80, 87 − 2d, d; 5]]17 2 ≤ d ≤ 11

18 6 [[112, 121 − 2d, d; 7]]17 2 ≤ d ≤ 12

18 10 [[176, 189 − 2d, d; 11]]17 2 ≤ d ≤ 14

18 12 [[208, 223 − 2d, d; 13]]17 2 ≤ d ≤ 15

18 14 [[240, 257 − 2d, d; 15]]17 2 ≤ d ≤ 16

19 5 1 [[144, 148 − 2d, d; 2]]19 2 ≤ d ≤ 15

10 2 [[108, 113 − 2d, d; 3]]19 2 ≤ d ≤ 13

10 6 [[252, 261 − 2d, d; 7]]19 2 ≤ d ≤ 17

20 2 [[54, 59 − 2d, d; 3]]19 2 ≤ d ≤ 11

20 6 [[126, 135 − 2d, d; 7]]19 2 ≤ d ≤ 13

20 8 [[162, 173 − 2d, d; 9]]19 2 ≤ d ≤ 14

20 10 [[198, 211 − 2d, d; 11]]19 2 ≤ d ≤ 15

123



Constructions of entanglement-assisted quantum MDS codes… Page 21 of 30 110

Table 3 continued q a b [[n, k, d; c]]q d

20 12 [[234, 249 − 2d, d; 13]]19 2 ≤ d ≤ 16

20 14 [[270, 287 − 2d, d; 15]]19 2 ≤ d ≤ 17

20 16 [[306, 325 − 2d, d; 17]]19 2 ≤ d ≤ 18

3.2 New EAQMDS codes of length n = b(q2−1)
a with a|(q − 1)

In this subsection, some new q-ary EAQMDS codes of length n = b(q2−1)
a with

a|(q − 1) are obtained from GRS codes. We begin with some useful lemmas that will
play major roles in our constructions.

Lemma 3.7 Suppose that a|(q − 1) and b ≤ a. If (a, b) �= (q − 1, q − 1), then there
exists a vector ρ = (ρ0, ρ1, . . . , ρb−1) ∈ (F∗

q)
b such that the following sums

b−1∑
l=0

ρl ,

b−1∑
l=0

ξ ltρl ,

b−1∑
l=0

ξ2ltρl , . . . ,

b−1∑
l=0

ξ (b−1)ltρl

are all nonzeros.

Proof Wehave to proof that there exists a vectorϕ = (ϕ0, ϕ1, . . . , ϕb−1) ∈ (F∗
q)

b such
that the group of equations below has a nonzero solution ρ = (ρ0, ρ1, . . . , ρb−1) ∈
(F∗

q)
b. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑b−1
l=0 ρl = ϕ0,

∑b−1
l=0 ξ ltρl = ϕ1,

∑b−1
l=0 ξ2ltρl = ϕ2,

. . .

∑b−1
l=0 ξ (b−1)ltρl = ϕb−1.

(3.11)

Let ζ = ξ t . Denote

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
1 ζ · · · ζ b−1

1 ζ 2 · · · ζ 2(b−1)

...
...

. . .
...

1 ζ b−1 · · · ζ (b−1)(b−1)

⎞
⎟⎟⎟⎟⎟⎠

.

The system of Eq. (3.11) could be characterized by the matrix form

AρT = (ϕ0, ϕ1, . . . , ϕb−1)
T = ϕT .
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It is easy to show that det(A) �= 0 because of A is a Vandermonde matrix and 1, ζ, ζ 2,
. . ., ζ b−1 are all different. Hence, for a fixed vector ϕ, the system of Eq. (3.11) has a
sole solution ρ = (ρ0, ρ1, . . . , ρb−1) ∈ (Fq)

b. Since (a, b) �= (q − 1, q − 1) and ζ is
a primitive a-th root of unity, then there must exist a ζ

′ ∈ F
∗
q such that ζ

′
/∈ {1, ζ, ζ 2,

. . ., ζ b−1}. Therefore, we can take ϕ0 = 1, ϕ1 = ζ
′
, ϕ2 = (ζ

′
)2, . . ., ϕb−1 = (ζ

′
)b−1.

According to the Cramer’s rule, we can get

ρ0 = |A0|
|A| , ρ1 = |A1|

|A| , . . . , ρb−1 = |Ab−1|
|A| ,

where

|A0| =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
ζ

′
ζ · · · ζ b−1

(ζ
′
)2 ζ 2 · · · ζ 2(b−1)

· · · ... · · · ...

(ζ
′
)b−1 ζ b−1 · · · ζ (b−1)(b−1)

∣∣∣∣∣∣∣∣∣∣∣

, . . . , |Ab−1| =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
1 ζ · · · ζ

′

1 ζ 2 · · · (ζ
′
)2

· · · ... · · · · · ·
1 ζ b−1 · · · (ζ

′
)b−1

∣∣∣∣∣∣∣∣∣∣∣

.

Since A0, A1, . . . , Ab−1 are all Vandermonde matrixes and 1, ζ 1, ζ 2, . . ., ζ b−1, ζ
′

are different over F
∗
q . Hence, |A0|, |A1|, . . . , |Ab−1| are all nonzeros, which implies

that ρ0, ρ1, . . . , ρb−1 are all nonzeros.
Therefore, there exists a vector ρ = (ρ0, ρ1, . . . , ρb−1) ∈ (F∗

q)
b such that

b−1∑
l=0

ρl ,

b−1∑
l=0

ξ ltρl ,

b−1∑
l=0

ξ2ltρl , . . . ,

b−1∑
l=0

ξ (b−1)ltρl

are all nonzeros.

Lemma 3.8 Let a|(q − 1) and b ≤ a. If 0 ≤ i, j ≤ b(q−1)
a − 1, then t |(qi + j) if and

only if qi + j = υt with 0 ≤ υ ≤ b − 1.

Proof Since 0 ≤ i, j ≤ b(q−1)
a − 1, one can obtain that 0 ≤ i, j ≤ q − 2 and

0 ≤ qi + j < q2 − 1. If t |(qi + j), then an integer υ exists such that qi + j = υt
with 0 ≤ υ < a. Additionally,

qi + j = q[υ(q − 1)

a
] + [υ(q − 1)

a
].

Then,

i = υ(q − 1)

a
, j = υ(q − 1)

a
.

Since 0 ≤ i, j ≤ b(q−1)
a − 1, we have

0 ≤ υ ≤ b − a

q − 1
,
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which implies that 0 ≤ υ ≤ b − 1. Therefore, t |(qi + j) if and only if qi + j = υt
with 0 ≤ υ ≤ b − 1.

Lemma 3.9 Let n = b(q2−1)
a , where a|(q − 1), b ≤ a and (a, b) �= (q − 1, q − 1).

Assume that τ = (1, β, β2, . . . , β t−1) ∈ F
t
q2

and a = (τ , ξτ , ξ2τ , . . . , ξb−1τ ) ∈
F
n
q2
. Let

v = (v0, v0, . . . , v0, . . . , vb−1, vb−1, . . . , vb−1)(1×bt) ∈ (F∗
q2)

n,

where v
q+1
l = ρl with 0 ≤ l ≤ b − 1, and ρ = (ρ0, ρ1, . . . , ρb−1) ∈ (F∗

q)
b is a

vector satisfy Lemma 3.7. Then, 〈aqi+ j , vq+1〉E �= 0 if and only if qi + j = υt with
0 ≤ υ ≤ b − 1, where 0 ≤ i, j ≤ b(q−1)

a − 1.

Proof From the definitions of a and v, we can get

〈aqi+ j , vq+1〉E =
b−1∑
l=0

ξ (qi+ j)lv
q+1
l

t−1∑
s=0

βs(qi+ j).

Notably,

t−1∑
s=0

βs(qi+ j) =
{
0, t � (qi + j),
t, t | (qi + j).

From Lemma 3.8,
∑t−1

s=0 βs(qi+ j) = t if and only if qi + j = υt with 0 ≤ υ ≤
b − 1, then by Lemma 3.7, one can get 〈aqi+ j , vq+1〉E = t

∑b−1
l=0 ξυtlv

q+1
l =

t
∑b−1

l=0 ξυtlρl �= 0. The result holds.

Theorem 3.3 Let n = b(q2−1)
a , where q is a prime power, b ≤ a, a|(q − 1) and

(a, b) �= (q − 1, q − 1), then one can get an EAQMDS code with parameters [[n, n −
2d + c + 2, d; c]]q , where 2 ≤ d ≤ b(q−1)

a + 1 and c = b.

Proof Suppose that there exists a GRS code, denoted as GRSk(a, v), associated with
vectors a and v, where a and v are given in Lemma 3.9. One can get GRSk(a, v) has
a generator matrix as below.

Gk =

⎛
⎜⎜⎜⎜⎝

v0 v0 · · · v0 · · · vb−1 · · · vb−1

v0 v0β · · · v0β
t−1 · · · vb−1ξ

b−1 · · · vb−1(ξ
b−1β t−1)

v0 v0β
2 · · · v0(β

t−1)2 · · · vb−1(ξ
b−1)2 · · · vb−1(ξ

b−1β t−1)2

. . . . . . . . . . . . . . . . . . . . . . . .

v0 v0β
k−1 · · · v0(β

t−1)k−1 · · · vb−1(ξ
b−1)k−1 · · · vb−1(ξ

b−1β t−1)k−1

⎞
⎟⎟⎟⎟⎠

.
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Table 4 New EAQMDS codes

of length n = b(q2−1)
a with

a|(q − 1)

q a b [[n, k, d; c]]q d

4 3 2 [[10, 14 − 2d, d; 2]]4 2 ≤ d ≤ 3

5 4 3 [[30, 37 − 2d, d; 3]]5 2 ≤ d ≤ 6

7 6 4 [[32, 38 − 2d, d; 4]]7 2 ≤ d ≤ 5

6 5 [[40, 47 − 2d, d; 5]]7 2 ≤ d ≤ 6

8 7 2 [[18, 22 − 2d, d; 2]]8 2 ≤ d ≤ 3

7 3 [[27, 32 − 2d, d; 3]]8 2 ≤ d ≤ 4

7 4 [[36, 42 − 2d, d; 4]]8 2 ≤ d ≤ 5

7 5 [[45, 52 − 2d, d; 5]]8 2 ≤ d ≤ 6

7 6 [[54, 62 − 2d, d; 6]]8 2 ≤ d ≤ 7

9 4 3 [[60, 65 − 2d, d; 3]]9 2 ≤ d ≤ 7

8 3 [[30, 35 − 2d, d; 3]]9 2 ≤ d ≤ 4

8 5 [[50, 57 − 2d, d; 5]]9 2 ≤ d ≤ 6

8 6 [[60, 68 − 2d, d; 6]]9 2 ≤ d ≤ 7

8 7 [[70, 79 − 2d, d; 7]]9 2 ≤ d ≤ 8

11 5 2 [[48, 52 − 2d, d; 2]]11 2 ≤ d ≤ 5

5 3 [[72, 77 − 2d, d; 3]]11 2 ≤ d ≤ 7

5 4 [[96, 102 − 2d, d; 4]]11 2 ≤ d ≤ 9

10 3 [[36, 41 − 2d, d; 3]]11 2 ≤ d ≤ 4

10 4 [[48, 54 − 2d, d; 4]]11 2 ≤ d ≤ 5

10 6 [[72, 80 − 2d, d; 6]]11 2 ≤ d ≤ 7

10 7 [[84, 93 − 2d, d; 7]]11 2 ≤ d ≤ 8

10 8 [[96, 106 − 2d, d; 8]]11 2 ≤ d ≤ 9

10 9 [[108, 119 − 2d, d; 9]]11 2 ≤ d ≤ 10

13 6 4 [[112, 118 − 2d, d; 4]]13 2 ≤ d ≤ 9

6 5 [[140, 147 − 2d, d; 5]]13 2 ≤ d ≤ 11

12 5 [[70, 77 − 2d, d; 5]]13 2 ≤ d ≤ 6

12 7 [[98, 107 − 2d, d; 7]]13 2 ≤ d ≤ 8

12 8 [[112, 122 − 2d, d; 8]]13 2 ≤ d ≤ 9

12 9 [[126, 137 − 2d, d; 9]]13 2 ≤ d ≤ 10

12 10 [[140, 150 − 2d, d; 10]]13 2 ≤ d ≤ 11

12 11 [[154, 167 − 2d, d; 11]]13 2 ≤ d ≤ 12

16 3 2 [[170, 174 − 2d, d; 2]]16 2 ≤ d ≤ 11

5 2 [[102, 106 − 2d, d; 2]]16 2 ≤ d ≤ 7

5 3 [[153, 158 − 2d, d; 3]]16 2 ≤ d ≤ 10

5 4 [[204, 210 − 2d, d; 4]]16 2 ≤ d ≤ 13

15 2 [[34, 38 − 2d, d; 2]]16 2 ≤ d ≤ 3

15 3 [[51, 56 − 2d, d; 3]]16 2 ≤ d ≤ 4

15 4 [[68, 74 − 2d, d; 4]]16 2 ≤ d ≤ 5

15 5 [[85, 92 − 2d, d; 5]]16 2 ≤ d ≤ 6

15 6 [[102, 110 − 2d, d; 6]]16 2 ≤ d ≤ 7
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Table 4 continued q a b [[n, k, d; c]]q d

15 7 [[119, 128 − 2d, d; 7]]16 2 ≤ d ≤ 8

15 8 [[136, 146 − 2d, d; 8]]16 2 ≤ d ≤ 9

15 9 [[153, 164 − 2d, d; 9]]16 2 ≤ d ≤ 10

15 10 [[170, 182 − 2d, d; 10]]16 2 ≤ d ≤ 11

15 11 [[187, 200 − 2d, d; 11]]16 2 ≤ d ≤ 12

15 12 [[204, 228 − 2d, d; 12]]16 2 ≤ d ≤ 13

15 13 [[221, 236 − 2d, d; 13]]16 2 ≤ d ≤ 14

15 14 [[238, 254 − 2d, d; 14]]16 2 ≤ d ≤ 15

According to Theorem 2.2, there must exist a GRSn−k(a, v
′
) with parameters [n, n−

k, k + 1], whose parity-check matrix is Gk . By calculation, one can get

GkG
†
k =

⎛
⎜⎜⎜⎜⎝

σ0,0 σ1,0 · · · σk−1,0
σ0,1 σ1,1 · · · σk−1,1
σ0,2 σ1,2 · · · σk−1,2
. . . . . . . . . . . .

σ0,k−1 σ1,k−1 · · · σk−1,k−1

⎞
⎟⎟⎟⎟⎠

.

where σi, j = 〈aqi+ j , vq+1〉E .
From Lemma 3.9, σi, j �= 0 if and only if qi + j = υt with 0 ≤ υ ≤ b − 1.
If there exist i1 = i2 = i such that qi + j1 = υ1t and qi + j2 = υ2t , where

j1 �= j2, then j1− j2 = (υ1−υ2)t . In fact, | j1− j2| < q−1. However, |(υ1−υ2)t | =
|(υ1 − υ2)

q−1
a (q + 1)| ≥ q + 1. So σi, j �= 0 cannot appear in the same row of the

matrix.
If there exist j1 = j2 = j such that qi1 + j = υ1t and qi2 + j = υ2t , where

i1 �= i2, then q(i1− i2) = (υ1−υ2)t = (υ1−υ2)
q2−1
a . Therefore, q|(υ1−υ2), which

contradicts to the fact that |υ1 − υ2| ≤ b − 1 < q. So σi, j �= 0 cannot appear in the
same column of the matrix.

Hence, for 0 ≤ i, j ≤ b(q−1)
a − 1, σi, j �= 0 cannot occur in the same row and

column of the matrix. Consequently, rank(GkG
†
k) = b. According to Theorem 2.3,

the EAQMDS codes are derived.

Remark 3.6 EAQMDS codes with the following parameters had been constructed in
[24]:

• [[b q2−1
2a , b q2−1

2a −2d+c+2, d; c]]q ,where 2a|(q+1), 2 ≤ b ≤ 2a, 1 ≤ c ≤ 2a−1,
and cm + 2 ≤ d ≤ (a + � c

2�)m.

• [[b q2−1
2a+1 , b

q2−1
2a+1 − 2d + c + 2, d; c]]q , where (2a + 1)|(q + 1), 2 ≤ b ≤ 2a,

1 ≤ c ≤ 2a, and cm + 2 ≤ d ≤ (a + 1 + � c
2�)m.

It is easy to see that their code lengths are different from ours due to the fact that our
a is a divisor of q − 1.
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Example 3.3 We show some of the new EAQMDS codes of length n = b(q2−1)
a with

a|(q − 1) derived from Theorem 3.3 whose lengths are not divisors of q2 − 1 in Table
4.

4 Conclusion

Let n = b(q2−1)
a + q2−1

a and n = b(q2−1)
a . Three classes of EAQMDS codes of length

n were derived from GRS codes in this paper. Taking different values of a and b, some
lengths of our results are divisors of q2 − 1. Compared with the known results, they
have much larger minimum distances. Furthermore, as the lengths of our EAQMDS
codes in this paper can be viewed as the sum of two divisors of q2 − 1, so they are
probably not divisors of q2 − 1. Some known EAQMDS codes of lengths not be the
divisors of q2 − 1 are listed in Table 5. Compared with them, our lengths are new and
not covered by them.
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