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Abstract
A novel approach is introduced to assess one-way normalized Entropic Uncertainty
Relation (EUR)-steering in a two-qubit system by utilizing an average of conditional
entropy squeezing. The mathematical expressions of conditional entropy squeezing
and normalized EUR-steering are derived and presented. To gain a better under-
standing of the relationship between the two measures, a comparative analysis is
conducted on a set of two-qubit states. Interestingly, our results reveal that the two
measures exhibit complete similarity when applied to a maximally entangled state,
while they display comparable behavior with minor deviations for partially entangled
states. Notably, we observe that the two measures are interrelated, meaning that any
change in one measure corresponds directly to a similar change in the other. However,
if a variance arises in their behavior, it is usually minor and attributable to the external
environment, such as acceleration, noisy channels, and swapping. This characteristic
highlights the effectiveness of average conditional entropy squeezing as an indicator
of normalized EUR-steering.

Keywords Normalized EUR-steering · Entropy squeezing · Steerability

1 Introduction

In 1935, Schrödinger tried to interpret the Einstein-Podolsky-Rosen (EPR) paradox
by establishing correlations between two quantum systems that were too strong to
be explained classically; this phenomenon is commonly referred to as EPR-steering
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[1, 2]. The concept of steering involves one remote user using a pair of entangled
states to influence or steer their partner’s state through local measurements. As per the
hierarchy of quantum correlations, steerable states are a strict superset of the states
that can demonstrate Bell nonlocality and a strict subset of the entangled states [3–5].
Quantum steering has recently received significant attention in the field of quantum
information research and has been the subject of both experimental and theoreti-
cal investigations [6, 7]. For example, the experimental quantum steering has been
studied through the implementation of generalized entropic criteria and dimension-
bounded steering inequalities, where two or three measurement setups are used on
each side [8]. Steering game based on the all-versus-nothing criterion has been exper-
imentally demonstrated [9]. The asymmetric property of EPR steering is relevant for
experimental and potential applications in quantum information as a one-sided device-
independent quantum key distribution [10], quantum teleportation [11], and optimal
prepare-and-measure scenarios [12]. Moreover, for different quantum systems, the
possibility of quantum steering is experimentally interpreted, including photon polar-
izations in a linear-optical setup [13], Bohmian trajectories [14], a family of the natural
two-qubit state [15], and non-Gaussian state [16].

In the theoretical framework, researchers have developed asymmetric criteria of
steering correlation for a pair of arbitrary continuous variables [3]. Additionally, Wal-
born et al. [17] have utilized the entropic uncertainty relations to express the steering
inequality for arbitrary discrete observables. The violation of the Clauser-Horne-
Shimony-Holt inequality has also been employed to discuss the degree of steerability
[18, 19]. Furthermore, some investigations have been conducted on the violation of
steering inequality and its degree for various quantum systems, including a three-
mode optomechanical system [20], Heisenberg chain models [21, 22], two-level or
three-level detectors [23, 24], and qubit-qubit as well as qubit-qutrit states [25–27].

On the other hand, the essential conceptions of squeezed spin systems were intro-
duced by Kitagawa and Ueda in 1993 [28]. The entropy squeezing for a bipartite
system has been obtained for three discrete observables in N -dimensional Hilbert
space and employing the discrete Shannon entropy [29]. The violation of two condi-
tional entropy squeezing factors represents a magnificent indicator of entanglement
[30]. Meanwhile, the entropy squeezing of multi-qubit inside a cavity system has been
considered a hot research topic, such as two-qubit interacting with two-mode cavity
field [31], qutrit state in a cavity filed [32], and the effect of classical field and nonlinear
term on the qubit-field interaction [33].

Ourmotivation is to introduce how entropy squeezing can be employed as an indica-
tor of the degree of steerability. As the distinction between steering and entanglement
lies in non-locality, quantified through conditional entropy, we employ the entropy
squeezing—a commonly used entanglement indicator—transformed into conditional
entropy squeezing to signify steering. Overall, as the discrete conditional Shannon
entropy is used as a measure of steerability, so do the two conditional entropy squeez-
ing factors express the steering?

This paper is organized as follows: In Sect. 2, we present the steerability based on
conditional entropy squeezing. In Sect. 3, the main results of our paper are discussed
in detail. Finally, the conclusion is given in Sect. 4.
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2 Steerability based on conditional entropy squeezing

In order to gain a better understanding of the relationship between entropy squeezing
andnormalizedEntropicUncertaintyRelation (EUR)-steering for bipartite subsystems
A and B, we can take advantage of the definition provided by Walborn et al. [17].
The mathematical framework of EUR-steering inequality concerning an even N -
dimensional Hilbert space along with the local hidden state for a pair of arbitrary
discrete observables is expressed as [17]
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i=1

H
(
RB
i |RA

i

)
≥ N

2
ln

(
N

2

)
+

(
1 + N

2

)
ln

(
1 + N

2

)
, (1)

where {RA
i } and {RB

i } are the eigenvectors of the discrete observables R̂ A and R̂B ,
respectively, and N is the total number of different eigenvectors. H(RB |RA) ≥∑

λ P(λ)HQ(RB |λ) denotes the corresponding local hidden state constraint for dis-
crete observables, which is defined by the conditional information entropy HQ(RB |λ)

of the probability distribution PQ(RB |λ) with the hidden variable λ. In two-
dimensional Hilbert space N = 2, by employing the Pauli spin operators {σx , σy, σz}
as measurements, the EUR-steering from A to B is realized only if the following
condition is violated [17, 34]
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here Pn,m
i = 〈φi

n, φ
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m |ρ̂AB |φi

n, φ
i
m〉 and Pn

i = 〈φi
n|ρ̂A|φi

n〉 are the probability dis-
tribution of an arbitrary two-qubit state ρ̂AB and reduced single qubit state ρ̂A,
respectively, where |φi

n〉 and |φi
m〉 represent the two possible eigenvectors of σi , and

ρ̂A = TrB[ρ̂AB].
In this paper, we assume that the density state ρ̂AB with real components in the

standard basis {|00〉, |01〉, |10〉, |11〉} can be written as

ρ̂AB =

⎛

⎜⎜⎝

ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ23 ρ33 0

ρ14 0 0 ρ44

⎞

⎟⎟⎠ . (4)

Note that ρ̂AB satisfies the common conditions ρ̂AB ≥ 0 and Tr [ρ̂AB] = 1.
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By applying state (4) in Eq. (2) and violating EUR-steering inequality, one can
obtain

IAB =
3∑

i=1

4∑

j=1

1 + xi j
2

ln(1 + xi j )

−
2∑

k=1

(1 + ak) ln(1 + ak) ≤ 2 ln 2,

(5)

where the summations in the first term in Eq. (5) are related to the three Pauli spin
operators and probability distribution of the two-qubit system ρ̂AB , respectively, and
xi j are obtained by

x11 = x12 = −x13 = −x14 = 2(ρ14 + ρ23),

x21 = x22 = −x23 = −x24 = 2(ρ23 − ρ14),

x31 = 3ρ11 − (ρ22 + ρ33 + ρ44),

x32 = 3ρ22 − (ρ11 + ρ33 + ρ44),

x33 = 3ρ33 − (ρ11 + ρ22 + ρ44),

x34 = 3ρ44 − (ρ11 + ρ22 + ρ33).

(6)

Likewise, the summation in the second term in Eq. (5) is related to the probability
distribution of the reduced state ρ̂A, and ak would be given by

ak = (−1)k(ρ11 + ρ22 − ρ33 − ρ44). (7)

However, the one-way normalized EUR-steering is quantified based on observable
A measurements as follows [35]
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}
, (8)

where Imax = 6 ln 2 when the system is prepared in Bell states.
On the other hand, if we define the function �
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According to Ref. [29], the fluctuations in component �(σ B
i |σ A

i ) are said to be
“squeezed in entropy” if the squeezing factor E(σ B

i |σ A
i ) satisfies the condition

E
(
σ B
i |σ A

i

) = 2√
�

(
σ B
z |σ A

z

) − �
(
σ B
i |σ A

i

)
, (11)

with i = x, y. From the previous condition, we can depict the upper bounds or
the lower bounds of the normalized EUR-steering degree. If the state is maximally
entangled, then the upper and lower bounds in condition (11) are identical. Hence,
bidirectional steerability and the average of conditional entropy squeezing factor have
similar behavior. In partially entangled states, the normalized EUR steerability is
restricted between the upper and lower bounds. Therefore, the average of the two
components of conditional entropy squeezing E(σ B

i |σ A
i ) represents an indicator for

quantum steerability. In any case, we can define the quantum steerability based on the
average of entropy squeezing as
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where E(σ B
x |σ A

x ) and E(σ B
y |σ A

y ) are defined in Eq. (11). Hereinafter, we provide a
comparative study between the average of conditional entropy squeezing and one-way
quantum steering for some different quantum systems.

3 Some results and discussion

Here, we study the relationship between one-way steering and the average conditional
entropy squeezing for a class of two-qubit state, which reads

ρ̂AB = ν|φ〉〈φ| + (1 − ν)|ψ〉〈ψ |, (13)

where |φ〉 = |01〉+|10〉√
2

, |ψ〉 = |00〉+|11〉√
2

, and ν is the setting state parameter. The
state (13) is maximally entangled for ν = 1 and ν = 0, partially entangled for
ν ∈ (0, 0.5) ∪ (0.5, 1), and disentangled for ν = 0.5.

In Fig. 1, we have performed a comparative analysis of the normalized EUR-
steering and entropy squeezing for a composite system consisting of a two-qubit state
represented by Eq. (13). Through our analysis, we have observed interesting relation-
ships between these two measures. Figure1a clearly demonstrates that the extent of
normalized EUR-steering is bounded by the two conditional entropy squeezing fac-
tors. Specifically, when the normalized EUR-steering is maximized, we observe that
the two conditional entropy squeezing factors become identical. Conversely, when the
normalized EUR-steering is minimized, the two conditional entropy squeezing factors
are separated. This finding indicates that the values of E(σ B

x |σ A
x ) and E(σ B

y |σ A
y ) can

be considered as upper and lower bounds of normalized EUR-steering, respectively.
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Fig. 1 Comparative study between a E(σ B
x |σ A

x ) (dotted curve), E(σ B
y |σ A

y ) (dashed curve), and one-way

normalized EUR-steering SA−→B (solid curve) for the state (13), and b the average of conditional entropy
squeezing Z A−→B (dashed curve) and one-way normalized EUR-steering SA−→B (solid curve)

Furthermore, we have investigated the average of the two conditional entropy squeez-
ing factors and its relationwith the normalized EUR-steering. Figure1b illustrates that
at maximally entangled states with ν = 0 and ν = 1, the average of entropy squeezing
(Z A−→B) aligns closely with the normalized EUR-steering SA−→B . However, at a
lower degree of steering, corresponding to a partially entangled state, we observe devi-
ations between the behaviors of normalized EUR-steering and the average of entropy
squeezing. Nevertheless, even in these cases, Z A−→B remains a reliable indicator for
expressing the presence of steerability in the system.

3.1 Some quantum processes

In this subsection, we will compare in detail the effect of some quantum processes on
the functions Z A−→B and SA−→B , namely acceleration process, decoherence via a
stochastic dephasing channel, and swapping process.
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3.1.1 Acceleration process

Let two qubits be simultaneously or separately accelerated in Rindler space. This
space delineates two distinct sectors, denoted as Regions I and I I . In this context,
the accelerated particle is situated within the first region (Region I ), while the anti-
accelerated particle occupies the second region (Region I I ). The computational basis
{0, 1} in this space for regions I and I I can be defined as [36]

|0k〉 = cos rk |0k〉I |0k〉I I + sin rk |1k〉I |1k〉I I ,
|1k〉 = |1k〉I |0k〉I I , (14)

where rk ∈ [0, π/4] is the acceleration parameter of the qubit k = A, B. By substi-
tuting in the state (13) and tracing over the degrees of the region I I , one can get the
accelerated state as

ρ̂acc
AB = A11|00〉〈00| + A22|01〉〈01| + A33|10〉〈10|

+ A44|11〉〈11| + (A14|00〉〈11| + A23|10〉〈01| + h.c.),
(15)

where

A11 = ν

2
cos2 ra cos

2 rb, A22 = cos2 ra

(
ν

2
sin2 rb + 1 − ν

2

)
,

A33 = cos2 rb

(
ν

2
sin2 ra + 1 − ν

2

)
,

A44 = sin2 ra

(
ν

2
sin2 rb + 1 − ν

2

)
+ 1 − ν

2
sin2 rb + ν

2
,

A14 = ν

2
cos ra cos rb, A23 = 1 − ν

2
cos ra cos rb.

(16)

In Fig. 2, we present an investigation into the impact of the accelerated process
on a two-qubit state. Specifically, we aim to explore the relationship between the
normalizedEUR-steering and average entropy-squeezingmeasures under this process.
We assumed that the two-qubit state is maximally entangled with ν = 1 as a fixed
parameter. In Fig. 2a, we observe that when only one qubit is accelerated with ra =
r and rb = 0, the normalized EUR-steering is maximized at lower values of the
acceleration parameter. As the acceleration parameter increases, we see a decrease
in the degree of steering. Interestingly, we note that the normalized EUR-steering
and the entropy squeezing are identical across different values of the acceleration
parameter r . This indicates a consistent relationship between thesemeasures regardless
of the acceleration applied to the system. On the other hand, when both qubits are
accelerated simultaneously with ra = rb = r , Fig. 2b reveals an intriguing trend.
As the acceleration parameter increases, the rate of decrease in steering becomes
more pronounced. This finding suggests that accelerating two qubits simultaneously
increases the suppression of steering. However, it is important to note that despite this
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Fig. 2 Average of conditional entropy squeezing Z A−→B (dashed curve) and one-way normalized EUR-
steering SA−→B (solid curve) for accelerated state (15) with ν = 1. a ra = r , rb = 0 and b ra = rb = r

trend, the two measures, namely normalized EUR-steering and entropy squeezing,
exhibit little variations with respect to the acceleration parameter.

3.1.2 Noisy channel process

To examine the two functions (8) and (12) under noisy channel models, we can express
the temporal density operator in terms of Kraus operators as

ρ̂AB(t) =
∑

i, j

K A
i (t)K B

j (t)ρ̂AB(0)(K A
i (t)K B

j (t))†, (17)

here ρ̂AB(0) is defined in Eq. (13), while Kk
i (t) and Kk

j (t) with k = A, B are the
time-dependent Kraus operators for different noise channels. For example, we use the
Kraus operators of amplitude-damping noise [37], which are defined by [38]

K1(t) = |0〉〈0| + √
1 − p(t)|1〉〈1|, K2(t) = √

p(t)|0〉〈1|, (18)
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where

p(t) = e−gt
[
cos(λt/2) + g

λ
sin(λt/2)

]2

pertains to a non-Markovian amplitude-damping channel with λ = √
g(2γ − g),

where g is a decay rate which depends on the reservoir correlation time and γ is the
coupling strength related to qubit relaxation time [38].

Likewise, the Kraus operators for purely dephasing noise channels can be defined
as [39]

K1(t) = |0〉〈0| + q(t)|1〉〈1|, K2(t) =
√
1 − q2(t)|1〉〈1|, (19)

where

q(t) = exp
{
−γ

2

(
t + g−1[exp(−gt) − 1]

)}
.

Figure3 presents a comprehensive examination of the impact of amplitude-damping
noise on the degree of steerability, with the normalized EUR-steering and entropy
squeezing serving as the quantifying measurements. In Fig. 3a, we observe that, by
selecting a small value for the damping rate (g = 0.01), the normalized EUR-steering
oscillates between its maximum and lower bounds. This oscillatory behavior is con-
sistent with the properties of steerability under the influence of amplitude-damping
noise. Indeed, the oscillatory patterns in Z A−→B and SA−→B are telltale signs of
non-Markovianity associated with p(t). It is noteworthy that the two measures, nor-
malized EUR-steering and entropy squeezing, coincide perfectly with the scaled time
parameter. This convergence of the two measurements further reinforces their equiva-
lence in capturing the system’s dynamics. Moving to Fig. 3b, we examine the effect of
increasing decay rates within the range of g (specifically with g = 0.1 and maximally
entangled state with ν = 1). As the scaled time escalates γ t , we gradually observe
the normalized EUR-steering oscillating with an increase in the upper bounds. On
the other hand, in the case of a partially entangled state with a parameter value of
ν = 0.1, it can be observed from Fig. 3c that a clear separation between the two
measures over time. Furthermore, as the scaled time increases, the upper bounds of
the steering degree exhibit a decrease in value. Remarkably, the maximum bounds
of steering continue to expand as time progresses, indicating a growing influence of
the amplitude-damping noise on the steerability of the system. Just like in the previ-
ous case, the normalized EUR-steering and average entropy-squeezing measurements
in this scenario remain parallel, underscoring their identical nature. This consistent
agreement can be attributed to the initial state being maximally entangled.

Figure4 provides a detailed analysis of the effect of dephasing noise on the degree
of steering, utilizing the normalized EUR-steering and entropy squeezing as the
measurement criteria. Moreover, the comparison between these two measures under
the influence of the dephasing noise channel is examined. In the first, we consider an
initial state that is maximally entangled with ν = 1. Initially, we note that while the
entropy squeezing and normalized EUR-steeringmeasures display similarities in their
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Fig. 3 Average of conditional entropy squeezing Z A−→B (dashed curve) and one-way normalized EUR-
steering SA−→B (solid curve) for amplitude-damping noise, where a ν = 1, g = 0.01, b ν = 1, g = 0.1
and c ν = 0.1, g = 0.1. It is evident that the two measures are perfectly aligned in scenarios of maximum
entanglement ν = 1, whereas a slight deviation emerges in cases of partial entanglement, e.g., ν = 0.1
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Fig. 4 Average of conditional entropy squeezing Z A−→B (dashed curve) and one-way normalized EUR-
steering SA−→B (solid curve) under purely dephasing channel, where a ν = 1, g = 0.01, b ν = 1, g = 0.1
and c ν = 0.1, g = 0.1
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general behavior, they are not entirely identical as the scaled time progresses. At the
onset, both measures exhibit their maximum bounds. However, as time increases, we
observe a notable distinction between the maximum bounds of entropy squeezing and
normalized EUR-steering. Interestingly, the maximum bounds of entropy squeezing
surpass those of normalizedEUR-steering. This disparity suggests that the influence of
dephasing noise imposes amore pronounced impact on the entropy squeezingmeasure
compared to normalized EUR-steering. In the context of partial entanglement ν = 0.1
with g = 0.1, our observations indicate a rapid decay of steering and a decrease in the
upper bounds of steering during the initial stages of the interaction. This suggests that
partial entanglement has a significant impact on the dynamics of steering. Furthermore,
it is important to note that the time evolution of the steered system is influenced by the
degree of entanglement. As the entanglement decreases, the decay of steering becomes
more pronounced, implying a decreasing ability to remotely control and influence the
entangled particles.

Notably, despite the difference in the maximum bounds between the two measures,
they still portray parallel trends. As the scaled time continues to grow, we witness a
decrease in the degrees of steering for both measures. This observation implies that
the detrimental effects of dephasing noise manifest as a reduction in the correlation
between the entangled subsystems. Besides, it is evident that increasing the damping
rate of the dephasing channel exacerbates this decreasing effect on the steering degrees.

3.1.3 Swapping process

Let us consider two different sources, S12 and S34, which generate pairs of two-qubit
statesρ12 andρ34, respectively.Qubits 1 and 4 are far apart, while qubits 3 and 2 remain
close. The swapping process is aimed to measure the amount of quantum normalized
EUR-steering between qubits 1 and 4 by performing a joint Bell measurement on
qubits 2 and 3. The post-measurement state ρ14 is calculated by [40]

ρ14 = Tr23

[
Mi .ρ1234.M

†
i

T r [Mi .ρ1234.M
†
i ]

]
, (20)

where ρ1234 = ρ̂AB ⊗ ρ̂AB , such that the two sources generate the state ρ̂AB defined
in Eq. (13). Moreover, Mi = I2 ⊗|�i 〉〈�i |⊗ I2 in which I2 is a 2×2 identity matrix
and |�i 〉’s stand for the usual four Bell states.

Finally, Fig. 5 focuses on analyzing the effects of the swapping process on the
behavior of normalized EUR-steering and conditional entropy squeezing concerning
the state parameter ν. The post-measurement state ρ14 at |�i 〉 = |ψ〉 is studied to
understand how the swapping process influences the behavior of the quantum system.
The findings indicate that the steerability degree significantly decreases when the
two-qubit state is initially in a partially entangled state. Furthermore, when compared
to Fig. 1, it is noticeable that the unsteerable region expands during the swapping
process. However, when the two-qubit state is maximally entangled, the two measures
are equal. Hence, conditional entropy squeezing serves as an excellent indicator of the
level of normalized EUR-steering present under this process.
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Fig. 5 Average of conditional entropy squeezing Z A−→B (dashed curve) and one-way normalized EUR-
steering SA−→B (solid curve) under swapping process with |�i 〉 = |ψ〉

4 Conclusion and outlook

We have proposed a newmethod for quantifying one-way quantum normalized EUR-
steering in an arbitrary two-qubit system using the average of conditional entropy
squeezing.We derived the explicit analytical expressions of normalized EUR-steering
and conditional entropy squeezing. A comparative analysis of the two measures was
conducted on a free maximally mixed two-qubit state, either restricted two-qubit state
by using acceleration, noisy channels, or swapping processes.

For the freemaximallymixed two-qubit state, our results highlight the interconnect-
edness between normalized EUR-steering and entropy squeezing. We demonstrated
that the conditional entropy squeezing factors serve as bounds for normalized EUR-
steering, which represented the upper and lower limits. Additionally, we established
the average of entropy squeezing as a valuable indicator of steerability, particularly at
a maximally entangled state.

The effects of the accelerated process on a two-qubit state were demonstrated.
We observed that the behavior of normalized EUR-steering and entropy squeezing
depends on whether one or both qubits are accelerated. In the former case, the degree
of normalized EUR-steering decreases with increasing acceleration, while in the latter
case, the rate of decrease in steering is amplified. Nonetheless, despite these variations,
the measures of normalized EUR-steering and entropy squeezing remain stable and
invariant with respect to the acceleration parameter.

Under the amplitude-damping noise, our results showed that under a specific small
damping rate, the normalized EUR-steering experiences oscillatory behavior. By
allowing the decay rate to increase, the normalized EUR-steering experiences oscil-
latory behavior with expanding boundaries. Notably, the normalized EUR-steering
and entropy-squeezing measurements remained indistinguishable throughout these
processes, further validating their correlation. On the other hand, the effect of dephas-
ing noise on the degree of steering was evaluated. While the two measures differ in
terms of their maximum bounds, they exhibit similar overall trends. Specifically, as the
scaled time increases, both measures demonstrate a decrease in the degree of steering.
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This decreasing effect is amplified by enhancing the damping rate of the dephasing
channel.

Finally, the swapping process significantly diminishes the steerability degree when
the initial state of the two-qubit is partially entangled. For maximally entangled states,
the two measures coincide.

In conclusion, it is evident that entropy squeezing serves as a measure of steering
primarily in the context of a maximally entangled state. However, when considering
partially entangled states or situations where entanglement is constrained by external
factors, entropy squeezing remains a highly reliable indicator of steering. By assessing
the degree of entropy squeezing in such scenarios, valuable insights can be gained
regarding the presence and extent of quantum steering. Note that entropy squeezing is
a tool for indicating and understanding quantum steering, even in caseswheremaximal
entanglement may not be achieved.
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