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Abstract
Westudy continuous-time open quantumwalks in one dimension through amatrix rep-
resentation, focusing on nearest-neighbor transitions for which an associated weight
matrix exists. Statistics such as site recurrence are studied in terms of matrix-valued
orthogonal polynomials and explicit calculations are obtained for classes of Lindblad
generators that model quantum versions of birth-death processes. Emphasis is given
to the technical distinction between the cases of a finite or infinite number of ver-
tices. Recent results for open quantum walks are adapted in order to apply the folding
trick to continuous-time birth-death chains on the integers. Finally, we investigate the
matrix-valued Stieltjes transform associated to the weights.

Keywords Continuous-time open quantum walks · Matrix-valued orthogonal
polynomials · Stieltjes transform · Lindblad generator · Matrix representation

1 Introduction

Random walks have been a fundamental concept in the study of stochastic processes
and probability theory formany decades [1, 21, 26]. In the field of quantummechanics,
the concept of quantum walks has emerged as a robust tool for exploring quantum
systems’ behavior and dynamics [4, 25, 27]. Quantum walks can be categorized into
various types, and one particularly intriguing category is open quantumwalks (OQWs)
[4]. This process introduces the influence of the environment, which leads to a richer
set of dynamics and behaviors when compared to the classical random walks induced
by Markov chains, making them an exciting area of research in quantum information
and quantum computation. Continuous-time open quantum walks (CTOQWs) [24]
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represent a specific class of OQWs where the evolution of a quantum walker in a
graph is continuous and influenced by an initial quantum state.

Inspired by the classical birth–death processes (BDPs), this article develops a gen-
eralization from the perspective of CTOQWs, exploring promising valuable insights
into the behavior of quantumwalkers in systems that exhibit birth and death processes.
Introducing amatrix representation for the generator of aCTOQW,we apply the theory
ofmatrix orthogonal polynomials to tridiagonal blockmatrices. Thematrix orthogonal
polynomial approach provides a powerful framework for analyzing the representation
of those generators, enabling us to gain a deeper understanding of CTOQWs and their
connection to BDPs. This technique has been applied in the case of unitary quantum
walks, where the relevant orthogonal polynomials are described in terms of the theory
of CMVmatrices [9, 10]. Regarding the setting of open quantum dynamics [6, 8, 11],
the problem of obtaining orthogonal polynomials and associated weights is an inter-
esting one as well, although we would have to consider operators which are no longer
unitary. A first step in this direction has been discussed in [19], where a procedure
for obtaining weight matrices associated with open quantum walks (OQWs) [4] on
the half-line was described. In [13], it was studied the case of discrete-time quantum
Markov chains on the line, as defined by S. Gudder [17] and gave a collection of some
nontrivial examples where the spectral representation can be explicitly achieved.

Analogously to the references above, we can employ the matrix orthogonal poly-
nomial framework to explore various statistical aspects of CTOQWs, including
recurrence patterns and transition probabilities. We utilize the Stieltjes transform as
a key tool to analyze these statistics, offering an effective method to understand the
intricate dynamics of quantum walkers in quantum systems influenced by tridiagonal
block matrices. We are particularly interested in the recurrence of CTOQWs in this
work. A first step in this direction can be seen in [23].

Let us recall the classical BDPs. Birth–death processes on Z≥0 are continuous-
time Markov chains characterized by a set of birth–death rates {(λn, μn), n ≥ 0} such
that λn > 0, n ≥ 0, μn > 0, n ≥ 1 and μ0 ≥ 0 (see [2]). The transition function
P(t) = (Pi j (t)) satisfies the following conditions as t → 0+:

Pi j (t) =

⎧
⎪⎨

⎪⎩

λi t + o(t), if j = i + 1,

μi t + o(t), if j = i − 1,

1 − (λi + μi )t + o(t), if j = i .

The matrix corresponding to the infinitesimal operator associated with the process is
given by

A =

⎡

⎢
⎢
⎢
⎣

−(λ0 + μ0) λ0 0 0 · · ·
μ1 −(λ1 + μ1) λ1 0 · · ·
0 μ2 −(λ2 + μ2) λ2 · · ·
...

...
...

. . .
. . .

⎤

⎥
⎥
⎥
⎦

. (1)

Following the classical work of S. Karlin and J. McGregor [20, 21], we can apply
Favard’s Theorem to the Jacobi matrix (1) and assure the existence of a probability
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spectral measure ψ supported on [0,∞) associated with A. Moreover, if we define
the sequence of polynomials {Qn(x)}n≥0 by the three-term recurrence relation

Q0(x) = 1, Q−1(x) = 0,

−x Qn(x) = λn Qn+1(x) − (λn + μn)Qn(x) + μn Qn−1(x), n ≥ 0,

that is, −x Q(x) = AQ(x), where Q(x) = (Q0(x), Q1(x), . . .)T , then we have
that the polynomials {Qn(x)}n≥0 are orthogonal with respect to ψ . This provides
the so-called Karlin–McGregor formula which gives an integral representation of the
probability of reaching vertex j at time t given that the process started at vertex i , i.e.,
Pi j (t). This formula is given by

Pi j (t) =

∫ ∞

0
e−xt Qi (x)Q j (x)dψ(x)

∫ ∞

0
Q2

j (x)dψ(x)

.

The main purpose of this paper is to analyze the spectral representation of some
continuous-time open quantumwalks (CTOQWs) by using the basic theory of matrix-
valued orthogonal polynomials. The theory of orthogonal polynomials can be applied
to the open quantum walks through an appropriate matrix representation that rises
from the “vec” application, whose role is to stack a density matrix in a unique bigger
vector, and then a reversion of this application is made after an application of the
matrix representation (see [13, 19]).

This dynamic is described by a quantumMarkov semigroupwith a specificLindblad
generator and performs an evolution of the initial density operator. Roughly speaking,
the state at instant t can be described by a pair (Xt , ρt ) with Xt being the position
of the particle at time t , and ρt is the density operator describing the internal degrees
of freedom of the corresponding vertex. We concentrate our results on CTOQWs
whose vertices have all the same internal degrees of freedom, thereby the operators
that describe the Lindblad generator will be acting on the same Hilbert space, and the
matrices that describe the probability transitions will be squares.

The main result of this work is Eq. (20), which expresses a formula for the Stieltjes
transform of a CTOQW on the integer line in terms of Stieltjes transforms on the
integer half-line. This transform associates a weight with a real function, enables us
to evaluate the recurrence of CTOQWs, and offers a method for the construction of
matrix weights that influence the orthogonality of the polynomials. We remark that
this result is valid for any semigroup having a matrix representation of the form (9),
thus the folding trick is not retained to CTOQWs. For instance, we can also apply
those formulas to quasi-birth-and-death processes.

In Sect. 2, we review the “vec” representation for completely positive maps and
the matrix representation for maps of the form �(ρ) = Gρ + ρG∗, where G is the
part of the Lindblad generator which is not completely positive. In Sect. 3, we discuss
the model of CTOQWs and present its matrix representation. In Sect. 4, we recall
the concept of matrix-valued orthogonal polynomials and show how the recurrence of
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CTOQWs can be associated to the Stieltjes transform. Section 5 develops the matrix
representation for CTOQWs in the integer line, leading to the main result of this work,
Eq. (20), which associates the weight matrix of the walk in the half-line with the
walk on the integer line. Section 6 illustrates the results with examples, giving explicit
probabilities for different classes of Lindblad generators. In Sect. 1, an appendix is
dedicated to recalling properties related to the existence of a matrix weight associated
with the Lindblad generator.

2 General settings

LetH be a separable Hilbert space with inner product 〈 · | · 〉, whose closed subspaces
will be referred to as subspaces for short. The superscript ∗ will denote the adjoint
operator. TheBanach algebraB(H) of bounded linear operators onH is the topological
dual of its ideal I(H) of trace-class operators with trace norm

‖ρ‖1 = Tr(|ρ|), |ρ| = √
ρ∗ρ,

through the duality [3, Lec. 6]

〈ρ, X〉 = Tr(ρX), ρ ∈ I(H), X ∈ B(H). (2)

If dimH = k < ∞, then B(H) = I(H) is identified with the set of square matrices
of order k, denoted Mk(C). The duality (2) yields a useful characterization of the
positivity of an operator ρ ∈ I(H),

ρ ∈ I(H) : ρ ≥ 0 ⇔ Tr(ρX) ≥ 0, ∀X ∈ B(H), X ≥ 0,

and similarly for the positivity of X ∈ B(H). In this work, we assume that we have a
quantum particle walking either on the integer line, the integer half-line, or on a finite
segment, that is, we have that the set of vertices V is labeled by Z, Z≥0 or a finite set
{0, 1, . . . , N }, respectively. We will also call vertices sites. The state of the system is
described by a column vector

ρ =

⎡

⎢
⎢
⎢
⎣

ρ0
ρ1
ρ2
...

⎤

⎥
⎥
⎥
⎦

, ρi ∈ I(H), ρi ≥ 0,
∑

i∈V

Tr(ρi ) = 1.

The vector representation vec(A) of A ∈ Mk(C), given by stacking together its
rows, will be a useful tool. For instance,

A =
[

a11 a12
a21 a22

]

⇒ vec(A) :=

⎡

⎢
⎢
⎣

a11
a12
a21
a22

⎤

⎥
⎥
⎦ .
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Let B = [bi j ] for B = [bi j ], that is, the entries of B are the complex conju-
gate entries of B. The vec mapping satisfies vec(AX BT ) = (A ⊗ B) vec(X) for
any square matrices A, B, X , with ⊗ denoting the Kronecker product. In particu-

lar, vec(B X B∗) = vec(B X B
T
) = (B ⊗ B) vec(X), from which we can obtain the

matrix representation �̂ for a completely positive (CP) map
∑

i Bi · B∗
i when the

underlying Hilbert space H is finite-dimensional:

�̂ =
∑

i

�Bi�, �B� := B ⊗ B.

Here, the operators Bi are identified with some matrix representation. We have that
�B�∗ = �B∗�, where B∗ denotes the Hermitian transpose (also known as conjugate
transpose) of a matrix B. The same idea can be applied to maps of the form �(ρ) =
Gρ + ρG∗. On this case, the map � has matrix representation

�̂ = G ⊗ I + I ⊗ G.

For more details, we refer the reader to the reference [18].

3 Continuous-time open quantumwalks

An operator semigroup T on aHilbert spaceH is a family of bounded linear operators
(Tt ) acting on H, t ≥ 0, such that

Tt Ts = Tt+s, s, t ∈ R
+, T0 = IH.

If t �→ Tt is continuous for the operator norm of H, then T is said to be uniformly
continuous. This class of semigroups is characterized by the following result:

Theorem 1 ([7], page 161) The following assertions are equivalent for a semigroup
T on H :
(1) T is uniformly continuous;
(2) There exists a bounded operator L on H such that

Tt = et L , t ∈ R
+.

Further, if the conditions are satisfied, then

L = lim
t→0+

Tt − IH
t

.

The operator L is called the generator of T .

A trace-preserving semigroup T := (Tt )t≥0 of CP maps acting on I1(H), set of
trace-class operators on H, is called a Quantum Markov Semigroup (QMS) on
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I1(H). When limt→0 ||Tt − I d|| = 0, T has a generator L = limt→0+(Tt − Id)/t
(see [22]), which is a bounded operator on I1(H), also known as Lindblad operator.

We consider a finite or countable set of vertices V and then take the composite
system

H =
⊕

i∈V

hi ,

where each hi denotes a separable Hilbert space. The label i ∈ V is interpreted as
being the position of the walker and, when the walker is located at the vertex i ∈ V , its
internal state is encoded in the space hi , describing the internal degrees of freedom of
the particle when it is sitting at site i ∈ V . Since we will be considering only examples
with hi = h j for all i, j ∈ V , we let hi = h for every i ∈ V .

The set of diagonal density operators acting onH will be denoted by

D =
{
∑

i∈V

ρ(i) ⊗ |i〉〈i | : ρ(i) = ρ(i)∗, ρ(i) ≥ 0,
∑

i∈V

Tr(ρ(i)) = 1

}

.

Definition 1 ([24]) A Continuous-time Open Quantum Walk (CTOQW) is a uni-
formly continuous QMS on I1(H) with Lindblad operator of the form

L : I1(H) → I1(H)

ρ �→ −i[H , ρ] +
∑

i, j∈V

(

S j
i ρS j∗

i − 1

2
{S j∗

i S j
i , ρ}

)

, (3)

where, consistently with the notation, we write S j
i = R j

i ⊗ | j〉〈i | for bounded oper-

ators R j
i ∈ B(hi , h j ). Moreover, H and S j

i are bounded operators on H of the form

H = ∑
i∈V Hi ⊗ |i〉〈i |, Hi is self-adjoint on hi , S j

i is a bounded operator onH with
∑

i, j∈V S j∗
i S j

i converging in the strong sense. Also, [A, B] ≡ AB − B A is the com-
mutator between A and B and {A, B} ≡ AB + B A is the anti-commutator between
A and B.

Then, we have ρ = ∑
i∈V ρ(i) ⊗ |i〉〈i | ∈ D, etL(ρ) = Tt (ρ) = ∑

i∈V ρt (i) ⊗
|i〉〈i |,∀t ≥ 0, with

d

dt
ρt (i) = −i[Hi , ρt (i)] +

∑

j∈V

(

Ri
jρt ( j)Ri∗

j − 1

2
{R j∗

i R j
i , ρt (i)}

)

.

An alternative way to rewrite (3) is given by equation (18.7) in [5]:

L(ρ) =
∑

i∈V

⎛

⎝Giρ(i) + ρ(i)G∗
i +

∑

j∈V

Ri
jρ( j)Ri∗

j

⎞

⎠⊗ |i〉〈i |, (4)
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where

Gi = −i Hi − 1

2

∑

j∈V

R j∗
i R j

i .

Further, we will present the matrix representation for CTOQWs, and this will be
done by taking the representation given in Eq. (4).

The label i ∈ V represents the position of the walker and, when the walker is
located at i ∈ V , its internal state is encoded in hi , that is, hi describes the internal
degrees of freedom of the walker when it is at site i ∈ V .

Starting the walk on site |i〉 with initial density operator ρ ∈ S(hi ) =∑
i∈V ρ(i)|i〉〈i |, the quantum measurement of the position gives rise to a probability

distribution p0 on V , such that

p0(i) = P(the quantum particle is in site |i〉) = Tr(ρ(i))

and for evolution on time t ≥ 0,

pt (i) = P(the quantum particle, at time t, is in site |i〉) = Tr(ρt (i)),

where

etL(ρ) =
∑

i∈V

ρt (i) ⊗ |i〉〈i |.

The vector and matrix representation of states and CP maps may be easily adapted
to CTOQWs. In fact, since any element of I1(H) is block diagonal, when dimH < ∞,
it may be represented by combining the vector representations of the finite diagonal
blocks,

ρ =
∑

i∈V

ρi ⊗ |i〉〈i | ⇒ −→ρ :=
⎡

⎢
⎣

vec(ρ1)
vec(ρ2)

...

⎤

⎥
⎦ .

The CTOQW (4) admits the block matrix representation

−−−→
etL(ρ) = etL̂ −→ρ , L̂ =

⎡

⎢
⎢
⎢
⎣

G0 + �B00� �B01� �B02� · · ·
�B10� G1 + �B11� �B12� · · ·
�B20� �B21� G2 + �B22� · · ·

...
...

...
. . .

⎤

⎥
⎥
⎥
⎦

,

where

Gi =
⎛

⎝−i Hi − 1

2

∑

j∈V

R j∗
i R j

i

⎞

⎠⊗ I + I ⊗
⎛

⎝i Hi − 1

2

∑

j∈V

R j∗
i R j

i

⎞

⎠ .
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Wewill often identify the Lindblad generatorLwith its blockmatrix representation
and omit the hat, as the usage of such object will be clear from the context. Also, we
will sometimes write X instead of �X� in contexts where no confusion arises.

It is worth noting that although the above definitions concern CTOQWs on general
graphs, in this paper,wewill deal exclusivelywith the one-dimensional situationwhich
we may also call the quantum birth–death process, and represent the generator by

L̂ =

⎡

⎢
⎢
⎢
⎣

B0 C1
A0 B1 C2

A1 B2 C3
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

,

for certain operators Ai , Bi , Ci , and the remaining operators being equal to zero. The
above representation is for a quantum particle walking on the integer half-line Z≥0,
but we will also study examples acting on a finite set {0, 1, . . . , N } or the integer line
Z.

4 Matrix-valued orthogonal polynomials

In this section, we introduce the Karlin–McGregor Formula for CTOQW with set of
vertices of the forms V = {0, 1, 2, . . . , N } and V = Z+ = {0, 1, 2 . . .}. Then, we will
be able to give a recurrence criterion for vertex |0〉 based on the Stieltjes transform of
the associated weights.

Following [14], we pick d ∈ {1, 2, 3, . . .}, (An)n≥0, (Bn)n≥0, and (Cn)n≥1, such
that the block tridiagonal matrix

L̂ =

⎡

⎢
⎢
⎢
⎣

B0 C1
A0 B1 C2

A1 B2 C3
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

(5)

represents a Lindblad generator of a CTOQW �. Then, define recursively the associ-
ated matrix-valued polynomials from the matrix L̂ on (5) by

Q0(x) =Id , Q−1(x) = 0d

−x Qn(x) =Qn+1(x)An + Qn(x)Bn + Qn−1(x)Cn, n = 0, 1, 2, . . . ,
(6)

that is, Q(x) = (Q0(x), Q1(x), . . .) are solutions of the equation−x Q(x) = Q(x)L̂.

Here, we denote Id and 0d the identity and the null matrix of dimension d × d.

We recall that �′
t = L̂�t , where �t = etL̂ and define the two-variable function

f (x, t) = Q(x)�t , x ∈ C, t ∈ [0,∞).
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One has

∂ f (x, t)

∂t
= Q(x)�′

t = Q(x)L̂�t = −x Q(x)�t = −x f (x, t), f (x, 0) = Q(x),

whose solution is f (x, t) = e−xt Q(x). Hence, e−xt Q(x) = Q(x)�t . Component-
wise,

e−xt Qi (x) =
∞∑

k=0

Qk(x)�ki (t), (7)

where �ki (t) is the (k, i)-th block of �(t).
If there exists a weight matrix 	 such that the matrix-valued polynomials

{Qn(x)}n≥0 are orthogonal with respect to 	, in the following sense

∫

Q∗
j (x)d	(x)Qi (x) = δ j i Fi , det(Fi ) �= 0,

then multiplying on the left side of (7) by Q∗
j (x) and integrating with respect to 	,

we obtain
∫

R

e−xt Q∗
j (x)d	(x)Qi (x) =

∫

R

Q∗
j (x)d	(x)Q j (x)� j i (t),

therefore for any i, j ∈ V , we have theKarlin–McGregor Formula for CTOQWs:

� j i (t) =
(∫

Q∗
j (x)d	(x)Q j (x)

)−1 (∫

e−xt Q∗
j (x)d	(x)Qi (x)

)

, (8)

�(t) = (� j i (t)) j,i=0,1,.... For more details about how to construct this formula, see
[14].

Sometimes, we will write (8) as

� j i (t) = � j

(∫

e−xt Q∗
j (x)d	(x)Qi (x)

)

, � j :=
(∫

Q∗
j (x)d	(x)Q j (x)

)−1

.

Let p ji;ρ(t) represent the probability of reaching site | j〉 at instant t , given that we
started at site |i〉 with initial density ρ concentrated at i . Then,

p ji;ρ(t) = Tr
[
vec−1 (� j i (t)vec(ρ)

)]

= Tr

[

vec−1
(

� j

∫

e−xt Q∗
j (x)d	(x)Qi (x)vec(ρ)

)]

.

For simplicity, we write the transition probabilities by

p ji;ρ(t) = Tr

[

� j

∫

e−xt Q∗
j (x)d	(x)Qi (x)ρ

]

123
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in contexts where no confusion arises.
Consider a CTOQW with set of vertices V . Given |i〉 ∈ V and ρ ∈ S(hi ), we say

that |i〉 is ρ-recurrent if

∫ ∞

0
pii;ρ(t)dt = ∞.

When |i〉 is recurrent for all densities, then we say that |i〉 is recurrent. This concept
is associated with the weight matrices by the following theorem.

Theorem 2 Consider a tridiagonal CTOQW on Z≥0 = {0, 1, 2, . . .} and let 	 be its
associated weight matrix. Vertex | j〉 is ρ-recurrent if and only if

lim
λ→0

Tr

[

� j

∫

C

Q∗
j (x)d	(x)Qi (x)

λ + x
ρ

]

= ∞.

Proof For each pair i, j ∈ V , we have

∫ ∞

0
p ji;ρ(t)dt = lim

λ→0

∫ ∞

0
e−λt p ji;ρ(t)dt

= lim
λ→0

∫ ∞

0
e−λtTr

[

� j

∫

C

e−xt Q∗
j (x)d	(x)Qi (x)ρ

]

dt

= lim
λ→0

Tr

[

� j

∫

C

(∫ ∞

0
e−(λ+x)tdt

)

Q∗
j (x)d	(x)Qi (x)ρ

]

= lim
λ→0

Tr

[

� j

∫

C

Q∗
j (x)d	(x)Qi (x)

λ + x
ρ

]

.

��
We recall the Stieltjes transform associated with 	 :

B(z, 	) =
∫

C

d	(x)

z − x
,

thus we obtain the straightforward consequence of Theorem 2:

Corollary 1 Consider a tridiagonal CTOQW on Z≥0 = {0, 1, 2, . . .} and let 	 be its
associated weight matrix. Vertex |0〉 is ρ-recurrent if and only if

− lim
z→0

Tr [�0B(z, 	)ρ] = ∞.

It is crucial to note that not all polynomials induced by block tridiagonal matrices
are orthogonalizable under any matrix weight. The nontrivial nature of establishing
orthogonality in this context necessitates a discerning criterion for the existence of
such weights. Within the framework of Sect. 1, the appendix recalls a criterion for
the orthogonality of polynomials induced by block tridiagonal matrices, and a precise
expression for a specific type of weight.
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5 Walks on Z: the folding trick

Consider the generator of a tridiagonal CTOQW on Z, given by

L̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

. . .
. . .

. . . G−2 + �B−2� �C−1�
�A−2� G−1 + �B−1� �C0�

�A−1� G0 + �B0� �C1�
�A0� G1 + �B1� �C2�

�A1� G2 + �B2� �C3�
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

,

(9)

where all blocks are matrices of order d2, thus dim(h) = d.

We assume that there exists a sequence of d2 ×d2 Hermitian matrices (En)n∈Z and
nonsingular matrices (Rn)n∈Z such that

�An�∗ R∗
n+1Rn+1 = R∗

n Rn�Cn+1�, n ≥ 0

R∗−n−1R−n−1�C−n� = �A−n−1�∗ R∗−n R−n, n ≥ 0,
Rn(Gn + �Bn�) = En Rn, n ∈ Z.

(10)

Consider the two independent families of matrix-valued polynomials defined recur-
sively from (9) as

Q1
0(x) = Id2 , Q2

0(x) = 0d2 ,

Q1−1(x) = 0d2 , Q2−1(x) = Id2 ,

−x Qα
n (x) = Qα

n+1(x)�An� + Qα
n (x)(Gn + �Bn�) + Qα

n−1(x)�Cn�, α = 1, 2, n ∈ Z,

(11)

where we have the block vector Qα(x) =
(

. . . , Qα−2(x), Qα−1(x), Qα
0 (x), Qα

1 (x),

Qα
2 (x), . . .

)

, α = 1, 2, satisfying −x Qα(x) = Qα(x)L̂.
As in the classical case, we introduce the block tridiagonal matrix

L̆ =

⎡

⎢
⎢
⎢
⎣

D0 N1
M0 D1 N2

M1 D2 N3
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

,
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Fig. 1 Generator L̂ of a CTOQW on Z

Fig. 2 Folded walk of L̂ on Z≥0 × {1, 2} given by L̆

where each block entry is a 2d2 × 2d2 matrix, given by

D0 =
[
G0 + �B0� �A−1�

�C0� G−1 + �B−1�
]

, Mn =
[�An� 0

0 �C−n−1�
]

, n ≥ 0,

Dn =
[
Gn + �Bn� 0

0 G−n−1 + �B−n−1�
]

, Nn =
[�Cn� 0

0 �A−n−1�
]

, n ≥ 1.

The term folding trick comes from the transformation of the original generator L̂,
whose graph is represented in Fig. 1,

to the generator described by L̆, which is represented by the folded walk in Fig. 2.
Note that L̆ is a block tridiagonal matrix onZ≥0, thereby we can apply all the prop-

erties we have seen in previous sections. The following 2d2×2d2 matrix polynomials
are defined in terms of (11),

Qn(x) =
[

Q1
n(x) Q1−n−1(x)

Q2
n(x) Q2−n−1(x)

]

, n ≥ 0, (12)

and these satisfy

xQ0(x) =Q1(x)M0 + Q0(x)D0, Q0(x) = I2d2 ,

xQn(x) =Qn+1(x)Mn + Qn(x)Dn + Qn−1(x)Nn, n = 1, 2, . . .
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The leading coefficient of Qn(x) is always a nonsingular matrix. Moreover, for

R̆n :=
[

Rn 0d2

0d2 R−n−1

]

, n ≥ 0, Ĕ0 :=
[

E0 R0�A−1�R−1
−1

R−1�C0�R−1
0 E−1

]

,

Ĕn :=
[

En 0d2

0d2 E−n−1

]

, n ≥ 1,

we see that the block matrices of L̆ satisfy the conditions (10) for n ≥ 0 :

M∗
n R̆∗

n+1 R̆n+1 = R̆∗
n R̆n Nn+1, R̆n Dn = Ĕn R̆n,

where matrices R̆n are nonsingular and Ĕn are Hermitian for all n ≥ 0. Defining

�̆ j := R̆∗
j R̆ j ∈ M2d2(C), j = 0, 1, 2, . . . ,

and using Eq. (28) to note that

� j = R∗
j R j ∀ j ∈ Z,

we obtain the correspondence between �̆ j and � j :

�̆ j :=
[
� j 0d2

0d2 �− j−1

]

, j = 0, 1, 2, . . .

By [14], there exists a weight matrix W leading to the Karlin–McGregor formula for

�̆ = etL̆ :

�̆ j i (t) = �̆ j

∫

R

e−xtQ∗
j (x)dW (x)Qi (x). (13)

Once we have found the weight matrix appearing on (13), we can also obtain the
blocks � j i (t) of the original walk generated by L̂. The key for this operation is the
following proposition:

Proposition 1 Assume that L̂ is the generator of a CTOQW of the form (9). The relation
between �̆ j i (t) and � j i (t) is

�̆ j i (t) =
[

� j i (t) � j,−i−1(t)
�− j−1,i (t) �− j−1,−i−1(t)

]

, i, j ∈ Z≥0. (14)

Proof First, we use [13, Proposition 7.1] (replace �̆
(n)
j i and �̂

(n)
j i by L̆n

ji and L̂n
ji ,

respectively) to obtain that

L̆n
ji =

[
L̂n

ji L̂n
j,−i−1

L̂n
− j−1,i L̂n

− j−1,−i−1

]

, i, j ∈ Z≥0, for all n = 0, 1, 2, . . . ,
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hence we obtain for every i, j ∈ Z≥0 the expression

�̆ j i (t) = (etL̆) j i =
∞∑

n=0

tn

n! L̆
n
ji =

∞∑

n=0

tn

n!

[
L̂n

ji tnL̂n
j,−i−1

L̂n
− j−1,i L̂n

− j−1,−i−1

]

=
[

� j i (t) � j,−i−1(t)
�− j−1,i (t) �− j−1,−i−1(t)

]

.

��
Note that we can evaluate �̆ j i (t) by (13) and then extract the block � j i (t) as in

(14). Further, for a density operator ρ, we have

p ji;ρ(n) = Tr
(
� j i (t)ρ

) = Tr

([
� j i (t) 0

0 0

] [
ρ

0

])

= Tr

([
Id2 0
0 0

]

�̆ j i (t)

[
Id2 0
0 0

] [
ρ

0

])

.

However, we would like to obtain the probability above avoiding the evaluation of
�̆ j i (t). This can be done via a generalization of the Karlin–McGregor formula on
Z≥0. We proceed as follows: First, write the decomposition

dW (x) =
[
dW11(x) dW12(x)

dW21(x) dW22(x)

]

,

where dW21(x) = dW ∗
12(x), since dW (x) is positive definite. Then, one has for i, j ∈

Z≥0,

�̆ j i (t) = �̆ j

∫

R

e−xtQ∗
j (x)dW (x)Qi (x)

(12)=
[
� j 0d2

0d2 �− j−1

] ∫

R

e−xt

[
Q1

j (x) Q1− j−1(x)

Q2
j (x) Q2− j−1(x)

]∗ [
dW11(x) dW12(x)

dW ∗
12(x) dW22(x)

] [
Q1

i (x) Q1−i−1(x)

Q2
i (x) Q2−i−1(x)

]

=
2∑

α,β=1

[
� j

∫

R
e−xt Qα∗

j (x)dWαβ(x)Qβ
i (x) � j

∫

R
e−xt Qα∗

j (x)dWαβ(x)Qβ
−i−1(x)

�− j−1
∫

R
e−xt Qα∗− j−1(x)dWαβ(x)Qβ

i (x) �− j−1
∫

R
e−xt Qα∗− j−1(x)dWαβ(x)Qβ

−i−1(x)

]

.

Joining equation above and Proposition 1, we obtain the Karlin–McGregor formula
for a CTOQW on Z, given by

� j i (t) =
2∑

α,β=1

� j

∫

R

e−xt Qα∗
j (x)dWαβ(x)Qβ

i (x), for any i, j ∈ Z, n ≥ 0.

(15)

Conversely, if there exist weight matrices dW11(x), dW12(x), dW22(x) such that
� j i (t) is of the form (15), then �̆ j i (t) is of the form

�̆
(n)
j i = �̆ j

∫

R

e−xtQ∗
j (x)dW (x)Qi (x).
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The weight matrix

W (x) =
[

W11(x) W12(x)

W ∗
12(x) W22(x)

]

,

is called the spectral block matrix of L.

Remark 1 Extending Theorem 1 to the CTOQW on Z, we observe that since Q1
0 =

Q2−1 = Id and Q2
0 = Q1−1 = 0d , the following limits hold

∫ ∞

0
p00;ρ(t)dt = lim

z↑0 Tr [�0B(z; W11)vec(ρ)] ,

where B(z; W ) is the Stieltjes transform of the weight matrix W . Analogously,

∫ ∞

0
p−1,−1;ρ(t)dt = lim

z↑0 Tr
[
�−1B(z; W22)vec(ρ)

]
.

Let us write the matrix L̂ in the form

L̆ =
[
L̂− C
A L̂+

]

, C =
⎡

⎢
⎣

...
...

...

0 0 0 · · ·
�C0� 0 0 · · ·

⎤

⎥
⎦ , A =

⎡

⎢
⎢
⎢
⎣

· · · 0 0 �A−1�
· · · 0 0 0
· · · 0 0 0

...
...

...

⎤

⎥
⎥
⎥
⎦

,

L̆+ =

⎡

⎢
⎢
⎢
⎣

G0 + �B0� �C1�
�A0� G1 + �B1� �C2�

�A1� G2 + �B2� �C3�
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

,

L̆− =

⎡

⎢
⎢
⎢
⎣

G−1 + �B−1� �A−2�
�C−1� G−2 + �B−2� �A−3�

�C−2� G−3 + �B−3� �A3�
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

Our goal now is to write the Stieltjes transforms associated with the weight matrices
Wαβ, α, β = 1, 2, in terms of the Stieltjes transforms associated with W±, the weight
matrices associated with L̆±.

We introduce the generating function of L̂

�(s) :=
∞∑

n=0

snL̂n
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to obtain an explicit form for the Laplace transform of �(t) on the following way:

�̂ j i (t) =
∫ ∞

0
e−xt� j i (x)dx =

∞∑

n=0

∫ ∞

0
e−xt xn

n! L̂
n
jidx =

∞∑

n=0

t̂ n

n! L̂
n
ji

=
∞∑

n=0

L̂n
ji

tn+1 = � j i (t−1)

t
.

Using equations (48), (49), (50) and (51) of [13], applied to � j i (s−1) = s�̂ j i (s),
we obtain

�̂00(z) = �̂+
00(z)(I − �A−1��̂−

−1,−1(z)�C0��̂+
00(z))

−1. (16)

�̂−1,−1(z) = �̂−
−1,−1(z)(I − �C0��̂+

00(z)�A−1��̂−
−1,−1(z))

−1. (17)

�̂0,−1(z) = z−1�̂+
00(z)(I − �A−1��̂−

−1,−1(z)�C0��̂+
00(z))

−1�A−1��̂−
−1,−1(z).

(18)

�̂−1,0(z) = z−1�̂−
−1,−1(z)(I − �C0��̂+

00(z)�A−1��̂−1,−1(z))
−1�C0��̂+

00(z).

(19)

We notice that the block matrices of both L̆+ and L̆− satisfy the conditions of Eq.
(10), thus there are positive weight matrices W± associated with L̆± for which the
associated polynomials are orthogonal. Then, we can write

�+
0 :=

∫

R

dW+ and �−
−1 :=

∫

R

dW− .

The Laplace transform of � j i (t) can be associated with the Stieltjes transform
using that

�̂ j i (s) =
∫ ∞

0
e−ts� j i (t)dt =

∫ ∞

0
e−ts

(

� j

∫

R

e−xt Q∗
j (x)dW (x)Qi (x)dt

)

= � j

∫

R

Q∗
j (x)dW (x)Qi (x)

s + x
,

s > 0, that is,

�̂ j i (−s) = � j

∫

R

Q∗
j (x)dW (x)Qi (x)

x − s
, s < 0,

thereby we recall that Q1
0 = Q2−1 = Id2 , Q2

0 = Q1−1 = 0d2 in order to obtain the
relations

B(z; W11) = �−1
0 �̂00(−z), B(z; W22) = �−1

−1�̂−1,−1(−z), B(z−1; W12) = �−1
−1�̂0,−1(−z),

B(z; W21) = �−1
−1�̂−1,0(−z), B(z; W+) = (�+

0 )−1�̂+
00(−z), B(z−1; W−)
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= (�−
−1)

−1�̂−
−1,−1(−z).

Joining with the identities (16), (17), (18), (19), the new Stieltjes transform identities
are obtained:

�0B(z; W11) = �+
0 B(z; W+)(I − �A−1��−

−1B(z; W−)�C0��+
0 B(z; W+))−1,

�−1B(z; W22) = �−
−1B(z; W−)(I − �C0��+

0 B(z; W+)�A−1��−
−1B(z; W−))−1,

�0B(z; W12) = �+
0 B(z; W+)(I − �A−1��−

−1B(z; W−)�C0��+
0 B(z; W+))−1

�A−1��−
−1B(z; W−),

�−1B(z; W21) = �−
−1B(z; W−)(I − �C0��+

0 B(z; W+)�A−1��−
−1B(z; W−))−1

�C0��+
0 B(z; W+).

(20)

Sometimes the operators �+
i and �−

i are equal to the identity operator. In this case,
(20) are reduced to

B(z; W11) = B(z; W+)(I − �A−1�B(z; W−)�C0�B(z; W+))−1,

B(z; W22) = B(z; W−)(I − �C0�B(z; W+)�A−1�B(z; W−))−1,

B(z; W12) = B(z; W+)(I − �A−1�B(z; W−)�C0�B(z; W+))−1�A−1�B(z; W−),

B(z; W21) = B(z; W−)(I − �C0�B(z; W+)�A−1�B(z; W−))−1�C0�B(z; W+).

(21)

Equations (20) and (21) allow us to obtain the Stieltjes transform of the CTOQW
with V = Zwhen we know the Stieltjes transform associated to the walks onZ≥0 and
Z≤0. Since we are interested in the recurrence and transience of the CTOQWs, those
equations are enough to obtain this information as it will be seen on the next section.

Remark 2 A sufficient condition for �+
i = �−

i = I is to have An = C∗
n+1 and

Bn = B∗
n for every n ∈ Z, since we will always have Gn = G∗

n for all n ∈ Z in
this case, and therefore we can take Ri = I for all i ∈ Z (see Eq. (10)). On the other
hand, those conditions are not necessary, since we can find examples with Rn being
any unitary matrices for each n.

Most of our examples consider Ri
i = 0 for all i ∈ V . In this case the Hamiltonian

part does not contribute to the probabilities, as it will be seen as a consequence of the
following Proposition.Moreover, this Proposition gives equivalence to a condition that
the diagonal of the matrix representation of the generator has negative-semidefinite
matrices.

Proposition 2 Let us consider a tridiagonal CTOQW in Z≥0 (or a finite V ) satisfying
the conditions of Eq. (27). Then, Gn + �Bn� ≤ 0 if and only if

−Hn ⊗ I + I ⊗ Hn =

⎡

⎢
⎢
⎣

h(n)
11 . . . h(n)

1,d2

...
. . .

...

h(n)

d2,1
. . . h(n)

d2,d2

⎤

⎥
⎥
⎦ , h(n)

kk = −b(n)
kk ,
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h(n)
jk = −i

(
s(n)

jk − a(n)
jk − ib(n)

jk

)
, ∀ j, k, (22)

where

�Bn� =

⎡

⎢
⎢
⎣

a(n)
11 . . . a(n)

1,d2

...
. . .

...

a(n)

d2,1
. . . a(n)

d2,d2

⎤

⎥
⎥
⎦+ i

⎡

⎢
⎢
⎣

b(n)
11 . . . b(n)

1,d2

...
. . .

...

b(n)

d2,1
. . . b(n)

d2,d2

⎤

⎥
⎥
⎦ , a jk, b jk ∈ R ∀ j, k

and

Sn ⊗ I + I ⊗ Sn =

⎡

⎢
⎢
⎣

s(n)
11 . . . s(n)

1,d2

...
. . .

...

s(n)

d2,1
. . . s(n)

d2,d2

⎤

⎥
⎥
⎦ ∀ j, k, Sn := 1

2

(
A∗

n An + B∗
n Bn + C∗

n Cn
)
.

Proof Let us suppose that Tn := Gn + �Bn� for every n ≥ 0 satisfies the conditions
of Eq. (27).

Firstly, we suppose that Tn ≤ 0, thus there exists an orthonormal basis {v1, . . . , vd2}
of Cd2

constituted by eigenvectors of Tn with Tnvk = tkvk, k = 1, . . . , d2.

Denote Sn = 1
2

(
A∗

n An + B∗
n Bn + C∗

n Cn
)
to obtain

tkδ jk = tk〈v j , vk〉 =〈v j , (Gn + �Bn�)vk〉
=〈vk,

(−i Hn ⊗ I + i I ⊗ Hn − Sn ⊗ I − I ⊗ Sn + �Bn�) vk〉
=i 〈v j ,

(−Hn ⊗ I + I ⊗ Hn
)
vk〉

︸ ︷︷ ︸
F1, j,k

−〈v j ,
(
Sn ⊗ I + I ⊗ Sn

)
vk〉

︸ ︷︷ ︸
F2, j,k

+ 〈v j , �Bn�vk〉
︸ ︷︷ ︸

F3, j,k

.

We have F1,k,k, F2,k,k ∈ R, thus 〈vk,
(−Hn ⊗ I + I ⊗ Hn

)
vk〉 =

−I m(〈vk, �Bn�vk〉), thereby the entries of the diagonal of−Hn ⊗ I + I ⊗ Hn coincide
with the entries of the imaginary part of the diagonal of −�Bn�.

For j �= k, we have

i〈v j ,
(−Hn ⊗ I + I ⊗ Hn

)
vk〉 = 〈v j ,

(
S ⊗ I + I ⊗ S

)
vk〉 − 〈v j , �Bn�vk〉,

thus, denoting by [X ] jk the ( j, k)-th entry of a matrix X on the basis (vk)k, we obtain
the identity

i[−Hn ⊗ I + I ⊗ Hn] jk = [S ⊗ I + I ⊗ S − �Bn�] j,k, j �= k,

completing the first part of the proof.
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On the other hand, we suppose that there exists an orthonormal basis such that Eq.
(22) is valid. In this case, we have

[Tn]kk = ih(n)
kk − s(n)

kk + a(n)
kk + ib(n)

kk = −s(n)
kk + a(n)

kk < 0, ∀k,

and

[Tn] jk = ih(n)
jk − s(n)

jk + a(n)
jk + ib(n)

jk = i
(
−i

(
s(n)

jk − a(n)
jk − ib(n)

jk

))

−s(n)
jk + a(n)

jk + ib(n)
jk = 0 ∀ j �= k.

This shows that [Tn] is diagonal with respect to this orthonormal basis and its entries
are all real, thus it is Hermitian. ��
Corollary 2 Let us consider a tridiagonal CTOQW in Z≥0 (or a finite V ) with a positive
matrix weight associated with this CTOQW. Then, Hn = hn I for some hn ∈ R if and
only if Bn is Hermitian. In this case, Hn does not contribute to the probability of the
walk.

Proof We suppose that there exists a positive matrix weight associated with the
CTOQW, thus Eq. (22) is valid. We have that Bn is Hermitian if and only if

a(n)
jk + ib(n)

jk = a(n)
k j − ib(n)

k j ∀ j, k.

Thematrix−Hn⊗ I + I ⊗Hn is amultiple of the identity if and only if h(n)
jk = 0 ∀ j �= k

and h(n)
kk = h ∀k for some h ∈ R, where the second statement is valid by Proposition

2. Moreover,

h(n)
jk = 0 ⇔ s(n)

jk = a(n)
jk + ib(n)

jk ,

which is equivalent to have �Bn� to be Hermitian, since S is Hermitian. ��

6 Examples

6.1 Diagonal and simultaneously diagonalizable transitions

First, we will consider a homogeneous CTOQW on the N + 1 nodes indexed as
V = {0, 1, . . . , N }, where we add two absorbing barriers (| − 1〉, |N + 1〉) on the
extreme nodes, Ri

i = 0 for each site, and the generator L is given by

L̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G �C�
�A� G �C�

�A� G �C�
. . .

. . .
. . .

�A� G �C�
�A� G

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A =
[

a1 0
0 a2

]

, C =
[

c1 0
0 c2

]

, a1, a2, c2, c2 > 0,
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G = −diag

(

a2
1 + c21,

a2
1 + c21 + a2

2 + c22
2

,
a2
1 + c21 + a2

2 + c22, a2
2 + c22

2
, a2

2 + c22

)

.

The classical symmetrization

R = diag(R0, R1, . . . , RN ), Ri = K
i−1
2 , i = 1, . . . , N , R0 = I4,

where K = �√AC� = diag
(
a1c1,

√
a1c1a2c2,

√
a1c1a2c2, a2c2

)
, gives

J = RL̂R−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G K
K G K

K G K
. . .

. . .
. . .

K G K
K G

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The matrix-valued polynomials {Qn}n≥0 are recursively defined by

Q0(x) = 1, Q−1(x) = 0,

−x Q0(x) = Q0(x)G + Q1(x)K ,

−x Qi (x) = Qi+1(x)K + Qi (x)G + Qi−1(x)K , i = 1, . . . , N − 1,

which can be identified with the Chebyshev polynomials of the second kind {Un}n≥0.
Indeed, we have

Qn(x) = Un

(
(−x − G)K −1

2

)

, n ≥ 0.

Now, if we define

RN+1(x) := QN (x)(−x − G) − QN−1(x)K ,

we have that the zeros of det(RN+1(x)) coincide with the eigenvalues of−J . A simple
calculation shows that

RN+1(x) = UN+1

(
(−x − G)K −1

2

)

K .

We would like to solve the equation det(RN+1(x)) = 0. Recalling the representation

Un

( z

2

)
=

n∏

j=1

(

z − 2 cos

(
jπ

n + 1

))

,
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we obtain, for the matrix-valued case at hand,

det(RN+1(x)) = det

(

UN+1

(
(−x − G)K −1

2

)

K

)

= det

⎡

⎣
N+1∏

j=1

(

(−x I4 − G)K −1 − 2 cos

(
jπ

N + 2

))

K

⎤

⎦ ,

thus

det(RN+1(x)) = k1k22k4

N+1∏

j=1

4∏

m=1

[
(−x − gm)

km
− 2 cos

(
jπ

N + 2

)]

,

where we have put G = −diag(g1, g2, g3, g4) and K = −diag(k1, k2, k3, k4). Since
g2 = g3 and k2 = k3, det(RN+1(x)) is a polynomial of degree 4(N + 1) having
3(N + 1) distinct roots, which are of the form

x j = − g1 − 2k1 cos

(

π
j + 1

N + 2

)

= a2
1 + c21 − 2a1c1 cos

(

π
j + 1

N + 2

)

,

y j = − g2 − 2k2 cos

(

π
j + 1

N + 2

)

= √
a1c1a2c2 − (a2

1 + c21 + a2
2 + c22) cos

(

π
j + 1

N + 2

)

,

z j = − g4 − 2k4 cos

(

π
j + 1

N + 2

)

= a2
2 + c22 − 2a2c2 cos

(

π
j + 1

N + 2

)

, j = 0, . . . , N ,

each y j being of multiplicity 2. There can be cases of eigenvalues with a greater
multiplicity, which happens when the collection of zeros xN , yN and zN overlap, so
the multiplicity changes accordingly.

Let us compute the weight matrixes on the zeros above. We have

W j = g′
j (λ j ), g j (λ) := −(λ j − λ)2(−J − λI )−1

00 , λ j = x j , y j , z j , j = 0, . . . , N ,

(23)

an expression which can be deduced from (see [16])

(−J − λI )−1
i j =

N∑

k=0

P∗
i (λk)Wk Pj (λk)

λk − λ
,

and noting that this corresponds to the Laurent sum of the operator on the left-hand side
except for the sign change λk − λ = −(λ − λk). With formula (23), a calculation shows
that for every N , we have a corresponding set of multiples of the matrices given by

WK ;1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , WK ;2 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤

⎥
⎥
⎦ , WK ;3 =

⎡

⎢
⎢
⎣

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤

⎥
⎥
⎦ .
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More precisely, we have a collection of 3(N + 1) roots with weights

ψ(x j ) = 2

N + 2
sin2

(

π
j + 1

N + 2

)

WK ;1, j = 0, . . . , N ,

ψ(y j ) = 2

N + 2
sin2

(

π
j + 1

N + 2

)

WK ;2, j = 0, . . . , N .

ψ(z j ) = 2

N + 2
sin2

(

π
j + 1

N + 2

)

WK ;2, j = 0, . . . , N .

For a specific instance of the above take N = 2 (3 sites), so we have nine roots, with
weights

1

4
WK ;1,

1

4
WK ;2,

1

4
WK ;3

associatedwith zeros a2
1+c21−2a1c1,

√
a1c1a2c2−(a2

1+c21+a2
2+c22) and a2

2+c22−2a2c2
respectively; weights

1

2
WK ;1,

1

2
WK ;2,

1

2
WK ;3

associated with zeros a2
1 + c21 − √

2a1c1,
√

a1c1a2c2 − √
2(a2

1 + c21 + a2
2 + c22)/2 and

a2
2 + c22 − √

2a2c2 respectively; and weights

1

4
WK ;1,

1

4
WK ;2,

1

4
WK ;3

associated with zeros a2
1 + c21,

√
a1c1a2c2 and a2

2 + c22 respectively.

Now, let us consider the walk on the half-line.
We will consider a CTOQW whose set of vertices is V = {0, 1, 2, . . .} and the walker

can jump to its nearest neighbor; however, there is an absorbing barrier (|−1〉). Therefore,
this walk can be interpreted as a BDP in which the population may become extinct. The
matrix

L̂ =

⎡

⎢
⎢
⎢
⎣

G0 �C�
�A� G �C�

�A� G �C�
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

,

G = − 1
2 ((A∗ A + C∗C) ⊗ I2 + I2 ⊗ (A∗ A + C∗C))

G0 = − 1
2 ((A∗ A) ⊗ I2 + I2 ⊗ (A∗ A)) ,

is a valid generator of a CTOQW. Also,

G = −

⎡

⎢
⎢
⎢
⎣

a2
1 + c21 0 0 0

0
a21+c21+a22+c22

2 0 0

0 0
a21+c21+a22+c22

2 0
0 0 0 a2

2 + c22

⎤

⎥
⎥
⎥
⎦

,
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G0 = −

⎡

⎢
⎢
⎢
⎣

a2
1 0 0 0

0
a21+a22

2 0 0

0 0
a21+a22

2 0
0 0 0 a2

2

⎤

⎥
⎥
⎥
⎦

.

The CTOQWs of these first examples are entirely described by diagonal matrices;
therefore, the parameter b in the density matrix ρ has no influence on these random walks
with the specific transitions A and C .

If we take K := �(AC)�1/2, then we obtain the symmetrization

J = R(−L̂)R−1 =

⎡

⎢
⎢
⎢
⎣

−G0 K
K −G K

K −G K
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

,

where K is positive definite,

R = diag(R0, R1, . . . , RN ), Ri = �A−1C�i−1, i = 1, 2, 3, . . . , N , R0 = I4.

Let us obtain the weight matrix associated with J̃ ,

J̃ :=

⎡

⎢
⎢
⎢
⎣

−G K
K −G K

K −G K
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

,

using the results of A.J. Durán ( [15]).
Since G and K commute, it is easy to see that the matrix HA,B(x) given by [15] is

H(x) =(x I + G)2K −2 − 4I4 = (x I + G)2�AC�−1 − 4I4

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(x−a21−c21)
2

a21c21
− 4 0 0 0

0
(x− a21+c21+a22+c22

2 )2

a1a2c1c2
− 4 0 0

0 0
(x− a21+c21+a22+c22

2 )2

a1a2c1c2
− 4 0

0 0 0
(x−a22−c22)

2

a22c22
− 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The associated weight matrix to J̃ is

d	̃(x) = 1

2π
K −1

√
diag(h1, h2, h3, h4) = 1

2π

⎡

⎢
⎢
⎣

d1(x) 0 0 0
0 d2(x) 0 0
0 0 d3(x) 0
0 0 0 d4(x)

⎤

⎥
⎥
⎦ , (24)
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where h j represents the j-th diagonal entry of the diagonal appearing on the representation
of H(x) and

d1(x) =

[√

4a2
1c21 − (x − a2

1 − c21)
2

]

+
a2
1c21

, d4(x) =

[√

4a2
2c22 − (x − a2

2 − c22)
2

]

+
a2
2c22

d2(x) =d3(x) =

⎡

⎣

√

4a1a2c1c2 −
(

x − a21+c21+a22+c22
2

)2
⎤

⎦

+
2a1a2c1c2

.

Here, we are using the notation [ f (x)]+ = f (x) if f (x) ≥ 0 and 0 otherwise.
We are interested on the transitions of the CTOQW, thus only d1(x) and d4(x) contribute

for the calculus of the trace when we evaluate

Tr

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

d1(x) 0 0 0
0 d2(x) 0 0
0 0 d3(x) 0
0 0 0 d4(x)

⎤

⎥
⎥
⎦ vec(ρ)

⎞

⎟
⎟
⎠ ,

thereby we will avoid the massive calculations using terms as d2(x) and d3(x) appearing
on the sequel of this section.

The Stieltjes transform is

B(z, 	̃) = K −1
√
diag(h1, h2, h3, h4) =

⎡

⎢
⎢
⎣

w1(z) 0 0 0
0 w2(z) 0 0
0 0 w3(z) 0
0 0 0 w4(z)

⎤

⎥
⎥
⎦ , (25)

where w2(z) = w3(z) is a function that does not vanish and

w1(z) =
z − a2

1 − c21 − i
√

4a2
1c21 − (z − a2

1 − c21)
2

2a2
1c21

,

w4(z) =
z − a2

2 − c22 − i
√

4a2
2c22 − (z − a2

2 − c22)
2

2a2
2c22

.

Since the weight is obtained on the terms of [15], we must have �0 = I4, then we use
equation (2.20) of [14] to obtain the Stieltjes transform of the weight matrix associated
with J :

B(z, 	) =
(

B(z, 	̃)−1 + (G0 − G)
)−1 =

⎡

⎢
⎢
⎣

σ1(z) 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 σ2(z)

⎤

⎥
⎥
⎦ ,

123



Continuous-time open quantum walks in… Page 25 of 37 96

where

σ j (z) =
z − a2

j + c2j +
√

−4a2
j c

2
j + (z + a2

j + c2j )

2c2j z
, j = 1, 2.

It is a simple calculation to verify that limz↑0 σ j (z) = ∞ ⇔ a j ≤ c j , thus, given a

density operator ρ =
[

a b
b∗ 1 − a

]

, we have

lim
z↑0 Tr

[
vec−1�0 (B(z, 	)vec(ρ))

] = lim
z↑0 (π1σ1(z)a + π2σ2(z)(1 − a)) ,

whereπ1, π2 > 0.Therefore, if {|e0〉, |e1〉} is the canonical basis ofC2, then an application
of Corollary 1 shows that

• a1 ≤ c1 and a2 ≤ c2 ⇒ vertex |0〉 is recurrent;
• a1 ≤ c1 and a2 > c2 ⇒ vertex |0〉 is |e1〉〈e1|-transient and ρ-recurrent for ρ �=

|e1〉〈e1|;
• a1 > c1 and a2 ≤ c2 ⇒ vertex |0〉 is |e0〉〈e0|-transient and ρ-recurrent for ρ �=

|e0〉〈e0|;
• a1 > c1 and a2 > c2 ⇒ vertex |0〉 is transient.

The Perron–Stieltjes inversion formula (Proposition 1.1 of [12]) gives

d	(x) = 1

π

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[√

4a21c21−(x−a21−c21)
2

2c21x

]

+
0 0 0

0 ∗ 0 0
0 0 ∗ 0

0 0 0

[√

4a22c22−(x−a22−c22)
2

2c22x

]

+

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

thus an application of the Karlin–McGregor formula for CTOQWs gives for ρ =[
a b
b∗ 1 − a

]

,

p00;ρ(t) = a
∫ ∞

0
e−xt

⎡

⎣

√

4a2
1c21 − (x − a2

1 − c21)
2

2c21x

⎤

⎦

+
dx

+(1 − a)

∫ ∞

0
e−xt

⎡

⎣

√

4a2
2c22 − (x − a2

2 − c22)
2

2c22x

⎤

⎦

+
dx .
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The particular case of r := a1 = c1 and s := a2 = c2 gives the weight matrix

d	(x) = 1

π

⎡

⎢
⎢
⎢
⎢
⎣

[√−x2+4xr2

2r2x

]

+ 0 0 0

0 wr ,s(x) 0 0
0 0 wr ,s(x) 0

0 0 0
[√−x2+4xs2

2s2x

]

+

⎤

⎥
⎥
⎥
⎥
⎦

,

where

wr ,s(x) =
[
2
√

((r + s)2 − x)(x − (r − s)2)

2(r2 + s2)x − (r2 − s2)2

]

+
+
(

(r + s)(r − s)

r2 + s2

)2

δx0(z),

x0 = (r + s)2(r − s)2

2(r2 + s2)
.

Finally, we describe the associated walk on the integer line.
Let us consider the homogeneous CTOQW on Z. In this case, the quantum walker’s

dynamics are uniform across different positions on the integer lattice and could be explored
in various physical systems, such as trapped ions, superconducting circuits, or photonic
systems.

We take

Ri+1
i = A =

[
a1 0
0 a2

]

, Ri−1
i = C =

[
c1 0
0 c2

]

, ∀i ∈ Z, a1, a2, c1, c2 > 0.

In this case, we have

Gi = −

⎡

⎢
⎢
⎢
⎣

a2
1 + c21 0 0 0

0
a21+c21+a22+c22

2 0 0

0 0
a21+c21+a22+c22

2 0
0 0 0 a2

2 + c22

⎤

⎥
⎥
⎥
⎦

, i ∈ Z.

Using the first equation on (21) with A−1 = A and C0 = C, we obtain

B(z; W11) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

√

(z−a21−c21)
2−4a21c21

(z−a21−c21)
2−4a21c21

0 0 0

0 ∗ 0 0
0 0 ∗ 0

0 0 0

√

(z−a22−c22)
2−4a22c22

(z−a22−c22)
2−4a22c22

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where we used dW+ = dW− = d	̃(x), d	̃(x) being the weight matrix given by (24).
It is easily seen that

lim
z↑0

√

(z − a2
k − c2k )

2 − 4a2
k c2k

(z − a2
k − c2k )

2 − 4a2
k c2k

= ∞ ⇔ ak = ck, k = 1, 2,
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therefore, for ρ =
[

a b
b∗ 1 − a

]

, we obtain that

• a1 = c1 and a2 = c2 implies that the walk is recurrent;
• a1 �= c1 and a2 �= c2 implies that the walk is transient;
• a1 = c1 and a2 �= c2 implies that the walk is ρ-transient for a = 0 and ρ-recurrent for

a > 0;
• a1 �= c1 and a2 = c2 implies that the walk is ρ-transient for a = 1 and ρ-recurrent for

a < 1.

We observe that the walker returns infinitely often, in mean, to vertex |0〉 for any
initial density operator when a1 = c1 and a2 = c2. In the contrasting scenario, where
a j �= c j , j = 1, 2, the walker returnees is finite in mean. Lastly, when only one of the
values a j equals c j , then the walk returns a finite number of times to |0〉, in mean, for one
only density, and infinitely often for all others.

Moreover, the weight dW11 is obtained by applications of the Perron–Stieltjes inversion
formula:

dW11(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[√

(x−a21−c21)
2−4a21c21

(x−a21−c21)
2−4a21c21

]

+
0 0 0

0 ∗ 0 0
0 0 ∗ 0

0 0 0

[√

(x−a22−c22)
2−4a22c22

(x−a22−c22)
2−4a22c22

]

+

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

6.2 The case of simultaneous unitarily diagonalizable transitions

The above analysis can be applied to the simultaneous unitary diagonalizable coins, that
is, we can take a unitary matrix U and coins given by

A = U

[
a1 0
0 a2

]

U∗, C = U

[
c1 0
0 c2

]

U∗, a1, a2, c1, c2 > 0

to obtain analogous conclusions about the recurrence of vertex |0〉. In this case, we have

• a1 ≤ c1 and a2 ≤ c2 ⇒ vertex |0〉 is recurrent;
• a1 ≤ c1 and a2 > c2 ⇒ vertex |0〉 is U |e1〉〈e1|U∗-transient and ρ-recurrent for

ρ �= U |e1〉〈e1|U∗;
• a1 > c1 and a2 ≤ c2 ⇒ vertex |0〉 is U |e0〉〈e0|U∗-transient and ρ-recurrent for

ρ �= U |e0〉〈e0|U∗;
• a1 > c1 and a2 > c2 ⇒ vertex |0〉 is transient.

Let us describe an example of this and, in addition, let us consider a perturbation on
the first vertex. In this case, the walk can be represented by Fig. 3, where B0 represents the
rate of jumping from vertex |0〉 to itself.
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Fig. 3 A slight modification on the first vertex

Let U ∈ M2(C) be an unitary matrix and consider the CTOQW with generator

L̂ =

⎡

⎢
⎢
⎢
⎣

G0 + [B0] [C]
[A] G [C]

[A] G [C]
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

, A = C = U

[
2 0
0 1

]

U∗, B0 = U

[
1 h1.i

h1.i 1

]

U∗,

and the Hamiltonian operator

H =
∑

i∈Z≥0

Hi ⊗ |i〉〈i |, H0 =
[

h2 h1

h1 h2

]

, h2 ∈ R, h1 ∈ C, Hi = 0 for i > 0.

The diagonal block matrices of L̂ are G = −Udiag(8, 5, 5, 2)U∗ and

G0 = U

⎡

⎢
⎢
⎣

−4 − |h1|2 0 0 |h1|2
0 −5/2 − |h1|2 h2

1 0

0 h1
2 −5/2 − |h1|2 0

|h1|2 0 0 −1 − |h1|2

⎤

⎥
⎥
⎦U∗,

where U = U ⊗ U , thus G0 is Hermitian.
The Stieltjes transform of the matrix weight associated with L̃ (L̂ with G0 + [B0]

switched by G) is then, by Eq. (25),

B(z, 	̃) = 1

32
U

⎡

⎢
⎢
⎣

w1(z) 0 0 0
0 w2(z) 0 0
0 0 w3(z) 0
0 0 0 w4(z)

⎤

⎥
⎥
⎦U∗,

w1(z) = 8 − z − √
z(z − 16)

w2(z) = w3(z) = 20 − 4z − 4
√

z2 − 10z + 9
w4(z) = 32 − 16z − 16

√
z2 − 4z

.

(26)

The Stietjes transform of L̂ is obtained by

B(z, 	) =
(

B(z, 	̃)−1 + (G0 + [B0] − G)
)−1 = U

⎡

⎢
⎢
⎣

s1(z) 0 0 |h1|2
0 s2(z) h2

1 0

0 h̄1
2

s2(z) 0
|h1|2 0 0 s3(z)

⎤

⎥
⎥
⎦

−1

U∗,

s1(z) = 32

z − 8 + √
z(z − 16)

+ 4 − |h1|2, s2(z) = 8

z − 5 +
√

z2 − 10z9
+ 5

2
− |h1|2,

s3(z) = 2

z − 2 + √
z(z − 4)

+ 1 − |h1|2.

123



Continuous-time open quantum walks in… Page 29 of 37 96

Fig. 4 Generator L̂ of a CTOQW on Z with a perturbation on vertex |0〉
After some calculus using the limit given on Corollary 1, we obtain that this walk is

recurrent for any choices of h1 ∈ C, h2 ∈ R.

A perturbation on the vertex |0〉 for the CTOQW on Z : We consider a CTOQW on
Z with the same transitions as above but with a perturbation on vertex |0〉. That is, we are
taking the walk given by Fig. 4, where

A = C = U

[
2 0
0 1

]

U∗, B0 = U

[
b1 b2
b2 b3

]

U∗, b1, b2, b3 ∈ R.

Each position on the lattice behaves similarly, except |0〉. The perturbation, character-
ized by a different matrix rate for a self-loop at |0〉, introduces a localized influence on the
walker’s behavior. This can be seen as a quantum interference effect, where the perturba-
tion disrupts the otherwise uniform evolution of the quantum state. Specifically, a self-loop
alters the probability amplitudes associatedwith staying at vertex |0〉 versus transitioning to
neighboring vertices, leading to a non-trivial modulation in the walker’s probability distri-
bution along the lattice. Moreover, we can understand this as a quantum-level interference
phenomenon, where the perturbation introduces phase relationships among probability
amplitudes, influencing the walker’s behavior and creating distinctive patterns in the quan-
tum state evolution.

Physically, this setup could be implemented in a quantum system where the different
vertices of the integer lattice correspond to distinct quantum states, and the perturbation
arises from a modification in the local dynamics at one specific position. This might be
achieved through controlled interactions or external fields acting on the quantum system.
Such perturbations can be leveraged in quantum algorithms and simulations, providing a
way to encode specific information or perform quantum operations selectively at certain
positions in the lattice.

We want to apply Eq. (20) to verify if vertex |0〉 is recurrent. To do this, we notice that

L̆+ =

⎡

⎢
⎢
⎢
⎣

G0 + [B0] [C]
[A] G [C]

[A] G [C]
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

, L̆− =

⎡

⎢
⎢
⎢
⎣

. . .
. . .

. . .

[A] G [C]
[A] G [C]

[A] G

⎤

⎥
⎥
⎥
⎦

,

where G = −Udiag(8, 5, 5, 2)U∗ and now

G0 = − 1

2

[(
A∗ A + B∗

0 B0 + C∗C
)⊗ I + I ⊗

(
A∗ A + B∗

0 B0 + C∗C
)]

− i H0 ⊗ I + i I ⊗ H0

=U

⎡

⎢
⎢
⎣

−8 − |h1|2 0 0 |h1|2
0 −5 − |h1|2 h2

1 0

0 h1
2 −5 − |h1|2 0

|h1|2 0 0 −2 − |h1|2

⎤

⎥
⎥
⎦U∗,
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which is a Hermitian matrix.
The Stieltjes transform of the matrix weight associated with L̆− is given in Eq. (26)

(since A = C), while the Stietjes transform of the matrix weight associated with L̆+ is

B(z, W+) = (
B(z, W−)−1 + (G0 + [B0] − G)

)−1

=U

⎡

⎢
⎢
⎣

ψ1(z) 0 0 |h1|2
0 ψ2(z) h2

1 0

0 h̄1
2

ψ2(z) 0
|h1|2 0 0 ψ3(z)

⎤

⎥
⎥
⎦

−1

U∗,

where

ψ1(z) = 32

z − 8 + √
z(z − 16)

− |h1|2, ψ2(z) = 8

z − 5 +√
z2 − 10z9

− |h1|2,

ψ3(z) = 2

z − 2 + √
z(z − 4)

− |h1|2.

Some calculus shows that

− lim
z↑0 Tr (B(z, W11)ρ) = ∞

for any choice of h1 ∈ C, h2 ∈ R and ρ ∈ M2(C), therefore vertex |0〉 is always recurrent
for this CTOQW.

The same can be done with vertex | − 1〉; however, on this case, we have to evaluate
− limz↑0 Tr (B(z, W22)ρ) = ∞,which is always infinite for any choice of h1 ∈ C, h2 ∈ R

and ρ ∈ M2(C), therefore vertex | − 1〉 is also always recurrent for this CTOQW.

6.3 Noncommuting transitions

Let

A =
[
1 0
1 −1

]

, C =
[
1 1
0 −1

]

,

where

G1 = −3I4, G0 = 1

2

⎡

⎢
⎢
⎣

−4 1 1 0
1 −3 0 1
1 0 −3 1
0 1 1 −2

⎤

⎥
⎥
⎦ , G2 = −1

2

⎡

⎢
⎢
⎣

2 1 1 0
1 3 0 1
1 0 3 1
0 1 1 4

⎤

⎥
⎥
⎦ .

Consider the CTOQW with V = {0, 1, 2, 3} induced by the generator

L̂ =

⎡

⎢
⎢
⎣

G0 �C� 0 0
�A� G1 �C� 0
0 �A� G1 �C�
0 0 �A� G2

⎤

⎥
⎥
⎦ .
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Note that this generator satisfies the conditions (27) with Rn = I4, n = 0, 1, 2, 3, thus
there exists a positive weight matrix associated to L̂, which will be evaluated now.

The eigenvalues of −L̂ are

λ1 =0, λ2 = 3 − √
5, λ3 = 3 + √

5, λ4 = 3 − √
7, λ5 = 3 + √

7,

λ6 =7 − √
17

4
, λ7 = 7 + √

17

4
, λ8 = 11 − √

41

4
, λ9 = 11 + √

41

4
,

(λ1, λ4, λ5, λ6, λ7, λ8 and λ9 have multiplicity 2) with weights

W1 = 1

20

⎡

⎢
⎢
⎣

3 −1 −1 2
−1 2 2 1
−1 2 2 1
2 1 1 3

⎤

⎥
⎥
⎦ , W2 = 1

2

(

W1 +
√
5

20
Y

)

, W3 = 1

2

(

W1 −
√
5

20
Y

)

,

W4 = 1

14

(

(14 + 3
√
7)W1 +

√
7

4
Y

)

, W5 = 1

14

(

(14 − 3
√
7)W1 −

√
7

4
Y

)

,

W6 =1

4

(

1 +
√
17

17

)

(I4 − 4W1) , W7 = 1

4

(

1 −
√
17

17

)

(I4 − 4W1)

W8 =1

4

(

1 + 4
√
41

41

)

(I4 − 4W1) , W9 = 1

4

(

1 − 4
√
41

41

)

(I4 − 4W1) .

where

Y =

⎡

⎢
⎢
⎣

−1 1 1 0
1 0 0 1
1 0 0 1
0 1 1 1

⎤

⎥
⎥
⎦ .

For instance, we have for ρ =
[

a b
b∗ 1 − a

]

,

p00;ρ(t) =
9∑

k=1

e−λk Wk = 1

4
+ (

e−λ2t − e−λ3t ) v1 + e−λ2t + e−λ3t

8
+ (

e−λ4t − e−λ5t ) v2

+e−λ4t + e−λ5t

4
,

where v1 =
√
5

40
(1 − 2a + 4Re(b)) and v2 =

√
7

28
(2 − a + 2Re(b)).

Non-diagonal matrices often lead to more intricate transition probabilities in CTOQWs.
Therefore, these distinct values introduce more complex interference effects and allow the
walker’s behavior dependence on b. Furthermore, the variation of the initial density distri-
bution can be understood as a conceptual analogy for decoherence. Initially, the uniform
distribution between quantum states exemplifies a coherent starting point. However, the
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Fig. 5 Different transition probabilities for Example 6.3

introduction of decoherence involves changing this initial distribution, with the subse-
quent evolution of CTOQW reflecting the influence of this perturbation, similar to the loss
of coherence observed in decoherence phenomena. This change in initial density alters
the probabilistic evolution, illustrating the sensitivity of the quantum system to its initial
conditions. See Fig. 5 to compare the transition probabilities for different initial densities.

6.4 Antidiagonal transitions: another approach

Let us discuss an example with antidiagonal transitions. We do this in terms of preliminary
reasoning with a generator that has alternating matrices. More precisely, we consider a
block matrix of the form

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−G0 �P0�
�P0� −G �P1�

�P1� −G �P0�
�P0� −G �P1�

�P1� −G �P0�
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

P0 =
[√

a2c1 0
0

√
a1c2

]

, P1 =
[√

a1c2 0
0

√
a2c1

]

, a1, a2, c1, c2 ≥ 0,

G0 = −

⎡

⎢
⎢
⎢
⎣

a2
2 0 0 0

0
a21+a22

2 0 0

0 0
a21+a22

2 0
0 0 0 a2

1

⎤

⎥
⎥
⎥
⎦

, G = −

⎡

⎢
⎢
⎢
⎣

a2
2 + c22 0 0 0

0
a21+a22+c21+c22

2 0 0

0 0
a21+a22+c21+c22

2 0
0 0 0 a2

1 + c21

⎤

⎥
⎥
⎥
⎦

.

We notice that J may not be a valid generator of a CTOQW; however, this block matrix
will be auxiliary to obtain a weight matrix associated with a specific kind of generator
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later. Then, we use [14, Theorem 2.4] to obtain the following equality associated to the
Stieltjes transform of the weight matrix d	(x) associated with J̃ , which is the equivalent
of J with G0 switched by G :

B(z, 	̃) = {z I4 − G + �P0�{z I4 − G + �P1�B(z, 	̃)(−�P1�)}−1(−�P0�)}−1,

where Ri = I4 for every Ri appearing on [14, Theorem 2.4] is a consequence of �P0� =
�P0�T and �P1� = �P1�T .

The known matrices of the equality are all diagonal, thus we assume that

B(z, 	̃) = diag
(

f̃1(z), f̃2(z), f̃3(z), f̃4(z)
)

,

and then each f̃k(z) is a solution of

f̃k(z) = {z − g̃k − m0,k{z − g̃k − m1,k fk(z)m1,k}−1m0,k}−1,

where G = diag(g̃1, g̃2, g̃3, g̃4), �Pj� = diag(m j,1, m j,2, m j,3, m j,4), j = 0, 1. Some
algebra gives

m2
1,k(z − g̃k) f̃k(z)

2 + (m2
0,k − m2

1,k − (z − g̃k)
2) f̃k(z) + (z − g̃k) = 0.

Therefore,

f̃k(z) =
m2

1,k − m2
0,k + (z − g̃k)

2 −
√
(

m2
0,k − m2

1,k − (z − g̃k)2
)2 − 4(z − g̃k)2m2

1,k

2m2
1,k(z − g̃k)

.

As usual, the next step is to obtain the Stieltjes transform of d	, the weight matrix
associated with J . By equation (2.20) of [14], we have

B(z, 	) =
(

B(z, 	̃)−1 + (G0 − G)
)−1 = diag( f1(z), f2(z), f3(z), f4(z)),

where

fk(z) = 1

2

ψk(z)m1,k − m1,k
√

ψk(z)2 + 4γk(z)2 − 2g̃kγk(z) + 2gkγk(z)

m2
1,kγk(z) − g̃2

k γk(z) − g2
k γk(z) + 2g̃k gkγk(z) − m1,k gkψk(z) + m1,k g̃kψk(z)

,

and we have putG0 = diag(g1, g2, g3, g4, ) ψk(z) = −(z +gk)
2+m2

1,k −m2
0,k, γk(z) =

(z + gk)m1,k .

Now, we are able to consider an antidiagonal transition in the following terms: consider
a CTOQW on Z+ whose generator is of the form

L̂ =

⎡

⎢
⎢
⎢
⎣

G0 �C�
�A� G �C�

�A� G �C�
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

, A =
[
0 a1
a2 0

]

, C =
[
0 c1
c2 0

]

,
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G0 = −

⎡

⎢
⎢
⎢
⎣

a2
2 0 0 0

0
a21+a22

2 0 0

0 0
a21+a22

2 0
0 0 0 a2

1

⎤

⎥
⎥
⎥
⎦

, G = −

⎡

⎢
⎢
⎢
⎣

a2
2 + c22 0 0 0

0
a21+a22+c21+c22

2 0 0

0 0
a21+a22+c21+c22

2 0
0 0 0 a2

1 + c21

⎤

⎥
⎥
⎥
⎦

.

We have the symmetrization

J = R(−L̂)R−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−G0 �P0�
�P0� −G �P1�

�P1� −G �P0�
�P0� −G �P1�

�P1� −G �P0�
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, R = diag(�R0�, �R1�, . . .),

where

R2k =

⎡

⎢
⎢
⎢
⎣

(
c2
a1

) k
2
(

c1
a2

) k−2
2

0

0

(
c2
a1

) k−2
2
(

c1
a2

) k
2

⎤

⎥
⎥
⎥
⎦

, R2k+1 =
(

c1c2
a1a2

) k
2
[
0 1
1 0

]

, k = 0, 1, 2, . . . ,

and P0 and P1 are the ones given above. Thus, J and L̂ have the same associated weight
matrix and we obtain, for d	(x) given above that

lim
z↑0 Tr (B(z, 	)ρ) = lim

z↑0( f1(z)a + f4(z)(1 − a)),

where ρ =
[

a b
b∗ 1 − a

]

. After some calculus, we obtain that

lim
z↑0 f1(z) = ∞ ⇔ a1 =

√
2c42 − a2

2c21 + a4
2 + 3a2

2c22
a2
2 + 2c22

, 2c42 + a4
2 + 3a2

2c22 > a2
2c21,

lim
z↑0 f4(z) = ∞ ⇔ a2 =

√
2c41 − a2

1c22 + a4
1 + 3a2

1c21
a2
1 + 2c21

, 2c41 + a4
1 + 3a2

1c21 > a2
1c22,

giving the following conclusion (see Corollary 1):

• a1 =
√

2c42−a22c21+a42+3a22c22
a22+2c22

and a2 =
√

2c41−a21c22+a41+3a21c21
a21+2c21

⇒ vertex |0〉 is recurrent;

• a1 =
√

2c42−a22c21+a42+3a22c22
a22+2c22

and a2 �=
√

2c41−a21c22+a41+3a21c21
a21+2c21

⇒ vertex |0〉 is ρ-transient

when a = 0 and ρ-recurrent when a > 0;
• a1 �=

√
2c42−a22c21+a42+3a22c22

a22+2c22
and a2 =

√
2c41−a21c22+a41+3a21c21

a21+2c21
⇒ vertex |0〉 is ρ-transient

when a = 1 and ρ-recurrent when a < 1;
• a1 �=

√
2c42−a22c21+a42+3a22c22

a22+2c22
and a2 �=

√
2c41−a21c22+a41+3a21c21

a21+2c21
⇒ vertex |0〉 is transient.
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Hence, as in Example 6.1, the recurrence only depends on the density once the values
of A and C are defined. Although the conclusion is similar to the case in Example 6.1, the
more complex values above arise from the representations of �P0� and �P1�, which are
not diagonal.
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Appendix

In this appendix, we will recall some well-known results from the theory of matrix orthog-
onal polynomials, underlining their relevance and application in the context of this work.

1. Let 	 be a d2 × d2 weight matrix and denote by

Sk =
∫

xkd	(x), k = 0, 1, . . .

the corresponding moments. The block Hankel matrices are defined by

H2m =
⎡

⎢
⎣

S0 · · · Sm
...

...

Sm · · · S2m

⎤

⎥
⎦ , m ≥ 0.

Theorem 3 (Slight adaptation of Theorem 2.1 [14]) Consider the block matrix L̂ given by
Eq. (5), assume that An, Cn+1, n ≥ 0, are nonsingular matrices and Bn ≤ 0 ∀n. Now,
let {Qn(x)}n≥0 be the sequence of matrix-valued polynomials defined by (6). Then, there
exists a weight matrix 	 with positive definite block Hankel matrices H2m, m ≥ 0, such
that the sequence of polynomials {Qn(x)}n≥0 is orthogonal with respect to 	 if and only
if there is a sequence of nonsingular matrices (Rn)n≥0 such that

Rn Bn R−1
n is hermitian, n ≥ 0,

R∗
n Rn = (A∗

0 · · · A∗
n−1)

−1R∗
0 R0C1 · · · Cn, n ≥ 0.

(27)

Moreover, S0 = (
R∗
0 R0

)−1
, and

(∫

Q∗
j (x)d	(x)Q j (x)

)−1

= � j = R∗
j R j , j ≥ 0. (28)

2. Perturbation of the Stieltjes transform:
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Theorem 4 (Theorem 2.3 of [14]) Consider the block matrix L̂ given by Eq. (5) and the
matrix L̃ which is the same as L̂ but with a perturbation on the first block, that is,

L̃ =

⎡

⎢
⎢
⎢
⎣

B̃0 C1

A0 B1 C2

A1 B2 C3
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

.

If 	 is the weight matrix associated with L̂ with positive definite block Hankel matrices
such that R0 B̃0R−1

0 is symmetric and such that (Rn)n≥0 is a sequence of matrices which
satisfies condition (27), then there exists a weight matrix 	 corresponding to L̃. If the
weight matrix 	 and 	̃ are determined by their moments, then the Stieltjes transforms of
the weights satisfy

B(z, 	) =
{

B(z, 	̃)−1 − S−1
0

(
B̃0 − B0

)}−1
.

3. Explicit weight matrix for a class of walks on the half-line. The following is a
restatement of a result due to A.J. Durán [15]: let A be positive definite and define

H(z) = A−1/2(B − z I )A−1(B − z I )A−1/2 − 4I .

Such matrix is diagonalizable except for at most finitely many complex numbers z, so
that we can write −H(z) = U (z)D(z)U−1(z), where D(z) is a diagonal matrix with
diagonal entries {dii (z)}. For x real, we have that −H(z) is Hermitian, so it is unitarily
diagonalizable, that is, we can have U (x) such that U (x)U∗(x) = I . Also, D(z) has real
entries. With such matrices defined, we have:

Theorem 5 [15] If A is positive definite and B Hermitian, the weight matrix for the matrix-
valued polynomials defined by

tUn(t) = Un+1(t)A + Un(t)B + Un−1(t)A, n ≥ 0, U0(t) = I , U−1(t) = 0,

is the matrix of weights given by

dW (x) = 1

2π
A−1/2U (x)(D+(x))1/2U∗(x)A−1/2dx,

where D+(z) is a diagonal matrix with diagonal entries d+
i i (z) = max{dii (x), 0}.
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