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Abstract
By using the Choi–Jamiołkowski isomorphism, we propose a well-defined coherence
measure of quantum channels based on the generalized α-z-relative Rényi entropy.
In addition, we present an alternative coherence measure of quantum channels by
quantifying the commutativity between the channels and the completely dephasing
channels with the generalized α-z-relative Rényi entropy. Some elegant properties of
the measures are illustrated in detail. Explicit formulas of these coherence measures
are derived for some detailed typical quantum channels.

Keywords Quantum coherence · Generalized α-z-relative Rényi entropy · Quantum
channel · Choi–Jamiołkowski isomorphism

1 Introduction

As a fundamental feature of quantum physics, coherence plays an essential role
in quantum information processing. Based on the framework of quantifying the
coherence of quantum states [1], quantifications of quantum coherence have been
extensively studied in terms of the l1-norm [1], relative entropy [1], skew informa-
tion [2, 3], fidelity [4, 5] and generalized α-z-relative Rényi entropy [6], with various
applications in quantum entanglement, quantum algorithm, quantummeteorology and
quantum biology [7–24]. Yu et al. [25] have presented an alternative framework for
quantifying coherence.

Quantum channels characterize the general evolutions of quantum systems [26].
In recent years, fruitful results have been obtained on studies of quantum channels
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[27–43]. Datta et al. [44] investigated the coherence of quantum channels by using
the Choi–Jamiołkowski isomorphism. Xu [45] proposed a framework to quantify the
coherence of quantum channels by using the Choi–Jamiołkowski isomorphism, and
defined the l1-normcoherencemeasure of quantumchannels.Basedon this framework,
somequantifiers of coherence for quantumchannels havebeengiven successively, such
as maximum relative entropy [46], robustness [46], fidelity [47], skew information and
Hellinger distance [48]. Luo et al. [49] introduced the coherence weight of quantum
channels to investigate the quantum resource theory of dynamical coherence. Kong
et al. [50] presented an alternative framework to quantify the coherence of quantum
channels.

On the other hand, Meznaric et al. [51] formulated a measure of nonclassicality of
a quantum operation, which is defined by quantifying the commutativity between a
quantumoperation and a completely dephasing operation based on the relative entropy.
Fan et al. [52] studied the commutativity between a channel and a completely dephasing
channel based on the trace distance, and quantified the coherence of quantum channels
via commutativity.

The paper is organized as follows. In Sect. 2,we present the definition of a coherence
measure for quantum channels based on the generalized α-z-relative Rényi entropy
via Choi–Jamiołkowski isomorphism, and verify that it is a well-defined coherence
measure. In Sect. 3, we study the commutativity between the channels and the com-
pletely dephasing channels based on the generalized α-z-relative Rényi entropy, and
derive several elegant properties. In Sect. 4, we obtain explicit formulas of coherence
measures with respect to some typical channels for above two newly definedmeasures.
Finally, we conclude with a summary in Sect. 5.

2 Coherence of quantum channels by using Choi–Jamiołkowski
isomorphism based on the generalized ˛-z-relative Rényi entropy

For two arbitrary quantum states ρ, σ and α, z ∈ R, the generalized α-z-relative Rényi
entropy is defined by [6],

Dα,z(ρ, σ ) = f
1
α

α,z(ρ, σ ) − 1

α − 1
, (1)

where
fα,z(ρ, σ ) = Tr

(
σ

1−α
2z ρ

α
z σ

1−α
2z

)z
. (2)

Let {|i〉}di=1 be a set of orthonormal basis of a d-dimensional Hilbert space H . The
set I of quantum states is said to be incoherent if all the density matrices are diagonal
in this basis. The quantum coherence Cα,z(ρ) of a quantum state ρ induced by the
generalized α-z-relative Rényi entropy,

Cα,z(ρ) = min
σ∈I

Dα,z(ρ, σ ), (3)
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is a well-defined coherence measure in each of the following cases [6]:

(1) α ∈ (0, 1) and z ≥ max {α, 1 − α};
(2) α ∈ (1, 2] and z = {1, α

2 };
(3) α > 1 and z = α.

It can be found that Cα,z(ρ) reduces to ln2 · Cr (ρ) and 2 · Cs(ρ) when z = 1, α → 1
and z = 1, α = 1

2 , respectively, whereCr (ρ) denotes the relative entropy of coherence
[1] and Cs(ρ) denotes the skew information of coherence [3].

Let HA and HB be two Hilbert spaces with dimensions |A| and |B|, orthonormal
bases {|i〉}i and {|β〉}β , respectively. We assume that {|i〉}i and {|β〉}β are fixed and
adopt the tensor basis {|iβ〉}iβ as the fixed basis when considering the multipartite
system HAB = HA⊗HB . Denote byD(HA) andD(HB) the set of all density operators
on HA and HB , respectively. Denote by CAB the set of all channels from D(HA) to
D(HB), SCABA′ B′ the set of all superchannels from CAB to CA′ B′ , ICAB the set
of incoherent channels in CAB, and ISCABA′ B′ the set of incoherent superchannels
in SCABA′ B′ . A quantum channel φ ∈ CAB is a completely positive trace-preserving
(CPTP)map.A coherencemeasureC of quantumchannels should satisfy the following
conditions [45]:

(a) Faithfulness: C(φ) ≥ 0 for any φ ∈ CAB, and C(φ) = 0 if and only if φ ∈ ICAB;
(b) Nonincreasing under ISCs: C(φ) ≥ C[�(φ)] for any � ∈ ISCABA′ B′ ;
(c) Nonincreasing under ISCs on average: C (φ) ≥ ∑

m
pmC(φm) for any � ∈

ISCABA′ B′ , with {Km}m an incoherent expression of �, pm = Tr(Km JφK
†
m )

|A′ | and

Jφm = |A′ | Km JφK
†
m

Tr(Km JφK
†
m )
;

(d) Convexity: C

(∑
m

pmφm

)
≤ ∑

m
pmC(φm) for any {φm}m ⊂ CAB and probability

{pm}m .
Following the idea in [25], the authors in [50] proposed an alternative framework

for quantifying the coherence of quantum channels which substitutes (c) and (d) with
the following additivity,

C(φ) = p1C(φ1) + p2C(φ2), (4)

where p1 + p2 = 1, φ1 ∈ CAB1 , φ2 ∈ CAB2 , φ ∈ CAB, |B| = |B1| + |B2|, and
φ(|i〉〈β|) = p1φ1(|i〉〈β|) ⊕ p2φ2(|i〉〈β|).

According to Theorem 3 in [45], if C is a coherence measure for quantum states
which satisfies (a)-(d), then the coherence measure of quantum channels is defined as

C(φ) = C

(
Jφ
|A|

)
, (5)

where Jφ is the Choi matrix corresponding to φ. For convenience, we denote Jφ
|A| by

Mφ .
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Suppose that the Kraus representation of a quantum channel φ is φ(ρ) =∑
n KnρK

†
n . According to Eq. (2) in [47], we have

Mφ = (Id ⊗ φ)|ϕ〉〈ϕ| =
∑
n

(I ⊗ Kn)|ϕ〉〈ϕ|(I ⊗ Kn)
†.

Here |ϕ〉 = 1√|A|
|A|−1∑
i=0

|i i〉 is a maximally entangled state in Hilbert space HA ⊗ HA,

Id is the identity channel, and I is the identity operator.

Definition 1 The generalized α-z-relative Rényi entropy of two arbitrary quantum
channels φ, φ̃ ∈ CAB is defined as

Dα,z(φ, φ̃) = f
1
α

α,z(Mφ,Mφ̃ ) − 1

α − 1
. (6)

Definition 2 The coherence measure of a channel φ induced by the generalized α-z-
relative Rényi entropy is defined by

Cα,z(φ) = min
φ̃∈ICAB

Dα,z(φ, φ̃) = min
Mφ̃∈I

f
1
α

α,z(Mφ,Mφ̃ ) − 1

α − 1
. (7)

In particular, when z = 1, α ∈ (0, 1)∪ (1, 2], by using the Corollary 2 in [6], we have

Cα,1(φ) =

∑
i,β

〈iβ|Mα
φ |iβ〉 1

α − 1

α − 1
. (8)

Cα,1(φ) reduces to ln2 · Cr (φ) and 2 · Cs(φ) when α → 1 and α = 1
2 , where Cr (φ)

denotes the relative entropy of coherence of quantum channels and Cs(φ) denotes the
skew information of coherence of quantum channels [48].

Theorem 1 Cα,z(φ) defined in Eq. (7) is a well-defined coherence measure.

Proof According to Eqs. (2), (6) and (7), Cα,z(φ) can be further rewritten as

Cα,z(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− max
M

φ̃
∈I f

1
α

α,z(Mφ,Mφ̃ )

1−α
0 < α < 1,

min
M

φ̃
∈I f

1
α

α,z(Mφ,Mφ̃ )−1

α−1 α > 1.

From the Lemma 1 in [6], it is easy to see that Cα,z(φ) ≥ 0, and Cα,z(φ) = 0 if and
only if φ = φ̃. Thus, Cα,z(φ) satisfies the condition (a).
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When α > 1, denote�
′ = |A|

|A′ |�with� ∈ ISCABA′B′ . Thus, J
�

′ is a CPTPmap.

Direct calculation shows that

fα,z(J�′
(φ)

, J
�

′
(φ̃)

) = fα,z

( |A|
|A′ | J�(φ),

|A|
|A′ | J�(φ̃)

)

= |A|
|A′ | fα,z(J�(φ), J�(φ̃))

=|A| fα,z

(
J�(φ)

|A′ | ,
J�(φ̃)

|A′ |
)

.

Utilizing the Lemma 2 in [6], we have fα,z(J�′
(φ)

, J
�

′
(φ̃)

) ≤ fα,z(Jφ, Jφ̃ ). Then

Dα,z(�(φ),�(φ̃)) ≤ Dα,z(φ, φ̃). Therefore,

Cα,z(�(φ)) = min
φ̃∈ICAB

Dα,z(�(φ), φ̃)

≤ min
φ̃∈ICAB

Dα,z(�(φ),�(φ̃))

≤ min
φ̃∈ICAB

Dα,z(φ, φ̃)

= Cα,z(φ).

It can be seen that Cα,z(�(φ)) ≤ Cα,z(φ) when α > 1. The case of 0 < α < 1 can be
easily proved in the same way. Hence, the condition (b) follows immediately.

Next we prove that Cα,z(φ) satisfies Eq. (4). Suppose that Mφ is block-diagonal in
the reference {|iβ〉}iβ ,

Mφ = p1Mφ1 ⊕ p2Mφ2 ,

where p1, p2 > 0 with p1 + p2 = 1, and Mφ1 and Mφ2 are the Choi states (density
operators) corresponding to φ1 and φ2. Mφ̃ , the Choi state corresponding to φ̃, can be
written as

Mφ̃ = q1Mφ̃1
⊕ q2Mφ̃2

,

where q1, q2 > 0 with q1 + q2 = 1, and Mφ̃1
and Mφ̃2

are the Choi states (density
operators) corresponding to φ̃1 and φ̃2. Denote by 	 either max or min. Let tm =
	Mφ̃m

Tr

(
M

1−α
2z

φ̃m
M

α
z

φm
M

1−α
2z

φ̃m

)z

, m = 1, 2. It can be derived that

	Mφ̃∈ITr
(
M

1−α
2z

φ̃
M

α
z

φ M
1−α
2z

φ̃

)z

= 	q1,q2(q
1−α
1 pα

1 t1 + q1−α
1 pα

2 t2).
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Using the Hölder inequality with 0 < α < 1, we have

q1−α
1 pα

1 t1 + q1−α
2 pα

2 t2 ≤
⎛
⎝ ∑

m=1,2

pmt
1
α
m

⎞
⎠

α

,

where the equality holds if and only if q1 = lp1t
1
α

1 and q2 = lp2t
1
α

2 with l =(
p1t

1
α

1 + p2t
1
α

2

)−1

. Consequently

max
q1,q2

(q1−α
1 pα

1 t1 + q1−α
2 pα

2 t2) =
⎛
⎝ ∑

m=1,2

pmt
1
α
m

⎞
⎠

α

.

Similarly, it is not difficult to obtain that when α > 1,

q1−α
1 pα

1 t1 + q1−α
2 pα

2 t2 ≥
⎛
⎝ ∑

m=1,2

pmt
1
α
m

⎞
⎠

α

,

and the equality holds when q1 = lp1t
1
α

1 and q2 = lp2t
1
α

2 , which yields

min
q1,q2

(q1−α
1 pα

1 t1 + q1−α
2 pα

2 t2) =
⎛
⎝ ∑

m=1,2

pmt
1
α
m

⎞
⎠

α

.

We have further

	Mφ̃∈I f
1
α

α,z(Mφ, Mφ̃ ) = p1	Mφ̃1
∈I f

1
α

α,z(Mφ1 , Mφ̃1
) + p2	Mφ̃2

∈I f
1
α

α,z(Mφ2 , Mφ̃2
).

Thus

Cα,z(φ) = p1Cα,z(φ1) + p2Cα,z(φ2),

which implies that Cα,z(φ) satisfies Eq. (4). This completes the proof. ��

3 An alternative coherencemeasure of quantum channels based on
the generalized ˛-z-relative Rényi entropy

In this section, we present a coherence measure of quantum channels through an
alternative method by quantifying the commutativity between the channels and the
completely dephasing channels via the generalized α-z-relative Rényi entropy. Fur-
thermore, by utilizing the properties of the generalized α-z-relative Rényi entropy [6],
we discuss some properties of this coherence measure.

123



Quantifying coherence of quantum channels based on the generalized... Page 7 of 23 100

Definition 3 The completely dephasing channel 	A ∈ CAB is defined as [45]

	A(ρA) =
∑
i

〈i |ρA|i〉|i〉〈i |, ρA ∈ D(HA). (9)

A state σ A ∈ D(HA) is called incoherent if 	A(σ A) = σ A. Otherwise, we say that it
is coherent.

Definition 4 For a channel φ ∈ CAB, we define an alternative coherence measure
C̃α,z(φ) of φ,

C̃α,z(φ) = sup
ρ

Dα,z(φ ◦ 	A(ρ),	B ◦ φ(ρ)), (10)

where Dα,z(·, ·) is the generalized α-z-relative Rényi entropy, and the supremum in
Eq. (10) is taken over all quantum states.

Theorem 2 C̃α,z(φ) has the following elegant properties:

(i) (Extremal property) for sup
ρ

Dα,z(φ ◦ 	(ρ),	 ◦ φ(ρ)), there exists a pure state

|ψ〉〈ψ | such that the supremum in Eq. (10) is attained when ρ = |ψ〉〈ψ |.
(ii) (Monotonicity) for any quantum channel φ, if φ0 is a quantum channel satisfying

C̃α,z(φ0) = 0, then C̃α,z(φ0 ◦ φ) ≤ C̃α,z(φ) and C̃α,z(φ ◦ φ0) ≤ C̃α,z(φ).
(iii) (Convexity) for some quantum channels φm, and some positive real number λm

such that
∑
m

λm = 1, we have C̃α,z

(∑
m

λmφm

)
≤ ∑

m
λmC̃α,z (φm).

Proof Suppose that the spectral decomposition of ρ is ρ = ∑
m

μm |ψm〉〈ψm |. We
have

Dα,z(φ ◦ 	(ρ),	 ◦ φ(ρ))

=Dα,z

(
φ ◦ 	

(∑
m

μm |ψm〉〈ψm |
)

,	 ◦ φ

(∑
m

μm |ψm〉〈ψm |
))

=Dα,z

(∑
m

μmφ ◦ 	(|ψm〉〈ψm |),
∑
m

μm	 ◦ φ(|ψm〉〈ψm |)
)

≤
∑
m

μmDα,z(φ ◦ 	(|ψm〉〈ψm |),	 ◦ φ(|ψm〉〈ψm |))

≤
∑
m

μm sup
|ψ〉

Dα,z(φ ◦ 	(|ψ〉〈ψ |),	 ◦ φ(|ψ〉〈ψ |))

= sup
|ψ〉

Dα,z(φ ◦ 	(|ψ〉〈ψ |),	 ◦ φ(|ψ〉〈ψ |)),

where the first inequality follows from the joint convexity of Dα,z(·, ·). Thus,

C̃α,z(φ) ≤ sup
|ψ〉

Dα,z(φ ◦ 	(|ψ〉〈ψ |),	 ◦ φ(|ψ〉〈ψ |)).
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It follows from Eq. (10) that

C̃α,z(φ) = sup
|ψ〉

Dα,z(φ ◦ 	(|ψ〉〈ψ |),	 ◦ φ(|ψ〉〈ψ |)). (11)

Therefore, item (i) holds.

Using the monotonicity of Dα,z under the CPTP maps, we have

Dα,z(φ0 ◦ φ ◦ 	(|ψ〉〈ψ |),	 ◦ φ0 ◦ φ(|ψ〉〈ψ |))
=Dα,z(φ0 ◦ φ ◦ 	(|ψ〉〈ψ |), φ0 ◦ 	 ◦ φ(|ψ〉〈ψ |))
≤Dα,z(φ ◦ 	(|ψ〉〈ψ |),	 ◦ φ(|ψ〉〈ψ |)),

where the first equality holds due to C̃α,z(φ0) = 0 and Definition 1 in [52]. Then, by
Eq. (11), we obtain C̃α,z(φ0 ◦ φ) ≤ C̃α,z(φ). On the other hand,

C̃α,z(φ ◦ φ0)

= sup
ρ

Dα,z(φ ◦ φ0 ◦ 	(ρ),	 ◦ φ ◦ φ0(ρ))

= sup
ρ

Dα,z(φ ◦ 	 ◦ φ0(ρ),	 ◦ φ ◦ φ0(ρ))

= sup
σ=φ0(ρ)

Dα,z(φ ◦ 	(σ),	 ◦ φ(σ))

≤ sup
ρ

Dα,z(φ ◦ 	(ρ),	 ◦ φ(ρ))

=C̃α,z(φ),

which implies that C̃α,z(φ ◦ φ0) ≤ C̃α,z(φ). Hence, item (ii) is proved.
By utilizing the joint convexity of Dα,z(·, ·), we can further obtain

C̃α,z

(∑
m

λmφm

)

= sup
|ψ〉

Dα,z

(∑
m

λmφm ◦ 	(|ψ〉〈ψ |),	 ◦
∑
m

λmφm(|ψ〉〈ψ |)
)

= sup
|ψ〉

Dα,z

(∑
m

λmφm ◦ 	(|ψ〉〈ψ |),
∑
m

λm	 ◦ φm(|ψ〉〈ψ |)
)

≤
∑
m

λm sup
|ψ〉

Dα,z (φm ◦ 	(|ψ〉〈ψ |),	 ◦ φm(|ψ〉〈ψ |))

=
∑
m

λmC̃α,z(φm).

Therefore,

C̃α,z

(∑
m

λmφm

)
≤

∑
m

λmC̃α,z(φm), (12)
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and the item (iii) is derived. ��
From Eq. (10), it can be easily seen that C̃α,z(φ) = 0 when the quantum channel

φ is detection-creation-incoherent [52], i.e., φ ◦ 	A = 	B ◦ φ. Comparing the two
quantifiers of the coherence of quantum channels in Eqs. (8) and (10), it can be found
that Cα,z(φ) ≥ C̃α,z(φ) always holds in this special case. From the examples in the
next section and numerical results, it is conjectured that Cα,1(φ) ≥ C̃α,1(φ) holds for
all quantum channels φ, but we have not yet found a proof.

4 Examples

In this section, we choose several typical channels to calculate the coherence measures
defined in Eqs. (8) and (10).

Example 1 Consider the phase flip channel φPF(ρ) =
2∑

n=1
KnρK

†
n with the Kraus

operators

K1 = √
p

(
1 0
0 1

)
, K2 = √

1 − p

(
1 0
0 −1

)
, 0 ≤ p ≤ 1.

Direct calculation shows that

Cα,1(φPF) =

1∑
i,β=0

〈iβ|Mα
φPF

|iβ〉 1
α − 1

α − 1
= 21− 1

α [pα + (1 − p)α] 1
α − 1

α − 1
. (13)

However, if we calculate the values of the coherence measure given in Eq. (10), we
can clearly see that C̃α,z (φPF) ≡ 0 regardless of the values of α and z. In fact, for any
pure state |ψ〉 = a|0〉 + b|1〉 with |a|2 + |b|2 = 1, we have

	 ◦ φPF(|ψ〉〈ψ |) = 	(φPF(|ψ〉〈ψ |))
= 	(K1(|ψ〉〈ψ |)K †

1 + K2(|ψ〉〈ψ |)K †
2 ),

where K1|ψ〉 = a
√
p|0〉 + b

√
p|1〉 and K2|ψ〉 = a

√
1 − p|0〉 − b

√
1 − p|1〉. It can

be shown that

φPF(|ψ〉〈ψ |) = |a|2|0〉〈0| + (2p − 1)ab̄|0〉〈1| + (2p − 1)bā|1〉〈0| + |b|2|1〉〈1|,
	 ◦ φPF(|ψ〉〈ψ |) = |a|2|0〉〈0| + |b|2|1〉〈1|,
φPF ◦ 	(|ψ〉〈ψ |) = φPF(|a|2|0〉〈0| + |b|2|1〉〈1|) = |a|2|0〉〈0| + |b|2|1〉〈1|,

which implies that C̃α,z(φPF) = 0.
InFig. 1,weplot the surfaces of C̃α,z(φPF) andCα,1(φPF)given inEqs. (10) and (13).

By calculation, it is found that lim
α→1

Cα,1(φPF) = ln2+ plnp+ln (1 − p)− pln (1 − p),
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Fig. 1 Surfaces of C̃α,z(φPF)

and Cα,1(φPF). The blue (red)
surface represents the values of
C̃α,z(φPF) (Cα,1(φPF)) in Eq.
(10) (Eq. 13)

which reaches its minimum value 0 when p = 1
2 , and reaches its maximum value ln2

when p = 0. When α = 1
2 , C 1

2 ,1(φPF) = 1 − 2
√
p(1 − p). Its minimum value 0 is

obtained when p = 1
2 and its maximum value 1 is obtained when p = 0. It can be

shown that Cα,1(φPF) ≥ C̃α,z(φPF) when α ∈ (0, 1) ∪ (1, 2], 0 ≤ p ≤ 1.

Example 2 Consider the depolarizing channel φD(ρ) =
4∑

n=1
KnρK

†
n with the Kraus

operators

K1 =
√
1 − 3

4
p

(
1 0
0 1

)
, K2 =

√
p

2

(
0 1
1 0

)
,

K3 =
√
p

2

(
0 −i
i 0

)
, K4 =

√
p

2

(
1 0
0 −1

)
, 0 ≤ p ≤ 1.

Hence, Cα,1(φ) defined in Eq. (8) is given by

Cα,1(φD) =

1∑
i,β=0

〈iβ|Mα
φD

|iβ〉 1
α − 1

α − 1
=

2

[
pα

22α+1 +
(
1− 3

4 p
)α

2

] 1
α

+ p
2 − 1

α − 1
. (14)

Similar to the phase flip channel, C̃α,z (φD) ≡ 0 regardless of the values of α and z.
In Fig. 2,we plot the surfaces of C̃α,z(φD) andCα,1(φD) in Eqs. (10) and (14).Direct

calculation shows that lim
α→1

Cα,1(φD) = 1
4 [(4−3p)ln(4−3p)+2(p−2)ln(2− p)+

plnp], which reaches its minimum value 0 when p = 1, and reaches its maximum

value ln2 when p = 0. When α = 1
2 , we have C 1

2 ,1(φD) = 1 −
√
p(4−3p)+p

2 . Its
minimum value 0 is attained when p = 1, and its maximum value of 1 is attained
when p = 0. It can be found that Cα,1(φD) ≥ C̃α,z(φD) when α ∈ (0, 1) ∪ (1, 2],
0 ≤ p ≤ 1.
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Fig. 2 Surfaces of C̃α,z(φD) and
Cα,1(φD). The blue (red)
surface represents the values of
C̃α,z(φD) (Cα,1(φD)) in Eq.
(10) (Eq. 14)

Fig. 3 Surfaces of C̃α,z(φAD)

and Cα,1(φAD). The blue (red)
surface represents the values of
C̃α,z(φAD) (Cα,1(φAD)) in Eq.
(10) (Eq. 15)

Example 3 Consider the amplitude damping channel φAD(ρ) =
2∑

n=1
KnρK

†
n with the

Kraus operators

K1 =
(
1 0
0

√
1 − p

)
, K2 =

(
0

√
p

0 0

)
, 0 ≤ p ≤ 1.

It follows from Eq. (8) that

Cα,1(φAD) =

1∑
i,β=0

〈iβ|Mα
φAD

|iβ〉 1
α − 1

α − 1
=

(
1
2 + 1

2 (1 − p)
1
α

)
(2 − p)1− 1

α + p
2 − 1

α − 1
.

(15)

Similarly, C̃α,z (φAD) ≡ 0 regardless of the values of α and z.
In Fig. 3, we plot the surfaces of C̃α,z(φAD) and Cα,1(φAD) in Eqs. (10) and (15). It

is found that lim
α→1

Cα,1(φAD) = 1
2 [(p−1)ln(1− p)−(p−2)ln(2− p)]. lim

α→1
Cα,1(φAD)

reaches its minimum value 0 when p = 1. lim
α→1

Cα,1(φAD) reaches its maximum value

ln2 when p = 0. When α = 1
2 , we have C 1

2 ,1(φAD) = 2p−2
p−2 . Its minimum value 0

is obtained when p = 1 and its maximum value 1 is obtained when p = 0. It can be
shown that Cα,1(φAD) ≥ C̃α,z(φAD) when α ∈ (0, 1) ∪ (1, 2], 0 ≤ p ≤ 1.

123



100 Page 12 of 23 J. Fan et al.

Example 4 Consider the isotropic channel φ� for t ∈ [ −1
d2−1

, 1] [53]

φ�(ρ) = tUρU † + (1 − t)
Id

d
, (16)

where U is an unitary operation, Id is d × d identity matrix, and d is the dimension

of the Hilbert space. In particular, taking U = H , where H = 1√
2

(
1 1
1 −1

)
is the

Hadamard gate, we have

φH
� (ρ) = t HρH† + (1 − t)

I2

2
=

5∑
n=1

KnρK
†
n , − 1

3
≤ t ≤ 1, (17)

where I2 is 2 × 2 identity matrix, and

K1 = √
t H =

√
t

2

(
1 1
1 −1

)
, K2 =

√
1 − t

2
X =

√
1 − t

2

(
0 1
1 0

)
,

K3 =
√
1 − t

2
Y =

√
1 − t

2

(
0 −i
i 0

)
, K4 =

√
1 − t

2
Z =

√
1 − t

2

(
1 0
0 −1

)
,

K5 =
√
1 − t

2
I2 =

√
1 − t

2

(
1 0
0 1

)
.

By Eq. (8), it can be easily deduced that

Cα,1(φ
H
� ) =

1∑
i,β=0

〈iβ|Mα

φH
�

|iβ〉 1
α − 1

α − 1
= 4− 1

α [3(1 − t)α + (1 + 3t)α] 1
α − 1

α − 1
. (18)

According to Eq. (18), we obtain

lim
α→1

Cα,1(φ
H
� ) = 3(1 − t)ln(1 − t) + (1 + 3t)ln(1 + 3t)

4
, (19)

C 1
2 ,1(φ

H
� ) = 3t − 5

4
− 3

4

√
(1 − t)(1 − 3t) + 2. (20)

Set α = 1
2 and z = 1. Then,

C̃ 1
2 ,1(φ

H
� ) = sup

|ψ〉
D 1

2 ,1(φ
H
� ◦ 	(|ψ〉|〈ψ |),	 ◦ φH

� (|ψ〉|〈ψ |)),
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where

D 1
2 ,1

(
φH

� ◦ 	(|ψ〉|〈ψ |),	 ◦ φH
� (|ψ〉|〈ψ |)

)

= − 2
[
f 21
2 ,1

(
φH

� ◦ 	(|ψ〉|〈ψ |),	 ◦ φH
� (|ψ〉|〈ψ |)

)
− 1

]

= − 2

[[
Tr

(
(φH

� ◦ 	(|ψ〉|〈ψ |)) 1
2 (	 ◦ φH

� (|ψ〉|〈ψ |)) 1
2

)]2 − 1

]

= − 2

[(
1 +

√
1 − 4t2Re2(ab∗)

)(
1

4
+ 1

4

√
1 − t2(|a|2 − |b|2)2

)
− 1

]

≤ − 2

[(
1 +

√
1 − 4t2|a|2|b|2

) (
1

4
+ 1

4

√
1 − t2(|a|2 − |b|2)2

)
− 1

]

≤ − 2

[(
1 +

√
1 − t2

)(
1

4
+ 1

4

√
1 − t2(|a|2 − |b|2)2

)
− 1

]

≤ − 2

[(
1 +

√
1 − t2

)(
1

4
+ 1

2
|a||b|

)
− 1

]

≤ − 2|a||b|
(
1 +

√
1 − t2

)
+ 2

≤1 −
√
1 − t2.

The above inequalities hold due to the facts that 0 ≤ |a|2|b|2 ≤ 1
4 and (|a|2−|b|2)2 =

1− 4|a|2|b|2. It follows from item (i) that C̃ 1
2 ,1(φ

H
� ) ≤ 1− √

1 − t2. Meanwhile, for

the classical pure state |0〉 or |1〉, the maximum value of D 1
2 ,1(	◦φH

� (ρ), φH
� ◦	(ρ))

can be obtained directly. It is easy to see that

D 1
2 ,1(	 ◦ φH

� (|0〉〈0|), φH
� ◦ 	(|0〉〈0|)) = 1 −

√
1 − t2.

Thus, we get

C̃ 1
2 ,1(φ

H
� ) = 1 −

√
1 − t2. (21)

According to the above results, it is found that C̃α,z(φ
H
� ) is not an incoherent channel

when α = 1
2 and z = 1.

Setting t = 1 in Eq. (17), φH
� becomes the unitary channel φH induced by the

Hadamard gate H . Then, it follows from Eq. (18) that

Cα,1(φH ) =

1∑
i,β=0

〈iβ|Mα
φH

|iβ〉 1
α − 1

α − 1
= 41− 1

α − 1

α − 1
. (22)

According to Eq. (22), we obtain that lim
α→1

Cα,1(φH ) = ln4 and C 1
2 ,1(φH ) = 3

2 . From

the deduction of C̃ 1
2 ,1(φ

H
� ), we can also infer that C̃ 1

2 ,1(φH ) = 1 by letting t = 1.
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Fig. 4 The values ofC 1
2 ,1(φ

H
� ) and C̃ 1

2 ,1(φ
H
� ). The blue (orange) curve represents the values ofC 1

2 ,1(φ
H
� )

(C̃ 1
2 ,1(φ

H
� )) in Eq. (20) (Eq. 21)

It can be seen that C 1
2 ,1(φ

H
� ) ≥ C̃ 1

2 ,1(φ
H
� ) holds when − 1

3 ≤ t ≤ 1. And as a

special case of t = 1, we get C 1
2 ,1(φH ) ≥ C̃ 1

2 ,1(φH ). In Fig. 4, we plot the values of

C 1
2 ,1(φ

H
� ) and C̃ 1

2 ,1(φ
H
� ) in Eqs. (20) and (21).

Example 5 Consider the unitary channels φS and φT induced by the phase gate S and
π
8 gate T , i.e., φS(ρ) = SρS† and φT (ρ) = TρT †, where

S =
(
1 0
0 i

)
and T =

(
1 0

0 e
iπ
4

)
.

By Eq. (8), we have Cα,1(φS) = Cα,1(φT ) = 21− 1
α −1

α−1 . It is obvious that
lim
α→1

Cα,1(φS) = lim
α→1

Cα,1(φT ) = ln2, and C 1
2 ,1(φS) = C 1

2 ,1(φT ) = 1. By Eq. (10),

we obtain C̃α,z(φS) = C̃α,z(φT ) = 0. Note that the two quantifiers of the coherence
Cα,1(·) and C̃α,1(·) for the quantum channels induced by S and T are the same.

From Examples 4 and 5, it can be seen that C 1
2 ,1(φ) > C̃ 1

2 ,1(φ), where φ is the
unitary channel induced by H , S or T .

The above results are based on the channels of single qubits.We now turn to discuss
the channels of entangled qubits. The corresponding Choi–Jamiołkowski states for the
channels of entangled qubits are too complicated to be calculated for general two-qubit
unitaries. For simplicity, we take S ⊗ S and T ⊗ T .

Example 6 Consider the unitary channels φS⊗S andφT⊗T induced by S⊗S and T ⊗T ,
i.e., φS⊗S(ρAB) = (S ⊗ S)ρAB(S ⊗ S)† and φT⊗T (ρAB) = (T ⊗ T )ρAB(T ⊗ T )†,
where S is the phase gate and T is the π

8 gate defined in Example 5.
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Table 1 Comparisons of the values of Cα,1(φ) defined in Eq. (8) with α → 1 and α = 1
2 and C̃α,z(φ)

defined in Eq. (10)

Channels pmax max lim
α→1

Cα,1(φ) pmin min lim
α→1

Cα,1(φ) C̃α,z(φ)

φPF 0 ln2 1
2 0 0, ∀α, z

φD 0 ln2 1 0 0, ∀α, z

φAD 0 ln2 1 0 0, ∀α, z

Channels pmax maxC 1
2 ,1(φ) pmin minC 1

2 ,1(φ) C̃α,z(φ)

φPF 0 1 1
2 0 0, ∀α, z

φD 0 1 1 0 0, ∀α, z

φAD 0 1 1 0 0, ∀α, z

The first column represents the channels, pmin and pmax represent the values of p where the maximum and
minimumvalues are attained, respectively.max lim

α→1
Cα,1(φ) andmin lim

α→1
Cα,1(φ) represent themaximum

and minimum values of lim
α→1

Cα,1(φ), respectively, while maxC 1
2 ,1(φ) and minC 1

2 ,1(φ) represent the

maximum and minimum values of C 1
2 ,1(φ), respectively. The last column represents the values of C̃α,z(φ)

defined in Eq. (10)

By Eq. (8), it follows that

Cα,1(φS⊗S) = Cα,1(φT⊗T ) = 41− 1
α − 1

α − 1
. (23)

It is obvious that lim
α→1

Cα,1(φS⊗S) = lim
α→1

Cα,1(φT⊗T ) = ln4, and C 1
2 ,1(φS⊗S) =

C 1
2 ,1(φT⊗T ) = 3

2 . On the other hand, by using Eq. (10) we obtain C̃α,z(φS⊗S) =
C̃α,z(φT⊗T ) = 0.

It can be found from Table 1 that under the three quantum channels φPF, φD and
φAD, for either α → 1 or α = 1

2 , Cα,1(φ) ≥ C̃α,1(φ) and Cα,1(φ) reaches the
maximum value when p = 0. The minimum values 0 are attained at the same p for
each quantum channel φPF, φD and φAD. The coherence of φPF, φD and φAD have
the same maximum values ln2 when α → 1, and the same maximum values 1 when
α = 1

2 .

5 Conclusion

Utilizing the coherence measure of quantum states induced by the generalized α-z-
relativeRényi entropy,we have studied the quantifications of the coherence of quantum
channels by using two different approaches. Following the idea in [45], we have intro-
duced a coherence measure of quantum channels by utilizing the Choi–Jamiołkowski
isomorphism. We have also verified that Cα,z (φ) defined in Eq. (7) is a well-defined
coherence measure. On the other hand, inspired by the idea in [52], we have presented
an alternative coherence measure by quantifying the commutativity between the chan-
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nels and the completely dephasing channels with the generalized α-z-relative Rényi
entropy. The extremal property, monotonicity and convexity of C̃α,z (φ) defined in Eq.
(10) have been explored in detail.

Furthermore, the coherence measures defined in Eqs. (8) and (10) have been calcu-
lated for some typical channels, respectively. Analytical formulas of Cα,1(φ) defined
in Eq. (8) for the phase flip channel, depolarizing channel and amplitude damping
channel have been derived and analyzed for the case of α → 1 and α = 1

2 . According
to Eq. (10), it can be found that φPF, φD and φAD are all incoherent channels. A table
has been presented to compare different values of coherence measures for φPF, φD

and φAD. In addition, we have also considered the unitary channels induced by three
quantum gates. The coherence measures defined in Eqs. (8) and (10) for isotropic
channels φH

� with t ∈ [− 1
3 , 1] induced by Hadamard gate have been derived. The

quantifiers defined in Eqs. (8) and (10) for unitary channel φH induced by Hadamard
gate have been deduced as a special case when t = 1. The unitary channels induced
by S gate and T gate are all incoherent channels according to Eq. (10), and they have
the same expressions of Cα,1(φ) as Eq. (8). Finally, we have calculated the coherence
of quantum channels induced by S⊗ S and T ⊗ T for entangled qubits, and presented
the analytical formulae of the coherence measures.

Detailed examples and numerical results show that Cα,1(φ) ≥ C̃α,1(φ) for specific
quantum channels φ, so we conjecture that Cα,1(φ) ≥ C̃α,1(φ) holds for any quantum
channel, while a rigorous proof is missing. Our results may shed some new light on
the exploration of quantification of coherence for quantum channels. The regime of
coherence quantifiers on the level of quantum channels needs further study in the
future.
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Appendix A. Calculation of C˛,1(�PF)

According to the Kraus operators of φPF given in Example 1, we have
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MφPF = (I2 ⊗ K1)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K1)

†

+ (I2 ⊗ K2)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K2)

†

= 1

2

⎛
⎜⎜⎝

1 0 0 2p − 1
0 0 0 0
0 0 0 0

2p − 1 0 0 1

⎞
⎟⎟⎠ ,

where I2 denotes the 2 × 2 identity matrix. Furthermore, we have

Mα
φPF

=

⎛
⎜⎜⎝

pα+(1−p)α

2 0 0 pα−(1−p)α

2
0 0 0 0
0 0 0 0

pα−(1−p)α

2 0 0 pα+(1−p)α

2

⎞
⎟⎟⎠ .

Based on Mα
φPF

, we get Cα,1(φPF) in Eq. (13) from Eq. (8).

Appendix B. Calculation of C˛,1(�D)

Direct calculation shows that

MφD = (I2 ⊗ K1)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K1)

†

+ (I2 ⊗ K2)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K2)

†

+ (I2 ⊗ K3)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K3)

†

+ (I2 ⊗ K4)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K4)

†

=

⎛
⎜⎜⎝

1
2 − p

4 0 0 1
2 − p

2
0 p

4 0 0
0 0 p

4 0
1
2 − p

2 0 0 1
2 − p

4

⎞
⎟⎟⎠ ,
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where I2 denotes the 2 × 2 identity matrix. Then,

Mα
φD

=

⎛
⎜⎜⎝

1
22α+1 p

α + 1
2

(
1 − 3

4 p
)α

0 0 1
2

(
1 − 3

4 p
)α − 1

22α+1 p
α

0 4−α pα 0 0
0 0 4−α pα 0

1
2

(
1 − 3

4 p
)α − 1

22α+1 p
α 0 0 1

22α+1 p
α + 1

2

(
1 − 3

4 p
)α

⎞
⎟⎟⎠ ,

from which we get Cα,1(φD) in Eq. (14) by using Eq. (8).

Appendix C. Calculation of C˛,1(�AD)

According to the Kraus operators of φAD given in Example 3, we have

MφAD = (I2 ⊗ K1)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K1)

†

+ (I2 ⊗ K2)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K2)

†

= 1

2

⎛
⎜⎜⎝

1 0 0
√
1 − p

0 0 0 0
0 0 p 0√

1 − p 0 0 1 − p

⎞
⎟⎟⎠ .

Then,

Mα
φAD

=

⎛
⎜⎜⎝

2−α (2 − p)α−1 0 0 2−α
√

(1 − p) (2 − p)α−1

0 0 0 0
0 0 2−α pα 0

2−α
√

(1 − p) (2 − p)α−1 0 0 2−α (1 − p) (2 − p)α−1

⎞
⎟⎟⎠ .

Utilizing Mα
φAD

, we derive the formulas of Cα,1(φAD) in Eq. (15) via Eq. (8).
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Appendix D. Calculation of C˛,1(�H
3)

Noting that

MφH
�

= (I2 ⊗ K1)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K1)

†

+ (I2 ⊗ K2)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K2)

†

+ (I2 ⊗ K3)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K3)

†

+ (I2 ⊗ K4)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K4)

†

+ (I2 ⊗ K5)

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I2 ⊗ K5)

† = 1

4

⎛
⎜⎜⎝

1 t t −t
t 1 t −t
t t 1 −t

−t −t −t 1

⎞
⎟⎟⎠ ,

where I2 denotes the 2 × 2 identity matrix, we have

Mα

φH
�

=4−1−α

⎛
⎜⎜⎝

3(1 − t)α + (1 + 3t)α −(1 − t)α + (1 + 3t)α −(1 − t)α + (1 + 3t)α (1 − t)α − (1 + 3t)α

−(1 − t)α + (1 + 3t)α 3(1 − t)α + (1 + 3t)α −(1 − t)α + (1 + 3t)α (1 − t)α − (1 + 3t)α

−(1 − t)α + (1 + 3t)α −(1 − t)α + (1 + 3t)α 3(1 − t)α + (1 + 3t)α (1 − t)α − (1 + 3t)α

(1 − t)α − (1 + 3t)α (1 − t)α − (1 + 3t)α (1 − t)α − (1 + 3t)α 3(1 − t)α + (1 + 3t)α

⎞
⎟⎟⎠ .

Making use ofMα

φH
�

, the quantity Cα,1(φ
H
� ) in Eq. (18) follows immediately from Eq.

(8).

Appendix E. Calculations of C˛,1(�S⊗S) and C˛,1(�T⊗T )

Direct calculation shows that
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MφS⊗S = (I4 ⊗ (S ⊗ S))

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j | ⊗ 1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I4 ⊗ (S ⊗ S))†

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 0 0 − 1

4 0 0 0 0 0 0 0 0 1
4 0 0 − 1

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
4 0 0 1

4 0 0 0 0 0 0 0 0 − 1
4 0 0 1

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 0 − 1

4 0 0 0 0 0 0 0 0 1
4 0 0 − 1

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
4 0 0 1

4 0 0 0 0 0 0 0 0 − 1
4 0 0 1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

MφT⊗T = (I4 ⊗ (T ⊗ T ))

⎛
⎝1

2

1∑
i, j=0

|i i〉〈 j j | ⊗ 1

2

1∑
i, j=0

|i i〉〈 j j |
⎞
⎠ (I4 ⊗ (T ⊗ T ))†

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 0 0 e−2iπ

4 0 0 0 0 0 0 0 0 1
4 0 0 e−2iπ

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e2iπ
4 0 0 1

4 0 0 0 0 0 0 0 0 e2iπ
4 0 0 1

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 0 e−2iπ

4 0 0 0 0 0 0 0 0 1
4 0 0 e−2iπ

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e2iπ
4 0 0 1

4 0 0 0 0 0 0 0 0 e2iπ
4 0 0 1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where I4 denotes the 4 × 4 identity matrix. Then,

Mα
φS⊗S

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 0 0 − 1

4 0 0 0 0 0 0 0 0 1
4 0 0 − 1

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
4 0 0 1

4 0 0 0 0 0 0 0 0 − 1
4 0 0 1

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 0 − 1

4 0 0 0 0 0 0 0 0 1
4 0 0 − 1

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

− 1
4 0 0 1

4 0 0 0 0 0 0 0 0 − 1
4 0 0 1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Mα
φT⊗T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 0 0 e−2iπ

4 0 0 0 0 0 0 0 0 1
4 0 0 e−2iπ

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e2iπ
4 0 0 1

4 0 0 0 0 0 0 0 0 e2iπ
4 0 0 1

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 0 e−2iπ

4 0 0 0 0 0 0 0 0 1
4 0 0 e−2iπ

4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e2iπ
4 0 0 1

4 0 0 0 0 0 0 0 0 e2iπ
4 0 0 1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

By Eq. (8), we can thus deduce Cα,1(φS⊗S) and Cα,1(φT⊗T ) in Eq. (23) based on
Mα

φS⊗S
and Mα

φT⊗T
.
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