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Abstract

By generalizing the stabilizer quantum error-correcting codes, entanglement-assisted
quantum error-correcting (EAQEC) codes were introduced, which could be derived
from any classical linear codes via the relaxation of self-orthogonality conditions with
the aid of pre-shared entanglement between the sender and the receiver. In this paper,
three classes of entanglement-assisted quantum error-correcting maximum-distance-
separable (EAQMDS) codes are constructed through generalized Reed—Solomon
codes. Under our constructions, the minimum distances of our EAQMDS codes are
much larger than those of the known EAQMDS codes of the same lengths that con-
sume the same number of bits. Furthermore, some of the lengths of the EAQMDS
codes are not divisors of g2 — 1, which are completely new and unlike all those known
lengths existed before.

Keywords EAQEC codes - EAQMDS codes - MDS codes - Generalized
Reed-Solomon codes

1 Introduction

Over recent decades, the quantum information science has developed very rapidly.
Quantum error-correcting (QEC) codes were introduced in order to minimize the deco-
herence phenomenon over the quantum information channel. After Calderbank et al.
[3] gave a connection between classical linear error-correcting codes and QEC codes,
the research of QEC codes has made rapidly progress. By utilizing self-orthogonal

B Liqi Wang
ligiwangg @ 163.com

Xiujing Zheng
xiujingzheng99@163.com

Shixin Zhu
zhushixin @hfut.edu.cn

School of Mathematics, Hefei University of Technology, Hefei 230009, People’s Republic of China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-024-04320-1&domain=pdf

110 Page 2 of 30 X.Zheng et al.

classical error-correcting codes, a number of QEC codes with favorable parameters
have been derived (see [13, 20-22, 25, 26, 41] and the relevant references therein).
Nevertheless, the self-orthogonality condition forms an obstacle to the construction
of QEC codes. Later, a breakthrough had been made by Brun et al. [2], where
entanglement-assisted (EA) stabilizer formalism was proposed, which utilizes pre-
shared entanglement among the sender as well as the receiver to construct QEC codes.
The associated codes are known as entanglement-assisted quantum error-correcting
(EAQEC) codes that may be constructed from arbitrary classical linear error-correcting
codes without the self-orthogonality constraint. After that, numerous researchers have
been working on constructing EAQEC codes with good parameters via classical linear
error-correcting codes (see [9, 11, 15, 17, 38] and the references therein).

Suppose that g is a prime power, an [[n, k, d; c]], EAQEC code can correct at
most L‘IQ;]J errors by encoding k information qudits into n channel qudits with the
assistance of ¢ copies of maximally entangled states. In particular, if ¢ = 0, it is the so-
called standard [[n, k, d]]; QEC code. Analogous to the quantum Singleton bound for
the parameters of QEC codes, the more general entanglement-assisted (EA)-quantum
Singleton bound for the parameters of EAQEC codes is available to us in the following.

Theorem 1.1 [1, 2, 10, 23] (EA-quantum Singleton bound) For any [[n, k, d; c]l4,
EAQEC code withd < % must satisfy

n—k+c>2d-—-1),

where 0 < ¢ < n— 1. Furthermore, it is indeed the quantum Singleton bound if c = 0.

Specifically, an EAQEC code is called an EAQMDS code if it exactly satisfy this
bound. Recently, by using constacyclic codes (including cyclic codes and negacyclic
codes), generalized Reed—Solomon(GRS) codes as well as extended GRS codes,
numerous EAQMDS codes have been constructed in a variety of ways. In [7], due
to classical MDS codes of a certain code length, Fan et al. derived several classes
of EAQMDS codes with a small number of pre-shared maximally entangled states.
Subsequently, Lu et al. [28] determined the number of maximally entangled states
via the decomposition of the defining set of BCH codes and many EAQMDS codes
with larger minimum distances were constructed. This approach was extended to con-
stacyclic codes by Lu et al. [29] and Chen et al. [4], respectively, and several new
classes of EAQMDS codes were derived. Thereafter, by using the decomposition of
the defining set of constacyclic codes, many classes of EAQMDS codes of lengths
dividing q2 =+ 1 have been derived (see [5, 6, 16, 19, 27, 30, 34, 36, 37, 40, 42] and the
relevant references therein). At the same time, due to the excellent algebraic structure
of the GRS codes, a significant number of EAQMDS codes were also constructed
from GRS codes. In [11], Guenda et al. developed a relationship between the hull
of the classical linear error-correcting codes and the number of maximally entangled
states which is needed to construct EAQEC codes. Additionally, by studying the hull
of the GRS codes, they also derived some new EAQMDS codes. Inspired by the ideas
of [11], many classes of MDS codes with hulls of arbitrary dimensions were studied
by Luo et al. [32] via GRS codes, and new classes of EAQMDS codes were obtained.
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Besides, a number of other EAQMDS codes were derived via GRS codes as well as
extended GRS codes (see [8, 14, 24, 31, 35, 39]).

Notably, the lengths of most EAQMDS codes mentioned above are divisors of
q* £ 1. Therefore, scholars are also committed to construct EAQMDS codes of lengths
not dividing g2+ 1. Guo et al. [12] extended the lengths of EAQMDS codes by adding 1
to the lengths in [14], so the lengths may not divide q2 +1.Jinetal. [18] derived several
new classes of EAQMDS codes from GRS codes over finite fields of odd characteristic
g, whose lengths may not be divisors of ¢> + 1 and can reach (¢ + 1)(g — 3). Very
recently, Wang and Li [44] constructed two classes of EAQMDS codes of the lengths
that are sums of two divisors of g2 — 1 from GRS codes.

Going on the line of the above work, we construct three classes of EAQMDS codes
with parameters [[n, n — 2d + ¢ + 2, d; c]], based on GRS codes as follows:

() n="LC"0 L @1 g4 1),a+b=1(mod2),2 <d < ¢t . 4+l gpq
c=b+1.

@) n=2C"0 4 Pl g 1), a+b=0(mod2),2 <d < G2
andc=b+1.

@) n="CD al(g— 1. @b #@G-1.g-1.2<d <Dy lande = b,

Compared to standard QEC codes, the EAQEC codes enhance communication
capabilities at the expense of pre-shared entanglement. In this paper, it is worth noting
that some of the lengths of EAQMDS codes are the sum of two divisors of g2 — 1,
which implies that the lengths of our codes might not be divisors of > — 1. Some of the
lengths are new and have never been covered by the lengths available in the literature.
This extends the length of the EAQMDS codes. Also, compared with known EAQMDS
codes, our codes have larger minimum distances, which enhance the error-correction
capability. The paper is structured as follows. Some basic concepts and results about
GRS codes and EAQEC codes are reviewed in Sect. 2. In Sect. 3, three new classes of
EAQMDS codes are obtained from GRS codes. Section4 gives a conclusion.

2 Preliminaries

Let F > be the finite field with g elements, where g is a prime power. A g>-ary linear
code C is denoted by [n, k. d],2 if its length is n, its dimension is k and its minimum
distance is d, which is a linear subspace of IE‘ZZ. Moreover, the minimum distance d

of the code C must satisfy the following well-known bound.
Theorem 2.1 [33] (Singleton bound) An [n, k, d] linear code C over ]qu must satisfy
n—k>d-1.

A linear code is called an maximum-distance-separable (MDS) code if the equality
holds.
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For any two vectors X = (xg, X1, ..., X,—1) andy = (3o, ¥1, - - ., Ya—1) belong to
IFZZ, their Euclidean and Hermitian inner product are defined as

(X, ¥Y)E = x0y0 + x1y1 + -+ + Xn—1Yn—1,
and
X, ¥)g = xoyg —i—x]y? +- +xnfly,{1171’

respectively. The Euclidean dual code and the Hermitian dual code of a linear code C
with parameters [n, k, d] 2 is respectively defined by

CHF = (x e Flh|(x.y)g =0,V y € C),
CH = {x e Fll(x,y)m =0,V y € C}.

The code C is said to be Euclidean (Hermitian) self-orthogonal if C € C1£ (C € C1#).

Leta = (aj,02,...,0,) € F;z and v = (vi,v,...,V,) € (Fzz)”, where
o1, a2, ..., o, are n distinct elements ofIqu and vy, vy, ..., v, are n nonzero elements
of qu (v; can be the same). For each integer k with 1 < k < n, let

FlLlxl = {f(x) € Flalx]deg(f (x)) < k — 1}.
Then, the GRS code of length n and dimension k is defined as:
GRSi(a,v) = {vy f(a1), vaf(aa),...,vaf(an)lforall f(x) € FZZ[X]k}-

As everyone knows, the GRS code is exactly an MDS code with parameters [#, k, n —
k + 1] over Iqu, and it has a generator matrix shown below.

vl vz e Un
V1o V202 - Uplp
Gy =
k—1 k—1 k—1
viay T vyt Upos

The following famous result illustrates the dual code of a GRS code.

Theorem 2.2 [33] The dual code of GRSy (a,v) is GRS,k (a, v/)for a vectorv =
{vi,v,,...,v,}, such that v; #0foranyl <i <n.

Remark 2.1 According to Theorem 2.2, the dual code of an [n,k,n — k + 1]q2
GRSi(a,v) isstill an [n,n — k, k + l]qz GRS code. Additionally, the parity-check

matrix of GRS,,_(a, V/) is the generator matrix of GRS (a, v).
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For any n € F 2, the conjugate of 7 is defined as 7 = n?. Let A = (a;j)mxn be an
m x n matrix over I > and define the conjugate of A by A= (@ij)mxn- Suppose that

AT is the conjugate transpose of A, where AT = (A)7 and AT denotes the transpose
of A.

Finally, we give a method to construct EAQEC codes using classical linear error-
correcting codes under the Hermitian case.

Theorem 2.3 [2, 43] Let C be an [n, k, d]qz classical linear error-correcting code,

whose parity-check matrix is H and H' is the conjugate transpose of H; then, one
can getan [[n, 2k —n + ¢, d; c]ly EAQEC code, where ¢ = rank(HHT).

3 New EAQMDS codes from GRS codes

In this section, assume that ¢ is a prime power. We will derive three classes of g-ary
EAQMDS codes by utilizing GRS codes over 2. Let § be a fixed primitive element

of IF,2. Suppose that 1 = 'fiz;l, where a|(g + 1) or al(g — 1). Let B = &9, then
ord(B) =1t.

2 2
3.1 New EAQMDS codes of lengthn = M + % withal(g + 1)

In this subsection, we will obtain new g-ary EAQMDS codes of length n = @ +

qzu—_l with a|(g 4+ 1) from GRS codes. In the following, we will consider GRS codes of

length n by splitting a+b into two cases, i.e.,a+b = 1 (mod 2) anda+b = 0 (mod 2).
3.1.1 Thecasea + b = 1 (mod 2)

To begin with, we give some significant lemmas that will take on essential roles in our
constructions.

Lemma 3.1 Suppose thata+b = 1 (mod 2) andm = %.Ifb <min{a—3,q—3},

then there exists avector p = (0o, P1, ..., Pb) € (Fz)b“ such that the following sums
b b b b
1 -1

3o Y, Yy Y g

=0 =0 1=0 =0
are all nonzeros.
Proof We have to proof that there exists a vector ¢ = (¢o, ¢1,--.,¥p) € (Fj)b“
such that the group of equations below has a nonzero solution p = (pg, p1, ..., Pp) €
(]F*)b+1

p .
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b
21:0 PIL = ¢0,
b mlt
21:05 pPL = Y1,

Y EmtI = g 3.0

b -
leog(mﬂy DIt o = gy

Let ¢ = £'. Denote

1 g-m V. ;bm
a1 gmtl L gblmt)

i é-m-i:b—l ;b(m-.l—b—l)

The system of Eq. (3.1) could be characterized by the matrix form

ApT = (9o, 01, o0) =0T,

It can be easily derived that det(A) # O due to the fact that A is a Vandermonde
matrix and 1, ¢, ¢™F1, ..., ¢"™*P~1 are all different because of ¢ is a primitive a-th
root of unity. Hence, for a fixed vector ¢, the system of Eq. (3.1) has a sole solution
p = (po, P1s---,Pb) € (]Fq)bH. Next, we will proof that the system of Eq. (3.1) has
a nonzero solution.

Let oo = (1,1,...,1), ¢ = (1, mHi=D  gtbmti=ly forj — 1 .. . b.
Then, the system of Eq. (3.1) is changed to

dop! = o,
¢1pT = @1,
p2p" = ¢, (3.2)
dup’ = .
It can be trivially verified that qb,.q = ¢p+1-i,fori =1, ..., b. Hence, by taking the

g-th powers of all the equations in (3.2), one can get
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¢)0pT = 0,
oup’ = g1,
dp—1pT = @2,

d2p” = gp_1,
d1p” = gp.

Let

N £971 g is a power of 2,
= 1
S%, q is an odd prime power.

(3.3)

It is easy to proof that .Y = —A. We now divide b into two cases as follows:
(1) If b is odd, then it can be easily proved that the system of Eq. (3.2) is equivalent

to the system of Eq. (3.4) according to (3.3).
¢0pT = %0,

(@1 + dp)p" =201,

Denote

(3.4)
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Obviously, each element of the matrix B belongs to IF, then the system of Eq. (3.4)
is represented as Bp! = (o, 2¢1, . .., 2051, 911.0,..., 0)”. Suppose that

U={peFyBp" =@.201..... 2001, ¢611.0,....0)7).

2

For any given nonzero elements ¢q, ¢1, ..., Qi1 the system of Eq. (3.4) in U has a
sole solution.
When ¢g, ¢1, ..., ¢ b1 take all nonzero elements over Fq, respectively, then one
obtains
b+3
Ul=(g-1)7.
Let

Ui={peFlpi=0,Bp" = (¢0.201.....2001,¢0:1,0,...,0)"},
wherei =0,1,...,b, and

S=1{pe @)’ Bp" = (00.201.....205-1,9s:1.0,....00"}.

2 2

If p; = 0, then ¢, 2¢1, ..., 2¢b-1, @p+1 must meet a linear equation with nonzero

2 2

coefficients. So
b+l
[Uil=(q—-1) 7.

Accordingly, S = U \ (UpU U U---UUy). Hence, |S| = |U| — Z?:O |U;| + x due
to the inclusion-exclusion principle, where x > 0. So

b3 btl
ISI=@—-D 72 —(b+Dg-1) 72 +x.

It is obvious that |S| > 0 because of b < g — 3.
(2) If b is even, then the system of Eq. (3.2) is an equivalence of the following
system of Eq. (3.5). The remainder of the proof quite comparable to the case b is odd
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and we omit it here. .
dop’ = ¢o,

(@1 + )T =201,

(¢ + ¢>¥)pT =204, (3.5)
¢1;¢b pT — 0,
¢p—bbs2
2 - 2 pT =0.
Therefore, there exists a vector p = (0o, P1, ..., Pp) € (Ffl)b +1 such that

b b b b
LD DTS DL NN S
=0 =0 =0 1=0

are all nonzeros.

Lemma3.2 Lera+b =1(mod2) andb < a—3.1f0 < i, j < “LHL . 2L o yipp
(i, j) # (0,0), then t|(gi + ) if and only if gi + j = vt with % <v< %b_l.

Proof AsO <i,j < L. 4L 5 with (i, j) # (0,0),then0 < i, j < g—1—41

2
and0 < gi +j <¢*>—1— @. If t|(gi + j), then an integer v exists such that
qi + j = vt with0 < v < a — 1. Also, we have

. vig+ 1 vig+1)
qgi+j=q[———-114+[g — ——1.
a a
Then,
. v(@+1) vig+1)
l:—_l,]: _—
a a
SinceOfi,jf‘#J%—Z,onecanget
a—b—1 a a+b+1 a
+ <v < - )
2 qg+1— 2 q—+1

which implies that # <v< %. Therefore, t|(qi + j) ifand only if gi + j =
vt with “‘g“ <v< ”+g_1.
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Lemma3.3 Let n = 24@=D _1) | ,and b < min{a — 3,q — 3). Assume that
r=,88%....57H e]F;Zanda—(r,Er,éz T,..., &%) € F,. Let

V= (UO’ V05 «ees V0 v o5 Uby Upy o v ey Ub)(lx(b+1)t) € (]F*Z)n’
q

where v7+1 =pwith0 <1 < b, and p = (po, P1,.--,Pp) € (IF*)”Jrl is a vector

satisfy Lemma 3.1. Then, (@97 vi+1y g = 0 ifand only lf(l J)=10,0)0rqgi+j =

vt with “‘g“ <v< a+129 L where 0 < i, j< “+§+1 Rk
a

Proof 1f (i, j) = (0, 0), it follows from Lemma 3.1 that
(@l vt p = @ vt g = T T =10+ pn) # 0.

If (i, j) # (0, 0), then

b

+1
(a(1l+] vq+1> Zg(qlJr])l q Z’Bs(qz+j)

=0 s=0

Notably,

Zﬂs(qt-‘r]) {O t*(qi +7),
t,t](qi+ ).

-1 i+j) _ - e s s a—btl
Based on Lemma 3.2, 302 B5 ) = ¢ if and only if gi + j = vt with “Tl <
v < ““’ , then by Lemma 3.1, one can get (a?'t/ vitl)p = thzo guil vlqu =
130, sv” o1 # 0. The result holds.

A

Theorem 3.1 Letn = 24 _1)+q L Where qis aprime power, b < min{a—3, ¢—3},
allg+1)anda+b =1 (mod 2), then one can get an EAQMDS code with parameters
((n,n—2d+c+2,d;clly, where2 <d < # . qTHandc=b+ 1.

Proof Assume that there exists a GRS code, denoted as G RSy (a, v), associated with
vectors a and v, where a and v are given in Lemma 3.3. One can get G RSk (a, v) has
a generator matrix as below.

'UO 'UO P 'UO P ’Ub PR vb
v voB - wopTh e wER o upEPRITY
vo vwp? - vo(BTH? - wp(ED? - up(EPRIT?

G
A g et s
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According to Theorem 2.2, there existsa GRS, (a, v/) with parameters [n, n —k, k+
1], whose parity-check matrix is G,. By calculation, one can get

000 010 “'* Ok—10
) 001 011 't Ok—11
GG, =| o002 012 - Ok-12 |-

00,k—1 O1,k—1 *** Ok—1,k—1
where o; ; = (a?'*/, vitl) .

Based on Lemma 3.3, 0; ; # 0if and only if (i, j) = (0,0) or gi + j = vt with
afl27+l <v< a+l2771'

If there exist iy = i» = i such that gi 4+ j; = vit and gi + j» = vyt, where
J1 # Jja,then {'1 — j2 = (v1 —wvo)t. Infact, | j1 — j2| < g — 1. However, |[(v1 —uv2)t| =
(v — vz)%(q — 1| =g —1.S0 0;,; # 0 cannot appear in the same row of the
matrix.

If there exist j1 = j» = j such that gi; + j = vit and gi» + j = vyt, where

2
i1 # 2, then g (i1 —i2) = (U1 — V)t = (U1 — v2) &L Therefore, ¢|(u1 — v2), which
contradicts to the fact that [u; — v2| < b —1 < g. So 0; j # 0 cannot appear in the
same column of the matrix.

Hence, for0 <i, j < #.qai

—2,0i,j # 0 cannot occur in the same row and

column of the matrix. Consequently, rank(Gy Gl) = b + 1. According to Theorem
2.3, the EAQMDS codes are derived.

Remark 3.1 Taking b = 0 in Theorem 3.1, then a mustbe odd. Leta = 2¢+1 (£ > 1),
then one can get EAQMDS codes with the following parameters:
2 2
o (1551 %51 —2d +3,d: 1]y, where 2 < d < 5 (g + 1),
Actually, EAQMDS codes with the same length had also been constructed in [7]

and [24]. Taking n = 32—;} in Theorem 3 of [7] and ¢ = 1 in Theorem 3.7 of [24], we
can derive the following two subclasses of EAQMDS codes:
o 4.4 2e+1 —2d +3,d: 1]y, where 2 < d < 2(£+ — D).

£l =l 5y 43 d:1]],, wh 2<d<lg+1
o 5T 2097 + 114, where 2z+1 + 251@ + D).

By comparing our results with the same length as in [7], due to 2%:1(61 +1) >

2(% — 1), one can see that the minimum distance of our EAQMDS code is larger
than theirs. While comparing our results with [24], one can easily see that our codes
have the same largest minimum distance as theirs within such case, but the minimum

distance d has a wider value range.

Remark3.2 Leta = 2 (mod 4) and b = 7, then a + b = 1 (mod 2). According to
Theorem 3.1, EAQMDS codes can be obtained with the following parameters:

2 2
o M5+ 220 C5 4 P20 244 e 42, d; el where 2 < d < 34D 4 4L
c=5+1
2
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In fact, EAQMDS codes of length n = q Ly q —! had already been studied in

[44], but the value of ¢ in [44] is incorrect. It should be 5+ 1(2 + 1 for their length).
Besides, it can be easily seen that our EAQMDS codes coincide with theirs. Therefore,
the result of ours is a generalization of theirs.

Remark3.3 Let a = 0 (mod 4) and b = 5§ + 1, then a + b = 1 (mod 2). Due to
Theorem 3.1, one can get EAQMDS codes with parameters as follows:

2 2 2 2
o [[%4_@, %+@—2d+c+2, d; c]ly,where2 < d < W“'qai’
a

2 2
EAQMDS codes of length n = q74 + @ had been studied in [44], but the ¢
in [44] is different from ours.

2 2
Example 3.1 We show some of the new EAQMDS codes of length n = w 421

a
with a + b = 1 (mod 2) obtained from Theorem 3.1 whose lengths are not divisors

of g> — 1 in Table 1,

3.1.2 Thecasea + b = 0 (mod 2)

Likewise, we will first give some useful lemmas that will serve essential roles in the
construction.

Lemma 3.4 Suppose thata+b = 0 (mod 2) and m = %. Ifb < min{a —4, q—3},
then there exists a vector p = (00, P1, ..., Pb) € (IE‘Z;)bJrl such that the following
sums

Zs(mt q— l)lp] ZE[(nz+l)t q— l]lp ZE[(m+2)t q— l]l ’’’’’ ZE[(m+b)t q— I]l

=0

are all nonzeros.

Proof We have to proof that there exists a vector ¢ = (@1, ..., ¥p+1) € (]Fj)bJrl such
that the group of equations below has a nonzero solution p = (po, 1, ..., 0p) €
(]F*)b-‘rl

p .

Y Em=aDly = gy,
S gl Di—a=lll g — gy

Y0 LDl — (3.6)

b e
S ElmtDi—allp = g .
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Table1 New EAQMDS codes

of length - @ . 21 a b [[n, k, d; clly d
witha 4+ b = 1 (mod 2) 8 9 4 [[35,42 —2d, d; 5113 2<d<7
9 5 2 [[48,53 —2d, d; 3119 2<d<8
10 3 [[32,38 — 2d, d; 4]]9 <
10 5 [[48,56 — 2d, d; 6]]9 <d<
11 6 3 [[80, 86 — 2d, d; 41111 2<d<10
12 7 [[80,90 — 2d, d; 8111, 2<d<10
13 7 2 [[72,77 — 2d, d; 3113 2<d<10
7 4 [[120, 127 — 2d, d; 51113 2<d<12
14 3 [[48,54 —2d, d; 4113 2<d<9
14 5 [[72,80 — 2d, d; 61113 2<d<10
14 7 [[96, 106 — 2d, d; 81113 2<d<11
14 9 [[120, 132 — 2d, d; 10]];3 2<d<12
16 17 2 [[35,40 — 2d, d; 31116 2<d<10
17 4 [[75,82 —2d, d; 51116 2<d <1l
17 6 [[105, 114 —2d,d; )16 2<d<12
17 8 [[135, 146 — 2d, d; 9116 2<d<13
17 10 [[165,178 —2d, d; 111116 2<d<14
17 12 [[195,210 — 2d, d; 131116 2<d<15
17 9 4 [[160, 167 — 2d, d; 51117 2<d<14
6 [[224,233 —2d, d; 1117 2<d<16
18 3 [[64,70 — 2d, d; 41117 2<d<1l1
18 7 [[128, 138 — 2d, d; 81117 2<d<13
18 9 [[160, 172 — 2d, d; 10]]17 2<d<14
18 11 [[192,206 — 2d, d; 12]]17 2<d<15
18 13 [[224,240 — 2d, d; 14]]17 2<d<16
19 5 2 [[216,221 —2d, d; 31119 2<d<16
10 3 [[144,150 — 2d, d; 41119 2<d<14
10 5 [[216,224 — 2d, d; 61119 2<d<16
10 7 [[288,298 — 2d, d; 81119 2<d<18
20 5 [[108, 116 —2d, d; 61119 2<d<13
20 7 [[144, 154 — 2d, d; 81119 2<d<14
20 11 [[216,230 — 2d, d; 12]]19 2<d<16
20 13 [[252,268 — 2d, d; 14]]19 2<d<17
20 15 [[288, 306 — 2d, d; 16]]9 2<d<18
23 6 3 [[352,358 — 2d, d; 41123 2<d<20
8 5 [[396, 404 — 2d, d; 61123 2<d<2l
12 7 [[352,362 — 2d, d; 8113 2<d<20
12 9 [[440, 452 — 2d, d; 101123 2<d<22
24 9 [[220, 232 — 2d, d; 10]]23 2<d<17

24 13 [[308, 324 —2d, d; 14]]>3 2<d<19
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Table 1 continued q P b [In. k. d: cllg d

24 15 [[352,370 — 2d, d; 16]1»3 2<d<20
24 17 [[396,416 — 2d, d; 18]123 2<d<21
24 19 [[440, 462 — 2d, d; 201123 2<d<22

Let ¢ = £™~971 Denote

1 ¢ b
1 é-s-t L ;-bé-bt
A= 1 ;SZI L. é-bsb(Zt)

The system of Eq. (3.6) could be characterized by the matrix form

AT = (o1, 02, ..., op11)T = 0.

It is easy to show that det(A) # O due to the fact that A is a Vandermonde matrix
and ¢, CE7, CE%, ..., c €Y are all different. Hence, for a fixed vector @, the system of
Eq. (3.6) has a unique solution p = (pg, p1, ..., Pp) € (Fq)b“. Next, we will proof
that the system of Eq. (3.6) has a nonzero solution.

Let ¢; = (1, gm+i=Di=g=1 " gllm+i=Di=q=11by for j = 1, ... b+ 1. Then,
the system of Eq. (3.6) is becoming

¢1pT =1,
d2p” = @2,
d3p" = 3. (3.7)

Ppr1pT = Qpi1.

It can be trivially verified that qbiq = ¢p42—i,fori =1, ..., b+ 1. Hence, by taking
the g-th powers of all the equations in (3.7), one can get

Ppr1p” = o1,
orp” = @2,

Pp—1p” = @3,
. (3.8)

d2p” = gp,
d1p”T = pi1.
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Let
g+l : 2
N &1 q is a power of 2,
= 1
S%, q is an odd prime power.
It is easy to prove that .Y = —X. We now divide b into two cases as follows:

(1) If b is odd, then it is easy to get that the system of Eq. (3.7) is equivalent to the
system of Eq. (3.9) according to (3.8).

(@1 + dpr1)p” =201,

(Pos1 + Pp13)pT = 20111,
2 2 2 (3.9)

¢1_fb+lpT =0,

Denote

It can be easily derived that each element of the matrix B belongs to F,, then
the system of Eq. (3.9) may be represented as BpT = Qep1,..., 2<p%, 0,..., O)T.
Suppose that

U={peFy'Bp" = Qp1.....2000.0.....0)"}.
For any provided nonzero elements ¢y, ..., Qo1 the system of Eq. (3.9) in U has
a sole solution. When ¢y, ..., gp% take all nonzero elements over I, respectively,
then one obtains

b1
Ul=(@—-17.
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Suppose that

Ui={peF, ™ pi=0Bp" =Qp1.....2051.0,....00"},

2

wherei =0,1,...,b, and

S={pe @) Bp" =Qq.. -2 200110, 1) ER N

If p; = 0, then 2¢y, ..., 2¢»+1 must meet a linear equation with nonzero coefficients.
2
So

b—1
lUil=(@—-1) 7.

Consequently, S = U \ (Up U Uy U --- U Up_1). Hence, we have |S| = |U| —
Z?:o |U;| + x by the inclusion—exclusion principle, where x > 0. So

ISl=(@—DF — b+ ig-1T +x.

It is obvious that |S| > 0 because of b < g — 3.

(2) If b is even, then the system of Eq. (3.7) is equivalent to the following system
of Eq. (3.10). The remainder of the proof quite comparable to the case b is odd and
we omit it here.
pop” = g0,

(@1 + Pp—1)pT =201,

: : (3.10)
T _
¢l—f’b—l pT =0,
¢¥7¢% T
— e =0
Therefore, there exists a vector p = (po, P1, ..., Pb) € (F(’;)b +1 such that

b b b b
3 gDl Y gl Di—gmly § glon2img=tly 3N glontbi—g-1l
1=0

=0 =0 =0

are all nonzeros.
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Lemma3.5 Leta +b =0 (mod2) and b < a — 4. If0 < i, j < “42+2 .4+l 3
with (i, j) # (0,0), then t|(qi + j +q + 1) ifand only if qi + j +q—|—1—vtw1th

a—>b a+b
7 SUV=Ty

Proof As 0 < i, j < b2 atl 3 ith (i, j) # (0,0), one can obtain that

0<i,j<q-2- and0<ql+j+q+1<q 1= gy (git g+ 1),
thenan1ntegeruex1sts suchthatgi+ j+¢g+1 = vt withO < v < a — 1. In addition,
we have

L v(g+1) vig+1)
gi+jta+l=ql— 1]+l - )
a a
Then,
. v@+1) . vig+1)
l:——z’]:q———l
a a

DuetoOsi,jg%ﬂai—?a,wehave

a—b—-2 qg+1 a+b+2 gqg+1
+ <v= - )
2 a — 2 a
which indicates that Th <v < % Therefore, t|(gi + j + g + 1) if and only if
gi+j+q+1=uvtwith 5t <v < 4P

Lemma3.6 Let n = @ + #, and b < min{a — 4,q — 3}. Assume that
t=(,8p8%....p He ]ng anda = (t,&1,8%1,...,8%1) € F,. Let

v = (00, V0B, ..., voB L vp upBs . Ubﬂt_l)(lx(h+1)t) € (F;z)",

where v;]—H =pwith0 <1 < b, and p = (po, P1,.--,Pb) € (IE‘;)b+1 is a vector

satisfy Lemma 3.4. Then, @9+ vtV g £ 0 ifand only if gi + j + q + 1 = vt with

a—b a+b P at+b+2 g+l _
S7 Sv <7, whereOgt,]S—2 o 3.

Proof If (i, j) = (0, 0), then
(aqi+j’ Vq+l>E a Vq+l Z v¢1+1 Zﬁs(qul)

Note that 7 { (g + 1), then Y Zf g°@+D = 0. Therefore, (a?*+/, vitl)p = 0.
If (i, j) # (0, 0), then

b t—1
L . 1 L
(aql+j’ Vq+l)E — } :s(ql+])lvlq+ } :ﬁs(qz+]+q+l).
=0 s=0
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Note that

-1 o
Zﬂs(qi+j+q+l) _ 0.t f@i+j+qg+1),
tt|(qi+j+qg+1).

s=0

According to Lemma 3.5, Y'—§ g*@+i+a+D — 1 if and only if gi + j + q +
1 = vt with % <uv < “;’b, then by Lemma 3.4, one can get (a?’+/ vitly, =

b —g— +1 b —g—
tZl:OS(UI q l)lvlq — IZI:OS(UZ q l)lpl # 0.

Theorem 3.2 Letn = @_{_42“_—1, where q is a prime power, b < min{a—4, g —3},
al(g+1)anda+b = 0 (mod 2). Then, one can get an EAQMDS code with parameters
[[n,n—2d+c+2,d;clly, where 2 < d < # . qail —landc=b+ 1.

Proof Suppose that there exists a GRS code, denoted as G RSk (a, v), associated with
vectors a and v, where a and v are given in Lemma 3.6. One can get G R Sk (a, v) has
a generator matrix as below.

L) U0/3 Uoﬂt_l vp vblgt_l
vo vop? oo wo(BTHE o wpgl o yEP (B2
vo voBFT - ug(BTTHET o (ED)RTZ - (ED)R (B R

vo voBK - wp(BTHE o wp BN (DYl (pI

According to Theorem 2.2, there exists a GRS, (a, V/) with parameters [n, n —
k, k + 1], whose parity-check matrix is G¢. By calculation, one can obtain that

00,0 010 "'+ Ok—10

. 001 O11 ** Ok—11
GG, =| 002 012 "+ Ok-1.2
00,k—1 Ol k=1 *** Ok—1,k—1

where 0; j = (a?' T/, viTl) .

According to Lemma 3.6, 0;,; # 0 if and only if gi + j + g + 1 = vt with
T Sus e

If there existiy = ip =i suchthatqgi+ j1+qg+1=vitandgi+ jo+q+1 = vot,
where j; # jo, then j1 — jo = (v — vp)t. In fact, |j1 — j2| < g — 1. However,
[(vy — v)t] = [(v] — Uz)qai(q — 1| > g — 1. It is a contradiction. So o; ; # 0
cannot appear in the same row of the matrix.

If there exist j1 = jo = jsuchthatgii+j+g+1 =vitandqgir+j+g+1 = vat,
where i # iy, then g (i1 —i2) = (vi —w)t = (u; —vz)qza—_l.Therefore, ql(vy —v2),
which contradicts to the fact that [u; — v2| < b < ¢g.So0; j # 0 cannot appear in the
same column of the matrix.
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Table2 A comparison between quantum MDS codes and EAQMDS codes

Parameters d References
(16 (g — 1.6 (g — 1) = 2d +2.d]l, 2<d<th L4 [13]
b (q—1.b (g —1)—2d+2+c,d; el 2sdsL‘””2—“J,c=h’ Ours

Hence, for0 < i, j < #.qai

column of the matrix. Consequently, rank(Gy Gz) = b + 1. According to Theorem
2.2, the EAQMDS codes are derived.

— 3, 0i,j # 0 cannot occur in the same row and

Remark 3.4 Taking b = 0 in Theorem 3.2, then a must be even. Let a = 2¢ (£ > 2),
then one can get EAQMDS codes with the following parameters:

o 571, 7l —2d+3,d; 1]y, where 2 <d < Sl (g + 1) — 1.

In fact, EAQMDS codes with the same length had also been constructed in [7] and

[24]. Taking n = 2£ in Theorem 3 of [7] and ¢ = 1 in Theorem 3.3 of [24], we can
derive two subclasses of EAQMDS codes as follows:

o 471, £0 —2d +3,d; 1], where 2 < d < 451 — 2,

200 2
o 157, 57 —2d +3,d; 11y, where &L +2 < d < Sl(g +1).

Comparing our results of the same length as in [7], one can see that the minimum
distance of our EAQMDS codes is larger than theirs because of % > q%l — 2 when
£ > 2. Comparing our results with [24], it can be easily seen that the largest minimum
distance of ours is one less than theirs, but the minimum distance d has a wider value

range.

By taking a = ¢ 4 1 in Theorems 3.1 and 3.2, respectively, the following corollary
is clearly established.

Corollary 3.1 Let g be a prime power, and b < q — 2, then one can get a [ (g —
1),b'(q — 1) —2d + 2 + ¢, d; cll; EAOMDS code, where 2 < d < |“2FL| and
c=b.

Remark 3.5 Quantum MDS codes of the length in Corollary 3.1 had been constructed
in Theorem 5 of [13]. Compared with it, the minimum distance of our EAQMDS code
is much larger than that of the quantum MDS code of the same length in [13] (see
Table 2).

Example 3.2 We show some of the new EAQMDS codes of length n = @ + #
with a + b = 0 (mod 2) obtained from Theorem 3.2 whose lengths are not divisors
of g% — 1 in Table 3.
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110 Page 20 of 30 X.Zheng et al.
Table3 New l;i)A(z)MDS co;les B b [[n. k. d; cll, d
of length n = y + =1
witha + b = 0 (mod 2) 7 8 2 [[18,23 — 2d, d; 3117 d
8 4 [[30, 37 — 2d, d; 5117 <d
8 9 1 [[14,18 —2d, d; 2]]g <d <
9 3 [[28,34 —2d, d; 4]l
9 5 [[42,50 — 2d, d; 6]]g d
9 5 1 [[32,36 —2d, d; 2]]g <d <
10 2 [[24,29 —2d, d; 3]l9
10 6 [[56,65 — 2d,d; T]]g d
11 2 4 [[50, 57 — 2d, d; 5111 <d<
12 6 [[70,79 — 2d, d; 7111 d<
12 8 [[90, 101 — 2d, d; 91111 2<d<10
13 1 [[48,52 —2d,d; 21113 2<d<9
7 3 [[96, 102 — 2d, d; 41113 2<d<l1l1
14 2 [[36,41 —2d,d; 31113 2<d<
14 4 (160, 67 — 2d, d; 51113 2<d<
14 8 [[108, 119 — 2d, d; 9]113 2<d<l1l1
14 10 [[132,145 — 2d, d; 111113 2<d<12
16 17 1 [130, 34 — 2d, d; 21116 d=<9
17 3 [[60, 66 — 2d, d; 41116 <d<10
17 5 [[90, 98 — 2d, d; 61116 <d<11
17 7 [[120, 132 — 2d, d; 81116 <12
17 9 [[150, 162 — 2d, d; 10]]1¢ d<13
17 11 [[180, 194 —2d,d; 12]]16 <d<14
17 13 [[210,226 — 2d, d; 14]]16 <15
17 9 1 [[64,68 — 2d, d; 21117 d<11
3 [[128, 134 — 2d, d; 41117 <d<13
5 [[192,200 — 2d, d; 61117 <15
18 4 [[80, 87 — 2d, d; 51117 d <11
18 6 [[112,121 —2d,d; 71117 <d<12
18 10 [[176,189 —2d,d; 11]]17 2<d<14
18 12 [[208, 223 — 2d, d; 13]]17 2<d<l15
18 14 [[240, 257 — 2d, d; 151117 2<d<16
19 5 1 [[144, 148 — 2d, d; 2]]19 2<d<l15
10 2 [[108, 113 — 2d, d; 31119 2<d<13
10 6 [[252,261 —2d,d; 71119 2<d<17
20 2 [[54,59 — 2d, d; 31119 2<d<ll
20 6 [[126, 135 —2d,d; 71119 2<d<13
20 8 [[162, 173 — 2d, d; 91119 2<d<l14
20 10 [[198,211 —2d,d; 11]]19 2<d<15
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Table 3 continued b [[n. k. d: cll, d

20 12 [[234,249 — 2d, d; 131119 2<d<16
20 14 [[270, 287 — 2d, d; 15]]19 2<d<17
20 16 [[306, 325 — 2d, d; 17]119 2<d<18

3.2 New EAQMDS codes of lengthn = b(q Y with al(gq-1)

2
In this subsection, some new g-ary EAQMDS codes of length n = w with
al(g — 1) are obtained from GRS codes. We begin with some useful lemmas that will
play major roles in our constructions.

Lemma 3.7 Suppose that a|(q — 1) and b < a. If (a, b) # (g — 1, g — 1), then there
exists a vector p = (0o, P1, - -, Pb—1) € (F;)b such that the following sums

b—1 bl
sz, Zs“m, Zs”’pl L Y gy,
=0

are all nonzeros.

Proof We have to proof that there exists a vector ¢ = (g, @1, ..., Pp—1) € (F;)b such
that the group of equations below has a nonzero solution p = (po, p1, ..., Pb—1) €
(F)P.

Y120 o1 =0,

b—1

b g2 p = g, 3.11)

b1 o (h—
S £V g = gy

Let ¢ = &'. Denote

1 1 - 1
1 ¢ ... bl
A=]1 ¢z oo gD

| b1 b=Do-D)
The system of Eq. (3.11) could be characterized by the matrix form
T

= (00, P15 op_1)] =
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It is easy to show that det(A) # 0 because of A is a Vandermonde matrix and 1, ¢, 4“2,
..., ¢P~ 1 are all different. Hence, for a fixed vector ¢, the system of Eq. (3.11) has a
sole solution p = (po, P1, ..., Pb—1) € (Fq)h. Since (a,b) # (g — 1,9 — 1) and ¢ is
a primitive a-th root of unity, then there must exist a ¢ e FZ such that ¢ / ¢{l,¢,22%,
. {b_l}. Therefore, we can take g = 1, ¢1 = 5/, 0 = (;“/)2, e Op—] = (g“,)h_l.
According to the Cramer’s rule, we can get

oo = |Aol ) = |A1] P |[Ap—1]
|A]’ Al 1Al
where
1 | 1 1 1 ... 1
é-/ ST 1 ¢ - ;/
|Ao| = ({)2 ;2 {2(17—1) o Ap] = 1 é—Z (;—)2
(é-/)b—l é—b—l . ;(b—l)(b—l) 1 é-b—l R (é-/)b—l
Since Ag, Ay, ..., Ap—; are all Vandermonde matrixes and 1, ;1, ;2, e Cb_l, {l
are different over ]FZ. Hence, |Ao|, |A1l, ..., |Ap—1| are all nonzeros, which implies
that pg, p1, ..., pp—1 are all nonzeros.
Therefore, there exists a vector p = (0g, 1, ..., Pb—1) € (F;)h such that
b—1

b—1 b—1 b—1
BLID BTN BTN B
=0 =0 =0 =0

are all nonzeros.
Lemma3.8 Leral(q — D) andb < a. If0 <i, j < 290 — 1 thent|(qi + j) if and
onlyifgi+ j=vtwith0<v <b-—1.
Proof Since 0 < i,j < @ — 1, one can obtain that 0 < i,j < g — 2 and
0 <gqi+j<gq®>—1.1Ift|(gi + j), then an integer v exists such that gi 4+ j = vt
with 0 < v < a. Additionally,

v(g —1) v(g—1)

qgi+j=q4ql 1+ ]
a a

Then,

_vg-—1

_vg-—1

a a

Since 0 <i,j < @ — 1, we have

a
q—1

O<v<b-
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which implies that 0 < v < b — 1. Therefore, #|(qi + j) if and only if gi + j = vt
withO <v <b—1.

Lemma3.9 Letn = @, where al(q — 1), b < a and (a,b) # (g — 1,q — 1).
Assume that T = (1,8, 8%, ..., '") € ng anda = (t,67,8%7,..., " 11) €
IE‘;Z. Let

V= (U0, V0, -+ -5 V05 -+ Vb1 Vb1 - =D (1xbr) € ()",

where v/ = p with 0 <1 < b—1,and p = (po. p1..... pp—1) € F) isa

vector satisfy Lemma 3.7. Then, (@97, vi*!)p 5 0 if and only if qi + j = vt with
O0<v<b—1 where0<i,j< _b(qa—l) _ 1

Proof From the definitions of a and v, we can get
b—1 r—1
L o gt .
(@?iti yithy, = Zé(qlﬂ)lvlq Z paiti,
1=0 s=0
Notably,

i—1 L
Zﬁs(qiﬂ) _ {0, t1(qi+ ),
o tt](gi + ).

From Lemma 3.8, ZZ;E) BS@i+i) = rif and only if gi + j = vt with 0 < v
b — 1, then by Lemma 3.7, one can get (a?'t/ vitlyp = szzol §“llvlq+ =
t Y073 €V p; # 0. The result holds.

IA

2
Theorem3.3 Let n = w, where q is a prime power, b < a, a|(q — 1) and
(a,b) # (g —1,q — 1), then one can get an EAQMDS code with parameters [[n, n —

2d +c+2,d;clly, where2 <d < "D 4 1 and ¢ = b.

Proof Suppose that there exists a GRS code, denoted as G R Sk (a, v), associated with
vectors a and v, where a and v are given in Lemma 3.9. One can get G RSk (a, v) has
a generator matrix as below.

vo voB - woBTl w2
Ge=|v wp® - v H - v (EPTH2 . g (g2
o oBE - v (B o (BT L (g1 gy
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Table4 New l;i)A(z)MDS codes B b [ln. k. d: cll, d
of length n = 2 =1 witn
al(g — 1) 4 3 2 [[10,14 —2d, d; 2]]4 2<d<3
5 4 3 [[30,37 —2d,d; 3]]5 2<d<6
7 6 4 [[32,38 —2d, d; 4117 <d <
6 5 [[40,47 —2d, d; 5117 <d <
8 7 2 [[18,22 —2d,d; 2]]g 2<d<
7 3 [[27,32 —2d, d; 3]]g 2<d<4
7 4 [[36,42 — 2d,d; 4]]g <d <
7 5 [[45,52 —2d,d; 5]]g 2<d<6
7 6 [[54,62 — 2d,d; 6]]g 2<d<7
9 4 3 [[60, 65 — 2d, d; 3119 2<d<
8 3 [[30,35 —2d, d; 3119 <d <
8 5 [[50,57 — 2d, d; 5119 2<d=<
8 6 [[60, 68 — 2d, d; 6]]9 <d
8 7 [[70,79 —2d, d; T]l9 <d
11 5 2 [[48,52 —2d,d; 2]]11 2<d
5 3 [[72,77 —2d, d; 31111 2<d<
5 4 (196, 102 — 2d, d; 4111 2<d<
10 3 [[36,41 —2d, d; 31111 2<d<4
10 4 (148, 54 — 2d, d; 41111 2<d<5
10 6 [[72, 80 — 2d, d; 6111 <
10 7 [[84,93 —2d,d; 71111 <d <
10 8 [[96, 106 — 2d., d; 811 2<d<
10 9 [[108, 119 — 2d, d; 9]111 2<d<10
13 6 4 [[112,118 — 2d, d; 4]113 2<d<9
6 5 [[140, 147 — 2d, d; 51113 2<d<l1l1
12 5 [[70,77 — 2d, d; 51113 2<d<6
12 7 (198, 107 — 2d, d; 71113 d<
12 8 [[112, 122 — 2d, d; 81113 <d<
12 9 [[126, 137 — 2d, d; 91113 2<d<10
12 10 [[140, 150 — 2d, d; 10]]13 2<d<l1l1
12 11 [[154,167 —2d,d; 11]]13 2<d<12
16 3 2 [[170, 174 — 2d, d; 2]]16 2<d<l1l1
5 2 [[102, 106 — 2d, d; 2]]16 2<d<7
5 3 [[153, 158 — 2d, d; 31116 2<d<10
5 4 [[204,210 — 2d, d; 41116 2<d<13
15 2 [[34,38 —2d,d; 2]]16 2<d<
15 3 (151,56 —2d, d; 3116 2<d<4
15 4 [[68,74 —2d,d; 41116 <d <
15 5 [[85,92 —2d,d; 5116 2<d<6
15 6 [[102, 110 — 2d, d; 61116 2<d<
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Table 4 continued

q a b [[n, k, d; cllq
15 7 [[119,128 —2d, d; T1]16 d<
15 8 [[136, 146 — 2d, d; 81116 d=<
15 9 [[153,164 — 2d, d; 9116 d <10
15 10 [[170, 182 — 2d, d; 10]]1¢ <11
15 11 [[187,200 — 2d, d; 11]]1¢ d=<12
15 12 [[204, 228 — 2d, d; 12]]1¢ d<13
15 13 [[221,236 — 2d, d; 13]]16 <14
15 14 [[238,254 — 2d, d; 14]]16 d<15

According to Theorem 2.2, there must exista GRS, (a, v/) with parameters [n, n —
k, k + 1], whose parity-check matrix is G. By calculation, one can get

00,0 01,0 Ok—1,0

. 00,1 Ol Ok—1,1
GG, =| 002 012 Ok—1,2
00,k—1 Ol k—1 *"* Ok—1k—1

where 0; j = (a?' T/, vitl)p.

From Lemma 3.9, 0; ; # Oifand only if gi + j = vt with0 <v < b — 1.

If there exist iy = ip = i such that gi + j; = vt and gi + j» = vaf, where
Jj1 # Jjoa,then j1 — jo = (v1 —wm)t. Infact, | j1 — j2| < g — 1. However, | (v —uvp)t| =
[(u1 — Uz)qa;l(q + 1| > g + 1. So 0; ; # 0 cannot appear in the same row of the
matrix.

If there exist j1 = j» = j such that gi; + j = vt and gi» + j = vpt, where
i1 # iz, theng(i; —iz) = (v — )t = (Vg —vz)qza—_l. Therefore, g |(v; — v2), which
contradicts to the fact that [u; — v2] < b —1 < g. So 0; ; # 0 cannot appear in the
same column of the matrix.

Hence, for 0 < i,j < @ — 1, 0;,j # 0 cannot occur in the same row and

column of the matrix. Consequently, rank(Gy G,T() = b. According to Theorem 2.3,
the EAQMDS codes are derived.

Remark 3.6 EAQMDS codes with the following parameters had been constructed in
[24]:

o [[b4L pEL—2d+c+2, d; cll,, where 2al(g+1),2 < b < 2a,1 < ¢ < 2a—1,

andem +2 <d < (a+ [5])m.

2 2
o (b1 b4 — 2d + ¢ + 2.d; cllg, where 2a + Dl(g + 1),2 < b < 2a,

l<c=<2aandem+2<d<=<(a+1+[5)m.

It is easy to see that their code lengths are different from ours due to the fact that our
a is adivisor of g — 1.
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Example 3.3 We show some of the new EAQMDS codes of length n = @ with

a|(q — 1) derived from Theorem 3.3 whose lengths are not divisors of g> — 1 in Table
4.

4 Conclusion

Letn = @ + qza—_l andn = @. Three classes of EAQMDS codes of length
n were derived from GRS codes in this paper. Taking different values of a and b, some
lengths of our results are divisors of g2 — 1. Compared with the known results, they
have much larger minimum distances. Furthermore, as the lengths of our EAQMDS
codes in this paper can be viewed as the sum of two divisors of g> — 1, so they are
probably not divisors of g2 — 1. Some known EAQMDS codes of lengths not be the
divisors of g% — 1 are listed in Table 5. Compared with them, our lengths are new and
not covered by them.
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