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Abstract
In this work, we investigate a class of narrow-sense constacyclic BCH codes of length
q2m−1
a(q+1) over the finite field Fq2 , where q is a prime power, m ≥ 2 is an even integer,
and a �= 1 is a divisor of q − 1. The maximum designed distances such that narrow-
sense constacyclic BCH codes contain their Hermitian dual codes are determined.
The dimensions of the corresponding Hermitian dual-containing codes are worked
out. Further, the related quantum codes are constructed. The construction improves
the parameters of quantum codes available in the literature.

Keywords Constacyclic codes · Hermitian dual-containing codes · BCH codes ·
Quantum codes

1 Introduction

In order to shield quantum information from decoherence and quantum noise, quan-
tum error-correcting codes (QECCs) were discovered from the ground-breaking work
of Shor [24] and Steane [26] in the mid-1990s. One of the focuses of quantum coding
theory is to find quantum codes with good parameters. In 1998, Calderbank et al. [5]
established the links between binary quantum stabilizer codes and quaternary Hermi-
tian dual-containing codes and presented the method of constructing binary quantum
codes. Following that, many scholars have dedicated themselves to the construction
of non-binary QECCs (see [3, 14, 23]). A famous construction is described in the
following theorem.
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Theorem 1 [5, 14] (Hermitian construction) If C is an [n, k, d] linear code over Fq2

such that C⊥h ⊆ C, then there exits an [[n, 2k − n,≥ d]]q quantum code.

It is well known that BCH codes are an important class of cyclic codes and process
effective encoding and decoding algorithms. The most fascinating feature of BCH
codes is good algebraic structure. Their dimensions can be determined by using defin-
ing sets, and their minimum distance can be estimated by using BCH bound. For more
information on BCH codes, please consult [4, 6, 13, 17]. BCH codes over finite fields
have many applications in consumer electronics, communication system and quantum
information. In particular, Hermitian dual-containing BCH codes can be utilized to
build stabilizer codes. Grassl et al. [9] characterized Hermitian dual-containing BCH
codes according to defining sets and constructed some quantumBCH codes with small
length. Aly et al. [1, 2] studied Euclidean and Hermitian dual-containing BCH codes
more generally. Lots of quantum codes processing nice parameters were derived from
BCH codes [19, 20, 25, 33]. Recently, Song et al. [25] obtained q-ary quantum BCH

codes of length r q2m−1
q2−1

, where r = 1 or r = q−1. Zhang et al. [32] constructed q-ary

quantum codes of length r(q2m−1)
q2−1

, where 1 ≤ r ≤ q−1
2 .

Constacyclic codes are the generalization of cyclic codes, which have been dis-
cussed extensively. As an application, constacyclic BCH codes have been considered
to construct quantum codes as well (see [11, 12, 18, 27–29, 31, 34, 35]). Lin [21] con-
structed binary quantum codes of length 4m−1

3 from quaternary constacyclic codes.
Yuan et al. [31] extended the results in [21] to q-ary quantum constacyclic codes of

length q2m−1
q+1 . More generally, Wang et al. [28] constructed q-ary quantum consta-

cyclic codes of length q2m−1
ρ

, where ρ divides q +1. Zhao et al. [34] derived quantum

constacyclic BCH codes of length q2m−1
q+1 and improved the parameters of quantum

codes in [31].
Inspired by the work above, we explore a family of quantum constacyclic codes

based on constacyclic BCH codes over Fq2 of length
q2m−1
a(q+1) , where q is a prime power,

m ≥ 2 is an even integer, and a > 1 is a divisor of q − 1. The maximum designed
distances which make such narrow-sense constacyclic BCH codes be Hermitian dual-
containing are determined. The dimension of these codes is computed. Further, the
parameters of the resulting quantum codes are obtained, which improve the known
ones constructed in [2, 28, 32, 33, 35]. The paper is arranged as follows. Some related
knowledge and theorems are listed in Sect. 2. In Sect. 3, we investigate Hermitian dual-
containing constacyclic BCH codes and construct quantum constacyclic BCH codes.
In Sect. 4, our quantumBCH codes are compared with the known ones. Section5 gives
a conclusion of the paper.

2 Preliminaries

In this section, we will go over the pertinent notations and results about constacyclic
BCH codes and q2-cyclotomic cosets [15, 22].
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Let q be a prime power. Let Fq2 denote the finite field with q2 elements, and
F

∗
q2

denote the multiplicative group consisted of the nonzero elements of Fq2 . For

each α ∈ F
∗
q2
, the conjugate of α is defined by ᾱ = αq . For any two vectors x =

(x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ F
n
q2
, define Hermitian inner product of x and

y as

(x, y)h = x̄1y1 + x̄2y2 + · · · + x̄n yn .

A linear code C over Fq2 of length n is a subspace of F
n
q2
. The Hermitian dual code of

C is given by

C⊥h =
{
x ∈ F

n
q2 | (x, y)h = 0, for any y ∈ C

}
.

If C⊥h ⊆ C, then C is said to be a Hermitian dual-containing code.
Assume that gcd(n, q) = 1. Let λ ∈ F

∗
q2

have order ρ, i.e., ord(λ) = ρ. For each

vector a = (a0, a1, . . . , an−1) ∈ F
n
q2
, a λ-constacyclic shift fλ is given by

fλ(a) = (λan−1, a0, . . . , an−2).

A linear code C ⊆ F
n
q2

is λ-constacyclic if it is invariant under the map fλ on F
n
q2

.

Consider a vector a = (a0, a1, . . . , an−1) as a polynomial a(x) = a0 + a1x + · · · +
an−1xn−1. Then, a λ-constacyclic code C ⊆ F

n
q2

is an ideal in the ring Rn = Fq2 [x]
〈xn−λ〉 .

Note that each ideal inRn is principal. So, there is a monic divisor g(x) of xn − λ in
Fq2 [x] satisfying C = 〈g(x)〉, where g(x) is the generator polynomial of C. Moreover,
the dimension of C is n − deg(g(x)).

Notice that ord(λ) = ρ. Let m be the multiplicative order of q2 modulo ρn. Then,
ρn | (q2m − 1), and so n | (q2m − 1). Denote by β a primitive ρn-th root of unity in
Fq2m . Put ξ = βρ ∈ Fq2m . Then, ξ is a primitive n-th root of unity. Thus, βξ i = β1+ρi ,
0 ≤ i ≤ n − 1, are the roots of xn − λ. Denote �ρn = {1 + ρi | 0 ≤ i ≤ n − 1}. The
set

Z = { j ∈ �ρn | g(β j ) = 0}

forms the defining set of C. The q2-cyclotomic coset of i modulo ρn consists of

Ci =
{
iq2 j (mod ρn) | j = 0, 1, . . . ,mi − 1

}
,

where mi is the smallest positive integer satisfying iq2mi ≡ i(mod ρn). The poly-
nomial Ms(x) = ∏

j∈Cs
(x − β j ) ∈ Fq2 [x] is called the minimal polynomial of βs

over Fq2 . A q2-cyclotomic coset is skew symmetric if ρn − qi ∈ Ci , otherwise skew
asymmetric. The skew asymmetric cosetsCi andC−qi = Cρn−qi come in pair. Denote
by (Ci ,C−qi ) such a skew asymmetric pair.
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Assume that ρ | (q + 1). Then, the Hermitian dual code of a λ-constacyclic code
over Fq2 is still λ-constacyclic. The following lemma gives an equivalent condition
for a Hermitian dual-containing code by its defining set.

Lemma 1 [12] Let λ ∈ F
∗
q2

and ρ = ord(λ) | (q + 1). Let C be a λ-constacyclic code

of length n over Fq2 with defining set Z . Then, C⊥h ⊆ C if and only if Z ∩ Z−q = ∅,
where Z−q = {−qz mod ρn | z ∈ Z}.

Let δ be an integer with 2 ≤ δ ≤ n and b = 1 + ρi ∈ �ρn . A λ-constacyclic BCH
code C ⊆ Rn with designed distance δ is a λ-constacyclic code with defining set

Z = Cb ∪ Cb+ρ ∪ Cb+2ρ ∪ · · · ∪ Cb+(δ−2)ρ .

If b = 1, then C is called a narrow-sense constacyclic BCH code, otherwise a non-
narrow-sense constacyclic BCH code. For a constacyclic code, the minimum distance
has the well-known bound.

Lemma 2 [15] (BCH bound for constacyclic codes) Let C be a λ-constacyclic code
over Fq of length n. Let ord(λ) = ρ and β be a primitive ρn-th root of unity. If the
generator polynomial g(x) of C has the elements {β1+ρi | 0 ≤ i ≤ δ −2} as the roots,
then the minimum distance of C is not less than δ.

3 Quantum constacyclic BCH codes

Letm be an even integer and a > 1 be a divisor of q−1. In this section,we takeλ ∈ F
∗
q2

and ρ = ord(λ) = q + 1. Let C be a narrow-sense λ-constacyclic BCH code over Fq2

of length n = q2m−1
a(q+1) . Now, we are going to obtain a necessary and sufficient condition

on the maximum designed distance to make sure the code C to be Hermitian dual-
containing. Then, we will compute the exact dimension of C and construct quantum
codes from these narrow-sense constacyclic BCH codes by Hermitian construction.

Lemma 3 Let C be a λ-constacyclic code over Fq2 of length n with defining set Z =⋃δ
i=0 C1+ρi . Then, C⊥h ⊆ C if and only if 0 ≤ δ ≤ δemax − 2, where

δemax = qm+1 − q2 − q + 1

aρ
+ 2. (1)

Further, δemax is the maximum designed distance such that C⊥h ⊆ C.

Proof By Lemma 1, C⊥h ⊆ C if and only if Z ∩ Z−q = ∅. Assume that Z ∩ Z−q �= ∅.
Then, there exist 0 ≤ i1, i2 ≤ δemax − 2 and some positive integer 0 ≤ t ≤ m − 1 such
that

(1 + ρi1)q
2t+1 + 1 + ρi2 ≡ 0(mod ρn). (2)
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Notice that Eq. (2) can be written as (1 + ρi2)q2(m−t−1)+1 + 1 + ρi1 ≡ 0(mod ρn).
We can let 0 ≤ t ≤ m

2 − 1. Then 1 + q ≤ (1 + ρi1)q2t+1 + 1 + ρi2 and

(1 + ρi1)q
2t+1 + 1 + ρi2 ≤

(
1 + qm+1 − q2 − q + 1

a

)
qm−1 + 1 + qm+1 − q2 − q + 1

a

= q2m − qm + (a + 1)qm−1 − q2 − q + a + 1

a

<
q2m − 1

a
= ρn.

This is in contradiction to Eq. (2). Thus, Z ∩ Z−q = ∅ and C⊥h ⊆ C. Next, we show
that δemax is the maximum designed distance such that C⊥h ⊆ C. We have

ρn − (1 + ρ(δemax − 1))qm−1 = q2m − 1

a
−

(
1 + ρ

(qm+1 − q2 − q + 1

a(q + 1)
+ 1

))
qm−1

= qm+1 + qm − qm−1 − 1

a
− qm − 2qm−1

= 1 + ρ
qm+1 − (a − 1)qm − (2a + 1)qm−1 − a − 1

a(q + 1)
= 1 + ρχ,

where

χ = qm+1 − (a − 1)qm − (2a + 1)qm−1 − a − 1

a(q + 1)

= qm − (qm−1 + 1)/(q + 1)

a
− qm−1 − qm−1 + 1

q + 1
.

Notice thatχ is a positive integer sincem is even anda | q−1.Moreover,χ < δemax−2.
This implies that (C1+ρ(δemax−1),C1+ρχ ) is a skew symmetric pair. This completes the
proof. ��

In order to determine the dimension of the constacyclic BCH codes C, we need to
characterize the q2-cyclotomic cosets module ρn. The following result determines the
cardinalities of the q2-cyclotomic cosets.

Lemma 4 Let m be an even positive integer and a | q − 1. For 0 ≤ i ≤ δemax − 2, the
cardinality of the q2-cyclotomic coset C1+ρi is m, except | C1+ργ |= m

2 if q is odd

and a is even, where γ = qm−1
2(q+1) .

Proof Let | C1+ρi |= l, for 1 ≤ l ≤ m. If there exists some i , 0 ≤ i ≤ δemax − 2, such
that l < m, then 1 ≤ l ≤ m

2 since l | m. This means that

(1 + ρi)(q2l − 1) ≡ 0(mod ρn). (3)
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• If 1 ≤ l ≤ m
2 − 1 (m ≥ 4), then

q2 − 1 ≤ (1 + ρi)(q2l − 1) <
(
1 + qm+1 − 1

a

)
(qm−2 − 1)

= q2m−1 − qm+1 + (a − 1)qm−2 − a + 1

a

<
q2m − 1

a
= ρn,

which is in contradiction to Eq. (3).

• If l = m
2 , then Eq. (3) becomes (1 + ρi)(qm − 1) ≡ 0(mod q2m−1

a ). Thus,

a(1 + ρi) ≡ 0(mod qm + 1). (4)

If q is even, then gcd(q − 1, qm + 1) = 1; otherwise, gcd(q − 1, qm + 1) = 2. It
follows that gcd( qm+1

gcd(2,a)
, a) = 1 and Eq. (4) becomes

1 + ρi ≡ 0

(
mod

qm + 1

gcd(2, a)

)
. (5)

Note that

1 + ρi ≤ 1 + qm+1 − q2 − q + 1

a
< 1 + qm+1 − 1

a
< qm+1. (6)

• If q is odd and a is even, then by Eqs. (5) and (6), there exists an integer
1 ≤ t < 2q such that 1 + ρi = qm+1

2 t . Then, i = t(qm+1)−2
2(q+1) , which is an

integer if and only if (qm + 1)t ≡ 2(mod 2(q + 1)). Notice that qm + 1 ≡
2(mod 2(q + 1)). Then, i is an integer if and only if t ≡ 1(mod q + 1). It

must be t = 1 or t = q + 2. If t = q + 2, then i = qm+1+2qm+q
2(q+1) > δemax − 2,

which is a contradiction. Thus, t = 1 and | Cqm+1
2

|=| C1+ργ |= m
2 , where

γ = qm−1
ρ

.
• If q is odd and a is odd, then by Eqs. (5) and (6), there exists an integer
1 ≤ t ≤ q − 1 such that 1 + ρi = (qm + 1)t . Then, i = (qm+1)t−1

q+1 , which is
an integer if and only if (qm + 1)t ≡ 1(mod q + 1), i.e., 2t ≡ 1(mod q + 1).
However, q + 1 is even and 2t ≡ 1(mod q + 1) has no solution.

• If q is even, with a similar method as above, one can get that i is an integer if
and only if 2t ≡ 1(mod q+1). Since q+1 is odd, 2t ≡ 1(mod q+1) has the

only solution t = q+2
2 . Thus, 1 + ρi = (qm + 1) q+2

2 and i = qm+1+2qm+q
2(q+1) >

δemax − 2, which is a contradiction.

This completes the proof. ��
For the sake of the exact dimension of C, the following lemma is a requirement.
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Lemma 5 Let m ≥ 2 be an even integer. Let n = q2m−1
aρ

, where a > 1 is a divisor of

q − 1. For 1 ≤ i ≤ δemax − 2, 1 + ρi is not a coset leader if i ≡ q − 1(mod q2) or

i = (qm−1)s
aρ

, where a
2 < s < a.

Proof If i ≡ q − 1(mod q2), then there exists a positive integer r such that i =
q − 1 + q2r . Then, 1 + (q + 1)i = q2(1 + (q + 1)r). Thus, 1 + ρi ∈ C1+ρr is not a
coset leader.

If i �≡ q − 1(mod q2) and 1 + ρi is not a coset leader, then there exists an integer
j , 1 ≤ j < i ≤ δemax − 2, such that 1 + ρi ∈ C1+ρ j and C1+ρi = C1+ρ j . It can be
seen thatC1+ρi = C1+ρ j if and only if there exists 1 ≤ l ≤ m such that (1+ρi)q2l ≡
1+ρ j(mod ρn), which is equivalent to 1+ρi ≡ (1+ρ j)q2(m−l)(mod ρn). So, we
can assume 1 ≤ l ≤ m

2 . Then,

q2l − 1 + (q + 1)(q2l i − j) ≡ 0

(
mod

q2m − 1

a

)
. (7)

If 1 ≤ l ≤ m
2 − 1 (m ≥ 4), then

q2 − 1 < q2l − 1 + (q + 1)(q2l i − j) < qm−2 − 1 + q2m−1 − qm − qm−1 + qm−2

a

<
q2m − 1

a
= ρn,

which is in contradiction to Eq. (7).
If l = m

2 , then

(1 + ρi)qm ≡ 1 + ρ j

(
mod (qm + 1)

qm − 1

a

)
(8)

and (1 + ρi)qm ≡ 1 + ρ j(mod qm + 1). Thus, 2 + ρ(i + j) ≡ 0(mod qm + 1).
Then, there exists a positive integer t such that

2 + ρ(i + j) = (qm + 1)t . (9)

Notice that

(qm + 1)t = ρ(i + j) + 2 ≤ 2 · q
m+1 − q2 − q + 1

a
+ 2

< 2 · q − 1

a
· q

m+1 − 1

q − 1
+ 2

= 2 · q − 1

a
· (qm + qm−1 + · · · + q + 1) + 2.

Thus, 1 ≤ t ≤ 2(q−1)
a .
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By Eq. (9), we have j = (qm+1)t−2
q+1 − i . Putting it into Eq. (8), one can get

(1 + ρi)qm ≡ (qm + 1)t − 1 − ρi

(
mod

q2m − 1

a

)
.

Then, we have qm + 1 + ρi(qm + 1) − (qm + 1)t ≡ 0(mod q2m−1
a ), implying that

1 + ρi − t ≡ 0(mod qm−1
a ). Thus, there exists a positive integer s such that

ρi = qm − 1

a
· s + t − 1. (10)

Due to the fact that m is even and a | q − 1, it must be ρ | qm−1
a . Hence, by Eq.

(10), ρ | t − 1, i.e., t ≡ 1(mod q + 1). Since 1 ≤ t ≤ 2(q−1)
a and a �= 1, we have

t = 1. Thus, i = (qm−1)s
aρ

and j = (qm−1)(a−s)
aρ

. Since 1 + ρi is not a coset leader and
1 ≤ j < i ≤ δemax − 2, we have a

2 < s < a. This completes the proof. ��
Let C be a narrow-senseλ-constacyclic BCHcode overFq2 of length nwith defining

set Z = ⋃δ−2
i=0 C1+ρi , where 2 ≤ δ ≤ δemax and ordρn(λ) = ρ. Let [statement] = 1

if the “statement” is true; otherwise, [statement] = 0. From preceding lemmas, we
can infer the following theorem.

Theorem 2 Let m ≥ 2 be an even integer. Let n = q2m−1
aρ

, where a > 1 is a divisor

of q − 1. Denote � = δ − 2 −
⌊

δ−q−1
q2

⌋
and ε = 1

2 [q odd, a even]. Assume that

 = 1, 2, . . . , � a

2 � − 2 if a > 4 and 
 = 0 if a = 2, 3 or 4. Put

κ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�, i f 2 ≤ δ ≤ qm−1
2ρ + 1,

� − ε, i f qm−1
2ρ + 2 ≤ δ ≤ qm−1

aρ
(� a

2 � + 1) + 1,

� − ε − 
, i f qm−1
aρ

(� a
2 � + 
) + 2 ≤ δ ≤ qm−1

aρ
(� a

2 � + 
 + 1) + 1,

� − ε − � a
2 � + 1, i f qm−1

aρ
(a − 1) + 2 ≤ δ ≤ δemax.

(11)

Let the code C be defined as above. Then, C is an [n, n − mκ,≥ δ] Hermitian
dual-containing constacyclic BCH code.

Proof By Lemma 2, the minimum distance of C is at least δ. By Lemma 3, C is a
Hermitian dual-containing code. From Lemma 4, if 2 ≤ δ ≤ qm−1

2ρ + 1, all the q2-

cyclotomic cosets in the defining set Z have cardinality m; if qm−1
2ρ + 2 ≤ δ ≤ δemax

and [q odd, a even] = 1, then one of the q2-cyclotomic cosets in Z has cardinality
m
2 and the others have cardinality m.
From Lemma 5, one can get C1+ρi = C1+ρ(q−1+q2r), for some integer r . Thus,

the number of the q2-cyclotomic cosets in Z is reduced by
⌊

δ−2−(q−1)
q2

⌋
+ 1 =
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⌊
δ−q−1

q2

⌋
+ 1. In addition, by Lemma 5, one can get that i = (qm−1)s

aρ
are not coset

leaders, where a
2 < s < a. Notice that s can take s = � a

2 � + 1, � a
2 � + 2, . . . , a − 1.

Let 
 = 1, 2, . . . , � a
2 �−2 ifa > 4 and 
 = 0 ifa = 2, 3or 4. If q

m−1
aρ

(� a
2 �+
)+2 ≤

δ ≤ qm−1
aρ

(� a
2 � + 
 + 1) + 1, then the number of the q2-cyclotomic cosets in Z is

reduced by 
. If qm−1
aρ

(a − 1) + 2 ≤ δ ≤ δemax, then the number of the q2-cyclotomic
cosets in Z is reduced by � a

2 � − 1. Combining the discussions above, we have the
desired result. ��

From Theorems 1 and 2, there exist quantum codes with the following parameters.

Theorem 3 Let m ≥ 2 be an even integer. Let n = q2m−1
aρ

, where a > 1 is a divisor
of q − 1. Then, there exists a quantum code with parameters [[n, n − 2mκ,≥ δ]]q ,
where κ is given as Eq. (11).

4 Code comparisons

In this section, we compare the newly obtained quantum codes in Sect. 3 with those
available in the literature [2, 8, 28, 32, 33, 35]. To our knowledge, there exists the
same code length as ours in only these studies at present. To compare more clearly,
we now list the related results in detail as follows.

Theorem 4 [2, Theorem 21] Let n = q2m−1
a(q+1) , where a > 1 is a divisor of q − 1 and

m ≥ 2. Let 2 ≤ δ ≤ δA = qm−1
a(q+1) . Then, there exists a quantum code with parameters

[[n, n − 2m�(δ − 1)(1 − 1/q2)�,≥ δ]]q .

Theorem 5 [32, Theorem 6] Let q ≡ 1(mod m). Let n = r(q2m−1)
q2−1

, where m ≥ 4 and

1 ≤ r ≤ q−1
2 . Let γ = r(qm−1)

q2−1
, ζl = 2r(qm+1−q)

m(q2−1)
− � 2r

m �, ζν = (m−2)r(qm+1−q)

m(q2−1)
−

r + � 2r
m � and 
 = q2−1

r . For 2 ≤ δ ≤ δR = ζl + ζν + 2, write ζl = i1q2 + j1 and

ζν = i2q2 + j2. Set j = δ − ζν − 2 − i1q2, r1 = min
{
� δ−2−i1q2

γ
�, � i1q2

γ
�
}
, r2 =

� i1q2 gcd(2,
)qm+1 �, r3 = � (δ−2−i1q2) gcd(2,
)
qm+1 �, r4 = � ζν gcd(2,
)

qm+1 �, r5 = � (δ−2−ζν) gcd(2,
)
qm+1 �,

r6 = � (δ−2) gcd(2,
)
qm+1 � and r7 = min

{
� δ−2−ζν

γ
�, � 2(q−1)

m �
}
. Let

δθ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(�(δ − 2)(1 − 1/q2)� + 1
2r6) + 1, i f 2 ≤ δ ≤ i1q2 + 2,

m(�(δ − 2)(1 − 1/q2)� − 1
2 (r2 + r3) − r1) + 1, i f i1q2 + 2 ≤ δ ≤ i1q2

+2 + ζν,

m(�(δ − 2)(1 − 1/q2)� + 1 − 1
2 (r4 + r5) − r7) + 1, i f i1q2 + 2 + ζν ≤ δ ≤

δR and j2 + j ≥ q2,

m(�(δ − 2)(1 − 1/q2)� − 1
2 (r4 + r5) − r7) + 1, i f i1q2 + 2 + ζν ≤ δ ≤

δR and j2 + j < q2.
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Then, there exists a quantum code with parameters [[n, n − 2δθ ,≥ δ]]q .
Theorem 6 [33, Theorem 9] Let q ≥ 3 be a prime power. Let n = r q2m−1

q2−1
, where

m = ordn(q2) is even and 1 ≤ r ≤ q+1
2 . Then, there exists an [[n, n − 2rm(qm−1 −

qm−2),≥ r qm−1
q+1 + 1]]q quantum code.

Theorem 7 [35, Corollary 3] Let q be an odd prime power and m ≥ 2 be an even

integer, n = q2m−1
q2−1

. Then, for any 2 ≤ δ ≤ δZ = qm+1−q
q2−1

, there exists a quantum code

with parameters [[n, n − 2m�(δ − 3/2)(1 − q−2)�,≥ δ]]q .
Theorem 8 [28, Theorem 10] Let m ≥ 4 be even and q ≥ 3 be a prime power. Let

n = q2m−1
e , where e | qm − 1 and q2 − q ≤ e ≤ q2 − 1. For 2 ≤ δ ≤ qm+1−q

e , denote
the q-adic expansion of e(δ − 1) by e(δ − 1) = ∑m

i=0 δ′
i q

i .

(1) If δ′
i = 0 for i = 1, . . . ,m − 1, δ′

m ≥ 1 and δ′
m > δ′

0, then there exists a quantum

code with parameters [[n, n − 2m�(δ − 1)(1 − q2)� − � δ′
0
e �,≥ δ]]q .

(2) Otherwise, there exists a quantum code with parameters [[n, n − 2m�(δ − 1)(1−
q2)�,≥ δ]]q .
Next, we compare the maximum designed distances with ours in details. Let δA, δR

and δZ denote the maximum designed distances in Theorems 4, 5 and 7, respectively.
When m ≥ 2 is even, our maximum designed distance δemax = qδA − q−1

a + 2. The

designed distance in Theorem 6 only takes δ = r qm−1
q+1 +1. Thus, our construction can

givemuchmore new quantum codes than the constructions in Theorem 4 and Theorem
6. Under the conditions that r | q − 1 and m ≥ 4, if m � 2r , then δemax = δR + 1;
otherwise, δemax = δR . For a = q − 1, δemax = δZ + 1. Hence, our construction can get
one more new quantum codes than the constructions in Theorem 5 and Theorem 7.

For fixed length n and designed distance δ, we contrast the dimensions of quantum
codes to provide further information. Let kA, kR, kZ and kW denote the dimensions

of quantum codes of length n = q2m−1
a(q+1) in Theorems 4, 5, 7 and 8, respectively. Let

kE denote the dimension of our quantum codes when m ≥ 2 is even. Let δ − 1 =
δ1q2 + δ0 ≤ δA − 1, where 0 ≤ δ0 ≤ q2 − 1. Then, kE > kA if q + 1 ≤ δ0 ≤ q2 − 1.
In rare cases, kE = kA. Thus, our quantum codes have higher dimension than those
in Theorem 4.

If q is odd and a = q − 1, then n = q2m−1
q2−1

. We compare our quantum codes with

those in Theorem 7. From Theorems 2 and 3, one can see that if qm−1
2(q+1) +2 ≤ δ ≤ δZ ,

then kE > kZ , and if 2 ≤ δ ≤ qm−1
2(q+1) + 1, then kE ≥ kZ . Thus, our construction

can produce many quantum codes with better parameters than those in Theorem 7.
Moreover, for the case that q is even, we can obtain quantum codes from constacyclic
BCHcodes aswell. InTable 1,we compare our quantumcodes for (q,m, a) = (3, 4, 2)
with quantum codes obtained in Theorem 7 and the Database [8]. It indicates that
quantum codes in Theorem 3 have higher rate than quantum codes in Theorem 7 and
the Database [8]. The symbol “ - ” represents that there exist no quantum codes with
the given length or designed distance.
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In Theorem 5, quantum codes are constructed under the constraint that q ≡ 1(mod
m) and m ≥ 4 is even. However, we can construct quantum codes from constacyclic
BCH codes for any prime power q, and we can handle the case m = 2. For example,
if m = 2 and (q, a) = (7, 3), our construction can produce 7-ary quantum codes with
parameters [[100, 80,≥ 8]]7 and [[100, 76,≥ 9]]7, which are better than those in [18,
Theorem 2]. Many of our quantum codes have better parameters than the codes in
Theorem 5. In Table 2, we compare our quantum codes when (q,m) = (5, 4) and
a = 2, 4 with quantum codes in Theorem 5. From Table 2, we see that our quantum
codes have higher rate in many cases.

In Theorem 8, under the conditions that q2 − q ≤ e ≤ q2 − 1 and m ≥ 4, we
have kE ≥ kW when the lengths and designed distances are given. We provide some
examples in Tables 1 and 2 for comparing quantum codes in Theorem 3 with quantum
codes in Theorem 8. Our construction can produce a number of quantum codes with
better parameters than those in [28].

5 Conclusion

In this paper, we investigated constacyclic narrow-sense BCH codes of length q2m−1
a(q+1)

over Fq2 , wherem ≥ 2 is even and a > 1 is a divisor of q−1. The maximum designed
distance such that the codes contain their Hermitian duals were determined. The exact
dimensions of the Hermitian dual-containing constacyclic BCH codes were calculated
by tracing the q2-cyclotomic cosets. With the aid of these results, we constructed a
number of quantum codes by Hermitian construction. Many of these quantum codes
have higher rate than those available in the literature. Throughout the study, we assume
that a divides q−1 so that an explicit formula on the designed distance of constacyclic
dual-containing codes can be described. For a general a, there exist quantum codes
with good parameters from narrow-sense constacyclic BCH codes when we conduct
experiments. It isworthwhile tomake further research for a general a and other lengths.

Quantum constacyclic BCH codes are an important class of quantum error-
correcting codes. Due to good algebraic structure, the minimum distance of quantum
constacyclic BCH codes can be estimated by virtue of the BCH bound for classi-
cal constacyclic codes. Hence, we can measure the error-correcting capacity of the
resulting quantum constacyclic BCH codes. At the application level, our quantum
constacyclic BCH codes can be theoretically encoded and decoded by quantum shift
registers [9, 30], which are performed by the ion traps or nuclear magnetic resonance
(NMR) in the experiments [7, 16]. Meanwhile, the constructed codes contain many
lengths and hence provide alternative quantum systems. Thus, quantum constacyclic
BCH codes are the preferred code resource in quantum error correction and have
potential applications in quantum computation and communication. At the physical
level, how to realize the error correction and reduce error rate in quantum channels is
a crucial problem related to application of quantum constacyclic BCH codes.
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