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Abstract

In this paper, let ¢ be an odd prime power. Based on new constacyclic codes which
contain their Hermitian duals and Hermitian construction, we construct some classes
of quantum MDS codes and quantum codes. When ¢ = 1 mod 4, x and y are a divisor
of ¢ — 1 and g + 1, respectively, we can construct a class of new quantum codes of

q2m7]
g1
existing codes. In addition, for g with the form 2am £ /(x2 + y2)a — 1 and odd
n= Lt
==,

length n = 2xy for odd x, y, m > 3. These codes have larger dimensions than

x,y,a with ged(x, y) = 1, we get some quantum MDS codes of length

Keywords Hermitian construction - Constacyclic codes - Quantum codes - Quantum
MDS codes

1 Introduction

Quantum error-correcting codes (quantum codes) are useful in quantum computing and
quantum communication. Given a prime power ¢, an [[n, k, d]], quantum codeis a q*-
dimensional vector subspace of the Hilbert space (C7)®" with minimal distance d [1].
Especially, if aquantum code reaches the quantum Singleton bound, i.e. k = n—2d+2,
itis called a quantum maximum-distance-separable (MDS) code. A quantum code can
also be denoted by ((n, K, d)),, where k = log, K.

In [2], Calderbank et al. presented the first systematic and effective mathematical
method for constructing quantum codes and thus established the connection between
classical error-correcting codes and quantum error-correcting codes. Since then, the
mathematical study of quantum codes has progressed rapidly. Many good quantum
codes have been constructed by using different approaches [1, 3-39]. Among these
methods, the most commonly used methods are Euclidean construction and Hermitian
construction. We list the quantum MDS codes constructed by these two methods
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in Table 1. In [40], Goyeneche et al. builded a relationship between an irredundant
orthogonal array (IrOA), v-uniform state, and quantum code ((n, K, d)), for K = 1.
Based on Hamming distances and construction methods of orthogonal arrays (OAs),
Pang et al. constructed infinite classes of v-uniform states for v = 2, 3 in [41] and
infinite classes of v-uniform states for v > 4 in [42]. Besides, Pang et al. generalized
construction method of uniform states for homogeneous systems to heterogeneous
systems [43]. Moreover, Pang et al. extended methods of constructing quantum codes
((n,K,d))y for K = 1to K > 1 [44, 45]. And a large number of quantum codes
including quantum MDS codes can be obtained. Part of these codes are listed in Table 2.
Even so, there are still some good quantum codes that remain unknown.

In this paper, let ¢ = 1 mod 4 be an odd prime power, m > 3 be odd, x > 3 be an
odd divisor of ¢ — 1, and y > 3 be an odd divisor of ¢ + 1. Using negacyclic codes

2m
over F,2, we construct new quantum codes of length n = 2xy qqz:]l with parameters
[n, n—=2m(81 = 2] +82— 1% ) =2, = 6148242l where 0 < 61, 8> < y| %= |.

Besides, for smaller odd x, y, a with gcd(x, y) = 1,letg = 2am+/(x2 + y?)a — 1
be an odd prime power, where m is a positive integer. We get some g-ary quantum
MDS codes of length n = # from w9~ !-constacyclic codes over Fp.

The paper is organized as follows. In Sect.2, we state the basic notations and
review the results about constacyclic codes and quantum codes used in this work. In
addition, we present some lemmas for constructing quantum codes. In Sect. 3, some
new quantum codes and quantum MDS codes are constructed by using constacyclic
codes. This paper is summarised in Sect. 4.

2 Preliminaries

In this section, we state some basic notations and review some results about consta-
cyclic codes and quantum codes [18, 48, 49].

Throughout this paper, assume that ¢ is an odd prime power. Define ¢ = o4
for any element o € qu. For any two vectors @ = (ag,ay,...,a,—1) and b =
(bo, b1, ...,b,_1) € F;z, their Hermitian inner product is defined as

(a, b) = aol;() + all;l +...+ an_ll;n_l IS qu.

The vectors a and b are called orthogonal with respect to the Hermitian inner product
if (@, b) = 0. For a g*-ary linear code C of length n, the Hermitian dual code of C is
defined as

Cth=1ae Flsl{a.b) = 0,b € C).
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Definition 2.1 ([49] Constacyclic Code) A g>-ary linear code C of length n is said to
be constacyclic if C is closed under the n-constacyclic shift 7, on F;z

y(ao, ai, ..., ap—1) = Map—1,ao, ..., ap-2),

where 7 is a nonzero element of F,2. In particular, if n = —1, then C is said to be
negacyclic.

Let w be a primitive element of 2. Assume that gcd(n, ¢) = 1 and n = w®@=D
for some v € {0, 1, ..., ¢g}. Then, C" of an n-constacyclic code C over F, is also
n-constacyclic. And there exists a unique monic divisor g(x) of x” — 5 such that
C = (g(x)), where (g(x)) = {r(x)g(x)|r(x) € qu[x]/<x" — n)}. The polynomial
g(x) is called the generator polynomial of C.

Let r be the order of 7 in F;‘z = F,2 — {0} and é be a primitive rn-th root of
unity in some extension field of F > such that 8" = 5. Then, the roots of x" —n
are $1177, 0 < j <n—1.Denote 2 = {1+4+7rjl0 <j<n-—1}.Fori € Q, let
C; ={ig¥ modrn, j € N} be the g>-cyclotomic coset modulo rn containing i. The
set Z = {z € 2|g(6*) = 0} is called the defining set of C. Let g(x) = [—[Zez(x — 8%)
be the generator polynomial of C. Then, C"* has generator polynomial g (x) =
HzeQ\Z (x — 879%). Hence, C" has defining set Zth = {—gz mod rn|z € Q\Z}.

Lemma 2.1 ([49] The BCH Bound for Constacyclic Codes) Assume that gcd(n, q) =
L. Let C be an n-constacyclic code of length n over F, and let the generator polyno-

mial g(x) have the elements (8177710 < j < d — 2} as the roots, where § is a primitive
rn-th root of unity. Then, the minimum distance of C is at least d.

Lemma 2.2 ([50] Hermitian Construction) If C is a q2-ary [n, k, d] linear code such
that CL" C C, then there exists a q-ary [[n, 2k — n, > d]] quantum code.

Lemma 2.3 [18,48] Let C be an n-constacyclic code of length n over F,» with defining
set Z C Q. Then, C" C C ifand only if Z(\ 271 = @, where 274 = —qZ =
{—gzmod rn|z € Z}.

Let | x | denote the largest integer not exceeding x. To construct new quantum codes,
we give the following lemmas.

2m __ 1

Lemma24 Let x,y,m > 3 be odd, x|(qg — 1), y|(g + 1), and let n = 2xyqq27] .
Then ged(n,q) = 1.

q2m

Proof Note that n = 2xy q2:11 = 2xy(g?"D 4 g2m=D 1 g% 1), so
ged(n,q) = ged(2xy, q). Since 2x|(g — 1), we can assume that ¢ — 1 = 2xm,
ie.q = 2xm + 1, m > 1. Then, we have ged(2xy, q) = gcd(2xy,2xm + 1) =
ged(y,2xm+1) = ged(y, q). Note that 2y|(g + 1), we can assume that g + 1 = 2yl,
ie.q =2yl—1, 1 > 1. Itfollows that gcd(y, q) = gcd(y,2yl—1) = ged(y, 1) = 1.
Thus, we can conclude that gecd (n, g) = 1. O
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i,j, 1 <i,j< quqZ—l |, we have thefollowmg results.

(1) The g>-cyclotomic coset Cy modulo 2n is Cy = {¢};

(2) The q*-cyclotomic coset Cr_2i and C¢2; modulo 2n have cardinality m;

(3) Cy—2i = Cr42j ifand only if there existst € [0, ™ 1]suchz‘hatt—l—Jq = Omodn
orj+ zq2’ = 0 mod n;

4) Ifi < j, then Cr_p; = Cr—pj ifand only if j = iq? for somet € [1, mT_l];

(5) Ifi < j, then Cr i = Criaj ifand only if j = ig* for somet € [1, %4],'

(6) C;—2i = —qCry2j if and only if there exists t € |0, mT_l] such that ¢ — 2i =
—(€ +2)g* T mod 2n or ¢ +2j = —(¢ — 2i)g**! mod 2n;
(7) Cr—2i = —qCr—_2j if and only if there exists t € [0, mT_l] such that ¢ — 2i =
. — 2j)q2’+1 mod 2n or ¢ —2j = —(¢ — 2i)g**! mod 2n;

+2i = —qCr42; if and only if there exists t € [0, ——] such that { +2i =
®) C¢ Ce+2j if and only if th j [0, 2511 such th 2i
—( +2)g%t ' mod 2n or ¢ +2j = —(¢ 4 2i)g* ! mod 2n;
) Cp # —qC¢;

(10) Ce—2i # Cry2j.

Proof Here, we only prove (1), (2), (9) and (10). Other proofs are similar to that of

Lemma 3 and Lemma 5 of [51], so we omit.

(1) Obviously, 2n| (¢(g? — 1)). Thus, we have C; = {¢}.

(2) Since 2n|(g*™ — 1), we have (¢ — 2i)g*" = g“ — 2i mod 2n. Suppose that

|Cr—2il =t < m. Then, we have ({ — 21)q2t = ¢ — 2i mod 2n. Because m > 3
1

is odd and t|m, we can get | <t < % < =z By ;qz = ¢ mod 2n, we have

i(g* — 1) = 0 mod n. It follows from 1 < i, j 5 yL‘;L] m>2 that
0<g>—1<i(@¥ -1 < yL%J(qm’l - j[';'jll 1) < n. This
contradicts i(qZt — 1) = 0 mod n. Therefore, |C; _2;| = m. Similarly, we can also get

[Ci il = m.

(9) Suppose that C; = —gC;,. Then, we have { = —g¢ mod 2n, ie. {(g + 1) =
0 mod 2n. This shows that 2n|(¢(q + 1)), which is equivalent to 4x|(qg + 1). It
contradicts the fact that 2x|(¢ — 1). Hence, C; # —qCs.

(10) Suppose that C;_»; = Cr42;. Then, by (3), we can assume that there exists

t €10, mZI]SHChthatl-l-]cIZ’ = Omod . Note that 0 < i+ jg* < qu m=1_y
| 7 C;+2j. o

Lemma 2.6 For g with the form 2am =+ t, where a, m,t are positive integers, let
2
= qa—ﬂ be an integer. Then gcd(n, q) = 1.

Proof Here, we only prove the case of ¢ = 2am + ¢, the case of ¢ = 2am — t is
similar. Since g% + 1 = (2am + 02+ 1 = 4a’m? + damt + t% + 1, it follows that

= _q2a+1 = dam? —I—4mt—|—t 241 .Thus, ged(n, q) = ged(4am? +4mt+' 241 , 2am+
1) = ged(2mQ2am + 1) + omi + 24 dam + 1) = ged(2mi + %, 2am + 1).
Suppose that ged(2mt + 2L 2am 4 1) = s and s # 1. Let 2mr + 25 = gx

@ Springer
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and 2am 4+t = sy, where x, y are integers. Then, we can obtain s(ax — ry) = 1.
Obviously, this is impossible. Hence gcd(n, g) = 1. O

Lemma 2.7 [30] For q with the form 2am =+ t, where m is a positive integer and a, t
2 2
are odd, let n = qT'H, s = %. Then, for any integeri € Q = {1 + (g + 1)j|0 <

Jj <n—1}, the q2-cyclot0mic coset C; modulo (g + 1)n is given by
(1) CY = {S} C n(q+]) = {S + ’1(Q+1)}.

(2) Cs— <q+1)1—{s—(q+1)1 s+@+DjL1<j<i-1

3 New quantum codes from constacyclic codes

qzm_1
3.1 Length n = 2xy pr

Based on the lemmas in Sect. 2, we can give a sufﬁcient condition for the existence of

negacyclic codes over F2 of length ny L which contain their Hermitian duals.

Lemma3.1 Let ¢ = 1 mod 4 x,y,m >3 be odd, x|(q — 1), y|(q + 1), and let
2m __ 2m
_ nyqz 11’ § _

defining set Z = Ul_ 5 CZH“ where 0 < 81,8, < qu

If C is a g*-ary negacycllc code of length n with

Proof By Lemma 2.3, we only need to prove that Z ﬂ Z79 = (). Suppose that
Z(\Z~9 # (. By Lemma 2.5, we have C; (| —¢gC; = (. Then, for integers

.. . m_j
ij, 1 =ij =yl

lowing three cases:

Case 1 C; 2 = —qC;_2j, which means that there exists ¢ € [0, mT_l] such that
. —2i = —(¢ —2/)g**t! mod 2n. By g = 1 mod 4 and x|(g — 1), we can get
2n|(C(g—1)),ie.q¢ = §m0d2n Thus wehave; i—jg**t! = 0mod n. It follows

q" (qm+1)y|_¢1 —1 q2t+1

from 1 <1, ]<yL

2m 1

yqqz_1 — (¢ + 1) < n.This contradlcts the fact that { —i — ]q2’+1 = 0 mod n.

Case 2 C;y2; = —qC42;, which means that there exists ¢ € [0, ”’Tfl] such that

¢ +2i=—( +2))g* ! mod 2n. This is equivalent to ¢ 4 i 4+ jg**! = 0 mod n.
2m

Note that 0 < ¢ +i + jg¥T! < y Lt @™+ l)qu _1 < 2yqqz__l1 < n. This

gives a contradiction.

Case 3 C;_»; = —qCr42;, which means that there exists € [0, ™ l] such that

(=2 = —(§—|—2])qz“rl mod 2. ThlSlsequwalentto;“—z—i—]qz”r] = Omodn.Smce

l<i, J<yL" i+jq2t“<
yqq —1+qu2 —)q" <L o —1+y p —L(g" +1
contradlcts the fact that ¢ —i + ]qZ"H =0 mod n.

Therefore, Z (271 =@, i.e. cth cc. O

Using the aforementioned lemma, some new g-ary quantum codes of length

2xy L can be constructed.

@ Springer
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Theorem 3.1 Under the conditions of Lemma 3.1, there exist quantum codes with
parameters [[n,n — 2m (5, — LS—'ZJ + 8y — L%J) —2,> 681+ 8+ 2]y

Proof Consider the negacyclic code C over F 2 of length n with defining set Z =
U?2— _s5, Ce42i, where 0 < 681,82 < qu

=

81 + 8, + 2. By Lemma 2.5, for1<1<qu o2 and

C;+2, =C c42ig for some ¢ € [1, 2 1] Hence the number of cosets is reduced by
L J—{—L 2 ]. Therefore, C is anegacycllc code over F > with parameters [n, n—m(8; —

L J+82 E 2J) 1,> 61+62+2]. ByLemma3.1, Clh cC. ApplymgtheHermltlan

constructlon to C obtains g-ary [[n, n —2m (51 — | ZJ +38) — L 1) —2,> 614+62+2]]
quantum codes. O

We list some new quantum codes in Table 3. When the distance is equal, the
dimension of quantum codes we construct is better than those in [52]. We give Theorem
21 of [52] as follows.

Theorem 3.2 ( [53], [52, Theorem 21]) Let n = r‘f;f_‘ll, where m > 2 and q is a

m __ . .
prime power. For2 < § < |r 22_11 1, then there exists a quantum code with parameters

[, 1 —2m[ (5 — (1 = ). > 8]]

3.2 Lengthn = T+1 with odd a

In this section, for g with the form 2am £ ¢, we will use w9~ 1 -constacyclic codes over
2
F > to construct some g-ary quantum MDS codes of length qT'H.

Lemma 3.2 (1) For g with the form 178m + 55, where m is a positive integer, let
2 2
s = %, n= %. If C is an o9 '-constacyclic code over F2 of length n with

defining set Z = Ui‘:o Cs—(g+1)j, where 0 < § < 13m + 3, then cth cc;

(2) For g with the form 178m — 55, where m is a positive integer, let s = TH, n=

%. If C is an w?~ ' -constacyclic code over F> of length n with defining set Z =
U?‘:O Cs—(g+1)j» where 0 <8 < 13m — 5, then cth cc.

Proof (1) By Lemma 2.3, we only need to prove that Z () Z~% = (. Suppose that
Z () Z 1 # . Then, by Lemma2.7, there exist two integers i, j, 0 <1i, j < 13m+3,
such thats — (g + 1)i = —[s — (g + 1) jlg° mod (¢ + 1)n fore =1, 3.

Ife=1,thens — (g + 1)i = —[s — (g + 1)jlg mod (g + 1)n. This is equivalent
to s = jg + i mod n, which means

g*+1=178q + 178 mod 2(¢* + 1).

AsO <i,j < 13m+3 =241 it follows that 0 < 178i, 178, < 13¢ — 181. We

can obtain a contradiction by considering the following two cases:
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1

6C[[¢ < 01T + @01 — u “u]] 6C[[¢ <*QIT + Q01 — u ‘ul] 1626 > ¢ > TI¥8 SP0S > e ‘le > cocy

6C[[¢ <06 + 901 — u ‘u]] 6C[[¢ < ‘86 + 901 — u ‘u]] 69SL > ¢ > 0€L9 YOty > ¢ 19 > $9¢¢

6C[[¢ < 0L + 901 — u ‘u]] 6C[[¢ < 8L+ 901 — u ‘u]] L88S > ¢ > 8%0S €9¢e > T le > ¢ree

6C[[¢ <08 + e01 — u “u]] 6C[[¢ < ‘8¢ + 001 — u ‘u]] S0ty > ¢ > 99¢¢ TTsT > Gl > 7891

6C[[¢ < *0¢ + 901 — u ‘u]] 6C[[¢ < ‘8¢ + 901 — u ‘u]] €TST> ¢ > #1891 1891 > ¢ l¢ > 148
6C[[¢ <01 + 90T — u ‘u]] 6C[[¢ < QT + 90T — u ‘u]] w8>e¢>¢ o8> le>0 (T¥'$°60)
6C[[¢ <9+ ¢9 — u ‘u]] 6C[[9 <01 + 99 — u ‘u]] LI >9>7T L8> Qle>0 (Tr'e'60)
les] ut P[(p y ‘u]] ['¢ watoay L, woxy P[[p “y ‘u]] 9 o lg (4w *b)

1=

= b 4 = u )3ud YPIm sopod wmuenb jo suosuedwo) ¢ 3jqel
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(1) 0 < 178i < 12g — 1. Then, 0 < 178jg + 178i < (13g — 181)q + 129 — 1 =
13¢g> — 169 — 1 < 13¢%. Assume that 178; = eq + u, where 0 < ¢ < 11 and
0 < u < g — 1 are integers. Then, by g% + 1 = 178g + 178i mod 2(¢* + 1), we
have 178 g + 178i = (178 + e)q +u = h(g*> + 1) = hg®> + h, where | <h < 11
is odd. This implies that g|(u — k). Since —q < —h <u—h <qg—1—h < g, we
have u — h = 0, i.e. u = h. It follows that 178 + ¢ = hg, where 1 < e < 11 is odd.
Then, j = h1q7_86 = h(178r;;7§55)—e =hm + 551}%6. Obviously, when1 < e, h < 11 are
odd, j is not an integer. This gives a contradiction.
(i1) 12g < 178i < 13g — 181. Then, 12q < 178jq + 178i < (13g — 181)(¢ + 1) =
13g% — 168 — 181 < 13¢g2. Assume that 178 = 12¢ + u, where 0 < u < g — 181.
Then, we have 178jq + 178i = (178 4+ 12)g + u = h(g> + 1) = hq> + h,
where 1 < h < 11 is odd. Hence ¢|(u — k). Similar to (i), we can get u = h. Thus
178 +12 = hq. Note that 178 j + 12 is even and hq is odd. This gives a contradiction.
Ife =3,thens — (g + 1)i = —[s — (¢ + 1) jlg° mod (g + 1)n. This is equivalent
tos — (g + 1)i = —sq — (¢ + 1)qj mod (g + 1)n, which means

178jq + g*> + 1 = 178i mod 2(¢*> + 1).

As 0 < 178i,178j < 13q — 181, it follows that q2 +1 < 178jq + q2 +1 <
(13g — 181)g + g> + 1 = 14¢g> — 181g + 1. We can obtain a contradiction by
considering the following two cases:

D) g% +1<178jg+q>+1 < 2¢%+1.Then, 178 + g% + 1 = 178i. It follows
that ¢|(178i — 1). Note that —1 < 178i — 1 < 13¢g — 181 — 1 < 134. Hence, we
can assume 178/ — 1 = hqg, where 1 < h < 11 is odd. Then, 178i = hg + 1 =
h(178m + 55) + 1 = 178mh + 55h + 1, which implies that 178|(55h + 1). Assume
that 55h + 1 = 178p = 25532%119, p > 1. This is equivalent to 34 - 55h + 34 =
2 -55%p + 2p, which means 55|(2p — 34). Note that 2p — 34 > —55, so we can
assume that 2p — 34 = 55¢, ¢ > 0. Then, 2p = 55¢ + 34 > 34,ie. p > 17. So
h = % > 55. It contradicts the fact that 1 < h < 11.

(i) 2(g> + 1) < 178jg + ¢*> +1 < 14¢g%> — 181g + 1 < 144¢>. Then, we have
178jg + g> + 1 — 178i = h(g> + 1), where 2 < h < 12 is even. It follows that
178 — (h — 1)¢> = 178i + h — 1. Obviously, ¢|(178; + h — 1). Note that 1 <
178i +h —1 < 13g — 170 < 13¢, so we can assume that 178; +h — 1 = h'q, where

, . . Wg—(h=1) _ W(178m+55)—(h—1) _ 1/ 550 —(h—1)
1 <h’ <11isodd. Then, i = 78 = R _hm"'T'

Similar to the case of € = 1, we can also get a contradiction here.
Therefore, Z(Z~9 = @, i.e. cth cc.
(2) It is similar to the proof of (1). m]

Now, we can construct some g-ary quantum MDS codes by using the above lemma.

Theorem 3.3 For g with the form 178m + 55 (178m — 55), where m is a positive

2
integer, letn = qg—j;l. Then, there exist quantum MDS codes with parameters [[n, n —
2d +2,d]]y, where 2 < d <26m +8 (2 <d < 26m — 8) is even.
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Table4 Some quantum MDS

codes form <9 1 " d
1 233 610 2 <d <34, deven
3 479 2578 2 <d <70, deven
6 1013 11,530 2 <d <148, d even
6 1123 14,170 2 <d <164, d even
7 1301 19,018 2 <d <190, d even
9 1657 30,850 2 <d <242, deven

Proof Suppose that g = 178m + 55. Let s = ’ﬁTH Consider the w?~!-constacyclic
code C over qu of length n with defining set Z = Ui‘:o Cs—(g+1)j> where 0 < § <

13m + 3. By Lemma 2.1 and Singleton bound, d(C) = 26 + 2. Hence, C is an wl1-
constacyclic code over qu with parameters [n, n — (26 + 1), 26 +2]. By Lemma 3.2,

C" c C. Applying the Hermitian construction and quantum Singleton bound to C
obtains a g-ary quantum MDS code with parameters [[n,n — 45 — 2,26 + 2]]. The
desired quantum MDS code follows. The case ¢ = 178m — 55 is similar. O

Some quantum MDS codes obtained from Theorem 3.3 are listed in Table 4.

Lemma 3.3 (1) For g with the form 250m + 57, where m is a positive integer, let

q>+1 g*+1 . g—1 . .
s = S5, n = 5. If C is an 0™ -constacyclic code over F > of length n with
defining set Z = Ui’:() Cs_(g+1)j, where 0 < § < 13m + 2, then cth cc;
2
(2) For q with the form 250m — 57, where m is a positive integer, let s = ‘72—+1 n=
g*+1

]25 If C is an w?~ ' -constacyclic code over F > of length n with defining set Z =
U;:O Cs—(g+1)j» where 0 < 8 < 13m — 4, then CU’ cC.

Proof (1) Suppose that Z () Z~7 # ¢. Then, by Lemma 2.7, there exist two integers
i, j,0<i, j<13m+2,suchthats —(g+1)i = —[s — (¢ +1)jlg® mod (¢ + 1)n
fore =1, 3.

Ife =1,thens — (g + 1)i = —[s — (¢ + 1) jlg mod (g + 1)n. This is equivalent
to

q> +1=1250jq + 250i mod 2(g> + 1).

AsO <i,j < 13m+2 =424 it follows that 0 < 250i,250, < 13g — 241. We
can obtain a contradiction by cons1der1ng the following two cases:

(1) 0 < 250i < 12g — 1. Then, 0 < 250jg + 250i < (13q —241)q +12q — 1 =
13g%2 — 229 — 1 < 13¢>. Assume that 250i = eq + u, where 0 < ¢ < 11 and
0 < u < g — 1 are integers. By ¢> + 1 = 250,jg + 250i mod 2(g> + 1), we have
250jq +250i = (250 +e)q +u = h(g*>+ 1) = hq*>+h, where | < h < 11 is odd.
Similar to the proof of Lemma 3.2, we can get 250/ + ¢ = hq. Thus, j = 4= =

250
% = hm + zsoe Obviously, when 1 < e, h < 11 are odd, j is not an

integer. This gives a contradiction.
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(i) 12g < 250i < 13g — 241. Then, 12g < 250jq + 250i < (13g —241)(g + 1) =
13g% — 228q — 241 < 13¢%. Assume that 250i = 12¢ + u, where 0 < u < g — 241.
Hence, 250 +250i = (250 4+12)g +u = h(g*>+1) = hg>+h,where 1 <h < 11
is odd. Similarly, we have 250 + 12 = hq. This is impossible since kg is odd.

Ife =3, thens —(¢g+ 1)i=—[s—(g+ l)j]q3 mod (g + 1)n. This is equivalent
to

250jg + g% + 1 = 250i mod 2(g> + 1).

As 0 < 250,250 < 13g — 241, it follows that q2 + 1 < 25059 + q2 +1 <
(13g — 241)q + ¢*> + 1 = 14¢g* — 241g + 1. We can obtain a contradiction by
considering the following two cases:

() ¢g>+1 <250jg +¢>+ 1 < 2¢>+ 1. Then 2504 + ¢g> + 1 = 250i, which
implies that ¢[(250i — 1). Note that —1 < 250i — 1 < 13g — 241 — 1 < 13q, so we
can assume that 250i — 1 = hq, where 1 < h < 11 is odd. Then 250i = hqg + 1 =
h(250m + 57) + 1 = 250mh + 57h + 1. Obviously, 250|(57h + 1). Assume that
57h +1=250p = 25722—g'lp, p > 1, it follows that 26 - 57h +26 =2 -57°p + 2p.
Then, we can get 57|(2p — 26). Note that 2p — 26 > —57, so we can assume that
2p —26 = 57c, ¢ = 0.Then, 2p = 57c +26 > 26,1.e. p > 13. Thus h = 2%~ >
57. It contradicts the factthat 1 < h < 11.

(i) 2(g%> + 1) < 250jg + ¢*> + 1 < 149> —241q + 1 < 14¢>%. Then, we have
250jg + g> + 1 —250i = h(g> + 1), where 2 < h < 12 is even. It follows that
250jg — (h — 1)g*> = 250i + h — 1. This gives that ¢|(250i + h — 1). Note that
1 <250i+h—1 < 13g—230 < 13¢q, sowe can assume that 250i +h—1 = h'q, where
1 <h' < 11isodd. Hence, i = M4 {h=l) _ W@OmASH—(n=) _ jyrppy o ST (02D,
Similar to the case of € = 1, we can also get a contradiction here.

Therefore, Z(Z79 =@, i.e. cth cc.

(2) The proof is similar to that of (1). O

Theorem 3.4 For g with the form 250m + 57 (250m — 57), where m is a positive

2
integer, letn = %. Then, there exist quantum MDS codes with parameters [[n, n —

2d +2,d]]y, where2 < d <26m+6 (2 <d < 26m — 6) is even.
Proof Here, we only prove the case of ¢ = 250m + 57, the case of ¢ = 250m — 57
2

is similar. Let s = %. Consider the w?~!-constacyclic code C over F> of length n
with defining set Z = U?:o Cs_(g+1)j> where 0 < § < 13m + 2. By Lemma 2.1 and
Singleton bound, d(C) = 28 + 2. Hence, C is an w?~!-constacyclic code over Fp
with parameters [n, n — (28 + 1), 28 + 2]. By Lemma 3.3, C" C C. Applying the
Hermitian construction and quantum Singleton bound to C obtains a g-ary quantum

MDS code with parameters [[n, n — 45 — 2, 25 + 2]]. The desired quantum MDS code
follows. =
In Table 5, we list some quantum MDS codes obtained from Theorem 3.4.
Lemma 3.4 (1) For g with the form 298m + 105, where m is a positive integer, let
g’+1
2

2
s = , n= %. If C is an 9™ '-constacyclic code over F,> of length n with

defining set Z = Ui‘:o Cs_(g+1)j, where 0 < § < 17Tm + 5, then cth cc;
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Table5 Some quantum MDS

codes form < 10 1 " d
1 193 298 2 <d <20, deven
1 307 754 2 <d <32, deven
2 443 1570 2 <d <46, deven
2 557 2482 2 <d <58, deven
5 1193 11,386 2 <d <124, d even
5 1307 13,666 2 <d <136, deven
7 1693 22,930 2 <d <176, d even
10 2557 52,306 2 <d <266, deven

Table 6 Some quantum MDS

codes form < 4 9 " d
1 193 250 2<d <22 deven
2 491 1618 2 <d <56, deven
2 701 3298 2 <d <80, deven
4 1087 7930 2 <d <124, d even
4 1297 11290 2 <d <148, deven

(2) For q with the form 298m — 105, where m is a positive integer, let s = quH, n=

2

%. If C is an w?~'-constacyclic code over F,2 of length n with defining set Z =
W0 Cs—(g41)j» where 0 < 8 < 17m — 7, then C*" C C.

Proof 1t is similar to the proofs of Lemma 3.2 and Lemma 3.3. O
Theorem 3.5 For g with the form 298m + 105 (298m — 105), where m is a positive

2

integer, letn = qlT'gl. Then, there exist quantum MDS codes with parameters [[n, n —
2d +2,d]]y, where 2 < d < 34m + 12 (2 < d < 34m — 12) is even.

Proof The proof is similar to that of Theorems 3.3 and 3.4. O

Applying Theorem 3.5 obtains some quantum MDS codes in Table 6.

Lemma 3.5 (1) For g with the form 338m + 99, where m is a positive integer, let

>+l g>+1 . g—1 . .
s = *5—, n = Ygg. If Cis an o7 -constacyclic code over F» of length n with
defining set Z = Ui‘:o Cs_(g+1)j, where 0 < § < 17m + 4, then cth cc;
2
(2) For g with the form 338m — 99, where m is a positive integer, let s = %, n=

2
%. If C is an w?™'-constacyclic code over F,2 of length n with defining set Z =
U0 Co—tg+1)j» where 0 < § < 17Tm — 6, then C+"  C.
Proof The proof is similar to that of Lemmas 3.2 and 3.3. O
Theorem 3.6 For g with the form 338m + 99 (338m — 99), where m is a positive

2
integer, letn = qlT“;l. Then, there exist quantum MDS codes with parameters [[n, n —
2d + 2, d]]y, where 2 < d < 34m + 10 (2 < d < 34m — 10) is even.
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Table 7 Some quantum MDS

codes form < 8 1 " d
1 239 338 2 <d <24, deven
2 577 1970 2 <d <58, deven
4 1451 12,458 2 <d < 146, d even
5 1789 18,938 2 <d <180, d even
7 2267 30,410 2 <d <228, deven
8 2803 46,490 2 <d <282, deven

Table 8 Some quantum MDS codes with smaller x, y, a

X y a q k n d

1 5 125 250m £ 57 13 (q2 +1)/125 2<d<26m=x6
3 5 89 178m £ 55 13 (q2+1)/89 2<d<26m=%8
3 7 169 338m & 99 17 (g +1)/169 2<d<34m=£10
5 7 149 298m & 105 17 (g2 +1)/149 2<d<34m£12
1 7 173 346m + 93 15 (q2 + 1)/173 2<d=<30m+£8
3 5 193 386m + 81 19 %+ 1)/193 2<d<38m+38
Proof The proof is similar to that of Theorems 3.3 and 3.4. O

Some quantum MDS codes obtained from Theorem 3.6 are listed in Table 7.

According to the proofs of the above lemmas and theorems, for smaller odd
x,y,a with ged(x, y) = 1 and ¢ with the form 2am + /(x2 + y2)a — 1 Q2am —
V(x2+y2)a — 1), where m is a positive integer such that g is a prime power, let
n= qi{—“. We can construct quantum MDS codes [[n, n — 2d + 2, d]], from consta-
cyclic MDS codes over F2, where2 < d <2km+x +y (2 <d < 2km —x —y)is
even and some k are given in Table 8.

4 Conclusion

Letg = 1 mod 4 be an odd prime power, and let x, y, m > 3be odd, x|(g — 1), y|(g+
1). Based on negacyclic codes over F,2, we construct new quantum codes of length
g1
q?—1
where 0 < 81,82 < y[ 5= .

Besides, for smaller odd x, y, a with gcd(x, y) = 1 and odd prime power g with
the form 2am +t (2am —t), where t = \/(x2 + y%)a — 1 and m is a positive integer,
q*+1

n=2xy with parameters [[n, n—2m(81—L%J+82—L2—22J)—2, > 81+82+21l45

letn = . Based on w7~ !-constacyclic codes, we construct some quantum MDS
codes with parameters [[n,n — 2d + 2,d]];, where 2 < d < 2km +x+y 2 <
d <2km —x — y) is even and k is given in Table 8. Although Theorem 3.4 in [10] is
very powerful, its construction method based on GRS codes is not simple. Hence, it is
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of certain significance to construct quantum MDS codes by using constacyclic codes
here.

In the future, we want to explore the proofs of the case that for all odd x, y, a

with ged(x,y) = 1 and odd prime power g with the form 2am + t (2am — t),
2

where t = /(x2+ y?)a — 1 and m is a positive integer, let n = qT'H, then there

exist quantum MDS codes with parameters [[n,n — 2d + 2, d]],, where 2 < d <

2km+x+y (2 <d<2km—x—y)isevenand

GAYi+x—y). i f G4y)t+(x—y)
x21yz ot 242

is an integer,

k =
x+y)i—(x—y). if Gt+y)—(x—y)
)C2+y2 ’ x2+y2

is aninteger.
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