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Abstract
Support vectormachine (SVM) is one of the classicalmachine learning algorithms. It is
widely used and researched for its generalizability and low sample data requirements.
However, classical SVM often suffers from problems such as slow solving speed and
insufficient accuracy. Quantum genetic algorithm (QGA), which is based on quantum
computing principle, is characteristic of faster solving speed and better accuracy than
that of classical genetic algorithm, but it is also deficient in easiness of resorting to local
optimal solution and insufficient convergence rate in the face of complex problems. In
this paper, we propose an improved quantumgenetic algorithm (IQGA),which designs
a crossover evolution strategy and dynamic rotation angle to avoid local optima. It
also adds a quantum convergence gate to address the issue of local convergence.
The improved quantum genetic algorithm is applied to SVM parameter optimization,
thus its superiority through experimentation and analysis is demonstrated. The results
indicate that the model based on improved quantum genetic algorithm support vector
machine (IQGA-SVM) has higher prediction accuracy and faster convergence rate
compared to back-propagation neural network, classical genetic algorithm support
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vector machine (GA-SVM) and quantum genetic algorithm support vector machine
(QGA-SVM) models.

Keywords Quantum genetic algorithm · Dynamic rotation angle · Quantum
convergence gate · Support vector machine · Parameter optimization

1 Introduction

Support vector machine (SVM) is a rapidly evolving machine learning algorithm
that was officially introduced by Cortes and Vapnik in 1995 [1]. Due to its high
generalization ability, good robustness, and capability to achieve excellent results
even with relatively small amounts of sample data, support vector machine has gained
favor with many researchers. Parameter optimization is a key research area in SVM,
as it plays a crucial role in SVM’s performance.

In 2006,Huang et al. first proposed the use of genetic algorithms (GA) for parameter
optimization in support vector machines [2]. Wang et al. used improved genetic algo-
rithm to simultaneously optimize the penalty parameter, kernel parameter, and loss
function of SVM, which was of great significance [3]. By redefining the optimal range
of genetic algorithm parameters, Meng et al. proposed an adaptive genetic algorithm,
which can help conventional genetic algorithm avoid getting trapped in local optimum
solution and guarantee the efficiency of search [4]. In order to improve SVM accuracy
and minimize training time, Sajan et al. proposed a genetic algorithm to obtain SVM
parameter optimal value and applied it to online voltage stability monitoring [5]. In
addition to GA, Ant Colony Optimization (ACO) and Particle Swarm Optimization
(PSO) are also used in SVM optimization. Gao et al. proposed an improved ACO for
optimizing SVMparameters, which provided a new perspective for SVMoptimization
despite its relatively high complexity and long running time [6]. Hu et al. proposed
a particle swarm optimization algorithm, which is applied to the diagnosis of analog
circuits, thus improving the accuracy of the diagnosis [7]. Guo et al. proposed an SVM
model based on particle swarm algorithm parameter optimization, which significantly
improved the fitting accuracy and possessed good generalization ability [8].

In this paper, we come up with an improved quantum genetic algorithm (IQGA)
for SVM parameter optimization so as to improve the classification accuracy and
efficiency of SVMs. The QGA differs from conventional genetic algorithms in that it
uses quantum bits (qubits) to represent individuals, which, in addition to their typical
states, can be in a superposition of "0" and "1" states. Therefore, multiple states can be
obtained by repeatedly measuring individuals with a relatively small population size,
which not only possess superior diversity but also exhibit better convergence.However,
traditional quantum genetic algorithms themselves are prone to local extremes and
may fall into local optima. Furthermore, the fixed rotation angle adjustment strategy
adopted in the algorithm for updating quantum rotation gates is inefficient and also
poses a risk of getting stuck in local optima. Therefore, this paper proposes a crossover
and evolution strategy while also incorporating an adaptive dynamic rotation angle
to improve efficiency and address the problem of the algorithm being prone to local
optima. To prevent the probability amplitude α and β of qubits from prematurely

123



Research on support vector machine optimization based on improved … Page 3 of 27 380

converging to 0 or 1 and causing the algorithm to become stuck in local optima, a
quantum convergence gate Hε is used to correct the magnitude of the qubit probability
that gets too close to 0 or 1 [9]. Finally, the parameter optimization and classification
experiments of support vector machine are carried out by using the IQGA.

To validate the performance of IQGA-SVM, it is used to classify the benchmark
dataset and the results are comparedwithQGA-SVM,GA-SVMand back-propagation
neural network. There are three steps to classification: firstly, selecting and prepro-
cessing data samples, and splitting them into training sets and test sets; secondly,
training the SVM using the training sets; and finally, testing the trained model to
obtain classification results.

The remainder of the paper is as follows: Sects. 2 and 3 introduce the fundamen-
tal concepts of SVM and QGA, respectively. The IQGA in detail comes in Sect. 4.
Section 5 illustrates the application of IQGA to SVM parameter optimization. In
Sect. 6, we demonstrate the learning performance of IQGA-SVM in the classification
of benchmark datasets. Finally, we summarize the research findings and future work
of this study in Sect. 7.

2 Support vector machine

SVM is a classification and regression algorithm widely used in statistical learning.
And it is a type of generalized linear classifier which is suitable for small sample data
and classifies it binary. The idea is to maximize the margin, which can be converted
into a convex quadratic programming problem [10, 11].

The SVM has the following advantages, such as efficient high-dimensional data
processing, good robustness and good generalization ability on the small sample data
set. Therefore, it has a wide range of applications in many fields, especially in classi-
fication and regression problems. SVM can be used for financial tasks such as credit
scoring, risk assessment and stock market forecasting in the economic field. And it
can also be used inmedical image analysis, such as disease detection, cancer diagnosis
and medical image classification in the medical field. This section will introduce the
fundamental principles of SVM.

2.1 Linear support vector machine

If the samples are linearly separable, which means they can be separated into two
categories by a separation hyperplane: ω · x + b � 0,then the maximum classification
margin problem of SVM optimal hyperplane can be transformed into the optimal
solution to the linear constraint problem:

max
ω, b

2

ω
⇔ min

ω, b

1

2
ω,

s.t. yi (ωi x + b) ≥ 1, i � 1, 2, . . . , n. (1)
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By introducing Lagrange multipliers, the convex quadratic programming problem
can be turned into a constrained optimization problem for solving the functional by
using the duality principle:

max
α

n∑

i�1

αi − 1

2

n∑

i�1

n∑

j�1

αiα j yi y j x
T
i x j ,

s.t.

{∑n
i�1 yiαi � 0

αi ≥ 0
, (2)

of which α � (α1, α2, . . . , αn) is the Lagrangian multiplier.
This is a quadratic programming problem under inequality constraints and has a

unique solution. According to the KKT conditions, only a small subset of solution
variables (usually a tiny fraction) will be non-zero. The samples corresponding to
these solutions that are not zero are support vectors.

If α∗ is the optimum solution to the convex quadratic programming problem, then
the optimum solution to the original problem is:

ω∗ �
n∑

i�1

α∗
i yi xi . (3)

b∗ � yi −
n∑

i�1

α∗
i yi x

T
i x j . (4)

2.2 Nonlinear support vector machine

Nonlinear problems are commonly encounteredwhen dealingwith practical problems.
With the introduction of kernel functions and the use of the idea of nonlinear trans-
formation of inner product functions, it is possible to map samples in a linear space
to a high-dimensional feature space via a nonlinear transformation, thereby construct-
ing the optimal separation hyperplane in high-dimensional space and achieving linear
separability [12, 13]. If there exists a mapping function φ : x → φ(x) that can repre-
sent the mapping from high-dimensional space to low-dimensional space, then there
will be a separation hyperplane ωTφ(x)+b. Similarly, the problem of maximizing the
classification margin can be formulated as finding the optimal solution to a linearly
constrained problem, expressed as

max
ω, b

2

ω
⇔ min

ω, b

1

2
ω,

s.t. yi (ωiφ(x) + b) ≥ 1, i � 1, 2, . . . , n. (5)

By introducing Lagrange multipliers, the convex quadratic programming problem
can be turned into a constrained optimization problem for solving the functional by
using the duality principle:
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max
α

n∑

i�1

αi − 1

2

n∑

i�1

n∑

j�1

αiα j yi y jφ(xi )
Tφ(x j ),

s.t.

{∑n
i�1 yiαi � 0

αi ≥ 0
, (6)

of which α � (α1, α2, . . . , αn) is the Lagrangian multiplier.
To solve the above equation, which involves the formula: φ(xi )Tφ(x j ), it is very

difficult to directly calculate the internal product mapped to a high-dimensional space.
If we consider a function:

κ
(
xi , x j

) � 〈φ(xi ), φ(x j )〉 � φ(xi )
Tφ

(
x j

)
. (7)

Complex calculations can be avoided if the inner product between xi and x j in a
high-dimensional feature space equals the value of the function κ

(
xi , x j

)
obtained in

the original space. Therefore, κ
(
xi , x j

)
is kernel function.

Because RBF kernel functions have the advantages of broad dimension mapping,
few parameter requirements and relatively simple computations, it is mainly used in
SVM research [14, 15]. The RBF kernel function can be expressed as:

κ
(
xi , x j

) � exp
(−g‖xi−x j‖

)2, (8)

which g is kernel parameter.

2.3 Parameter optimization of SVM

Support vector machines have two critical parameters: the penalty parameter C and the
kernel function g. The penalty parameter C describes how much the model tolerates
error. The larger the penalty parameter C, the more the model is unwilling to accept
errors, and the more severe the punishment for misclassified samples. This, in turn,
may lead to overfitting. On the contrary, a smaller penalty parameter C indicates that
the model is more tolerant of errors, resulting in lighter punishment for misclassified
samples. However, this may lead to underfitting. If the penalty parameter C is too large
or too small, it will lead to a poor generalization effect of the model, so as to fail to
achieve the effect and purpose of learning. In summary, the penalty parameter C is
to strike a balance between model accuracy and model complexity. Therefore, it is
particularly important to choose an appropriate penalty parameter C.

Similarly, the kernel parameter g is a parameter of the RBF function after selecting
it as the kernel function. Implicitly determines the data distribution after mapping to
the new feature space. The larger the kernel parameter g, the fewer support vectors.
On the contrary, smaller values of the kernel parameter g lead to more support vectors.
The number of support vectors affects the speed of training and prediction.

The selection of the kernel function g has a significant impact on SVMperformance,
as does the penalty parameter C. In application, it is necessary to select the appropriate
parameter combination according to the specific problem in order to obtain the best
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classification effect. Therefore, IQGA is chosen to automatically find the optimal
parameters of SVM, and the feasibility of this method is proved in this paper.

3 Quantum genetic algorithm

Hanet al. first proposed the quantumgenetic algorithm [2]. TheQGAis an evolutionary
algorithm based on quantum computing, which combines the advantages of quantum
computing and GA. An intuitive way to understand genetic algorithms: GA is a class
of randomized search algorithms that learn from the mechanisms of natural selection
and inheritance in biology. It simulates the evolution process of an artificial population.
A group of individuals is retained in each iteration through selection, crossover and
mutation. Repeating this process, after several generations of population evolution, its
fitness reaches an approximately optimal state in the ideal case.

Unlike classical GA, QGA encodes chromosomes using qubits which can enrich
the diversity of populations. QGA takes the current population’s optimal individual as
the target and evolves the current individuals toward the optimal individual through
quantum gate operations instead of by selection or crossover. After each iteration
update, the quantum state collapses into a definite state. QGA,with its unique encoding
scheme and iterative operations, exhibits a faster convergence rate and higher accuracy.
This section will introduce the fundamental principles of QGA.

3.1 Quantum chromosome

The equation |ϕ〉 � α|0〉 + β|1〉 can be used to represent quantum states, where α

and β represent the probability amplitudes of the quantum state. That means, there
is a probability of α that the quantum state collapses into the ’0’ state, and there is
a probability of β that the quantum state collapses into the ’1’ state, satisfying the
normalization condition.

In QGA, [α, β]T can represent a qubit. A quantum system with m qubits can
represent a set of chromosomes, which corresponds to an individual:

[
α1

β1

∣∣∣∣

∣∣∣∣
α2

β2

∣∣∣∣ . . .
∣∣∣∣
αm

βm

]
(9)

3.2 Quantum rotation gate

QGA updates the population through quantum gate operations, causing current indi-
viduals to evolve toward the optimal individuals[16, 17]. The quantum rotational gate
matrix can be expressed as follows:

R(θ) �
[
cos θ − sin θ

sin θ cos θ

]
. (10)
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Performing a quantum gate operation on the quantum state |ϕ〉 � α|0〉 + β|1〉
yields the following expression:

∣∣ϕ′〉 � R(θ) × |ϕ〉 �
[
cos θ − sin θ

sin θ cos θ

][
α

β

]
�

[
α′
β ′

]
, (11)

where |ϕ〉 and |ϕ′〉 represent quantum states before and after the operation of the
quantum gate, respectively. Figure 1 is a diagram of quantum rotation gate.

The specific adjustment strategy for determining rotation angle of the quantum gate
and direction are shown in Table 1. Moreover, f (x) and f (b) in Table 1 represent the
fitness values of the current individual and the best individual, respectively. The update
strategy of the algorithm is to compare f (x) and f (b), then the individual will evolve
toward the direction of higher fitness, finally the rotation direction will be determined
by s(αiβi ), while 
θi determines the angle size of the quantum gate rotation[9].

Fig. 1 Quantum rotation gate

Table 1 Quantum rotation gate update strategy table

xi bi f (x) ≥ f (b) 
θi s(αiβi )

αiβi > 0 αiβi < 0 αi � 0 βi � 0

0 0 False 0 0 0 0 0

0 0 True 0 0 0 0 0

0 1 False ε + 1 − 1 0 ± 1

0 1 True ε − 1 + 1 ± 1 0

1 0 False ε − 1 + 1 ± 1 0

1 0 True ε + 1 − 1 0 ± 1

1 1 False 0 0 0 0 0

1 1 True 0 0 0 0 0
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4 Improved quantum genetic algorithm

Traditional QGA can easily produce local extreme value and be trapped into local
optimal solution [18, 19]. In addition, the efficiency of quantum gate updating opera-
tions using a fixed rotation angle adjustment strategy is low, which further increases
the risk of getting trapped in local extreme values. To address these issues, this paper
proposes the following optimization strategies:

1. Crossover and evolution strategy.
2. Dynamic rotation angle.
3. Adds a quantum convergence gate.

4.1 Crossover and evolution strategy

In the later stages of a quantum genetic algorithm, there is often a large number of
individuals gathered around a solution, without searching the global space, leading to
the inability to evolve new individuals[20]. This increases the risk of getting trapped
in local optimal solutions when solving complex problems.

To address the aforementioned issue, a novel crossover and evolution strategy is
proposed: dividing the population into N subpopulations with equal numbers of indi-
viduals and performing evolution operations on each subpopulation separately. In the
later stage of evolution, randomly selected individuals from different subpopulations
are exchanged through crossover operations, followed by continued iterative evolution.

The idea behind the crossover and evolution strategy is to introduce new individuals
to the population by exchanging them when it becomes trapped in local optima and
is unable to produce any new individuals. Moreover, the newly introduced individ-
uals have undergone a certain number of evolution operations and do not affect the
efficiency of subsequent updates with evolutionary processes.

When initializing individuals in the quantum genetic algorithm, the probability
amplitudes α and β are usually set to 1√

2
. In this paper, an improved algorithm sets

the initial probability amplitudes as random numbers within the range of (0, 1), α

and β satisfy the normalization condition. This enhances the diversity of the initial
population.

4.2 Dynamic rotation angle

The QGA evolves the quantum state of the current individual toward the quantum
state of the optimal individual through quantum rotation gates. In classical quantum
genetic algorithms, fixed rotation angles are used for updating. In earlier stages, too
small rotation angles can affect the convergence rate. While in later stages, too large
rotation angles may also miss the optimum solution.

To address the above-mentioned problem, a dynamic rotation angle strategy is pro-
posed: the size of the rotation angle that determines the convergence rate is determined
by the fitness values of the current individual and the optimum individual. In the early
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stages, when there is a large difference between the fitness values of the two individu-
als, the rotation angle should be increased to accelerate the individual’s convergence
to the optimal solution; in the later stage, there is a small difference in fitness between
the two, the rotation angle should be decreased to prevent excessive rotation and miss
the optimal solution.

Optimization strategy for dynamic rotation angle 
θi :


θi � k(θmax − θmin) + θmin, (12)

k � arcsin

(
fopt − fcur

fopt

)
, (13)

else, fopt is the optimal individual fitness, while fcur is the current individual fitness.
Whereas θmax and θmin are the maximum and minimum angles of rotation.

In the early stage of evolution, there is a large difference between individuals, and
fopt− fcur

fopt
tends to be 1 and k � arcsin(

fopt− fcur
fopt

) approaches π
2 . As a result, it can be

inferred that the rotation angle approaching 
θi is a slightly larger angle than θmax,
which is beneficial to the current solution to quickly approach the optimal solution.
With evolution, the current individual evolves toward the optimal individual, and

θi decreases accordingly. In the later stage of evolution, there is a small difference
between individuals, and

fopt− fcur
fopt

tends to be 0 and k � arcsin(
fopt− fcur

fopt
) also tends

to be 0. As a result, it can be inferred that the rotation angle 
θi approaches θmin.
Moreover, as the inverse trigonometric function is defined in the domain of (0,1), its
value of the independent variable decreases as the value of the function decreases,
and its derivative is also directly related to the value of the function. Therefore, in
the later stage, as the rotation angle decreases, the rate of decrease also slows down,
effectively preventing excessive rotation and facilitating thorough exploration of the
solution space, leading to the discovery of the global optimal solution.

4.3 Quantum convergence gate

Since the initial individual probability amplitude set in this paper is a random number
between (0,1), it may be close to 0 or 1. To prevent premature convergence to local
optima and loss of global optima, a quantum convergence gate is introduced to correct
the amplitudes that are too close to 0 or 1. The quantum convergence gate Hε:

[αi ′βi ′] � Hε

(
αi , β i , θi

)
. (14)

For the equation
[
α′′
i β

′′
i

]T � U
(
θi [αi ′βi ′]T

)
.

1. If
∣∣α′′

i

∣∣2 ≤ ε and
∣∣β ′′

i

∣∣2 ≥ 1 − ε, then [αi ′βi ′]T � [√
ε
√
1 − ε

]T
.

2. If
∣∣α′′

i

∣∣2 ≥ 1 − ε and
∣∣β ′′

i

∣∣2 ≤ ε, then [αi ′βi ′]T � [√
1 − ε

√
ε
]T
.

3. Else [αi ′βi ′]T � [
α′′
i β

′′
i

]T.
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4.4 Function testing

In order to test the feasibility of the above enhanced strategy and verify its superiority
compared to classical genetic algorithms, we conduct experiments using IQGA and
QGA to solve complex binary functions in this paper.

Complex binary functions:

f (x , y) � x sin(4πx) + y sin(20πy),

{−3.0 ≤ x ≤ 12.1
4.1 ≤ y ≤ 5.8

(15)

Conventional optimization algorithms are highly susceptible to getting trapped in
local optima or oscillating among different local optima. However, as we can observe
from Fig. 2, this nonlinear function is distributed with numerous local extreme values
in the given range, so it is suitable for verifying the superiority of quantum genetic
algorithm.

Themaximumvalue of this function approaches 17.3503within its domain. Figure 3
shows the process of two algorithms solving complex binary functions and reveals that
compared with the traditional quantum genetic algorithm, the IQGA exhibits faster
solving speed and is less prone to get trapped in local optima. Table 2 shows the
fitness values of the two algorithms and the minimum number of iterations to obtain
the optimal solution when running 20 times separately until the end of iteration (or
obtaining the optimum solution). The fitness values of IQGA tend to be 17.3503 when
the iteration ends (or the optimum solution is obtained), indicating that the optimal
solution has been obtained. The average fitness value of QGA at the end of iteration
(or obtaining the optimum solution) was 17.2677, and the worst fitness value was

Fig. 2 Grid diagram of the function
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Fig. 3 The comparison process of the two algorithms

Table 2 Comparison of the results of the two algorithms

Optimal value Worst value Mean value Iterations

IQGA 17.3503 17.3503 17.3503 57

QGA 17.3503 16.9501 17.2677 108

16.9501. Therefore, it can be concluded that IQGA is significantly better than QGA in
terms of solving accuracy. IQGA converges to the optimum solution with a minimum
number of iterations of 57, whereas QGA converges with 108 iterations, which further
indicates that IQGAhas better solving speed. In a conclusion, the test shows that IQGA
has better accuracy and convergence rate.

5 SVM based on IQGA

As mentioned in Sect. 2.2, the RBF kernel function has advantages in wide mapping
dimension, less parameters, and relatively simple computations. Therefore, it ismainly
used in the study of SVM. The performance of the SVM depends on the selection of
the kernel parameter g and penalty parameter C of the RBF kernel function, and
the quality of these parameters significantly affects the accuracy of the algorithm.
The performance of SVM depends on the choice of kernel parameter g and penalty
parameter C of the RBF kernel function. Parameter selection exits a significant impact
on the algorithm. Furthermore, the two parameters are randomly selected within a
positive range, and there are many possible combinations of these parameters [21]. If
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traditional trial-and-errormethods are used for parameter tuning, itwould greatly affect
efficiency and may lead to overfitting or underfitting. Therefore, genetic algorithms
are often used for parameter optimization in SVM [22].

To verify the performance of the IQGA,GA,QGA, and IQGAwere used to optimize
the parameters g and C in the SVMmodeling process. The optimal combination of the
parameters g and C selected by GA-SVM, QGA-SVM, and IQGA-SVM was used to
establish models, which were then tested for performance using benchmark datasets.

In this paper, IQGA is used to help SVM find the optimal combination of g and C
parameters, and its specific steps are shown in Fig. 4:

Step 1: Initialize the chromosome (individual) number P(t) � {Pt
1, Pt

2, Pt
3, …, Pt

n}
of quantum genetic algorithm population, where n represents the population size, and
Ptn represents a single individual in generation t population.
Step 2: Measure all individuals.
Step 3: Compute the fitness of all the individuals.
Step 4: Record the best individual and its fitness in the current generation of evolution.
Step 5: Judge whether the current population of optimal individuals meets the target
requirements. If the optimal parameters of SVM are found or the maximum number of
iterations is reached, IQGA will be terminated and the results will be output to SVM.
Otherwise, use the optimum individual and its fitness value as the next generation
population to continue execution.
Step 6: Use the improved dynamic rotation angle quantum gate for updating.
Step 7: Judge whether half of the maximum iteration number has been reached, and if
so, exchange some individuals with other populations. Otherwise, go back to Step 5.

6 Simulation

6.1 Benchmark datasets

The benchmark datasets used in this paper are iris dataset, blood dataset and seeds
dataset. All datasets are collected from the UCI Machine Learning Repository. The
data structures of benchmark datasets are shown in Table 3:

6.2 Calculation results and analysis

6.2.1 Iris dataset

The optimal combination of g and C parameters selected by GA-SVM, QGA-SVM,
and IQGA-SVMwas used to establish amodel, which was then tested for performance
using the iris dataset. In this experiment, the population size is chosen as 40 and evenly
divided into two sub-populations, and the maximum evolutionary iteration number is
set to 500. At half of the maximum iteration number, 1/4 of individuals in the each
sub-population were randomly selected for exchange. We show the fitness curves in
Fig. 5, use threemethods tomake five predictions on the benchmark dataset, and select
the most frequent data group for display, as shown in Fig. 6.
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Fig. 4 Algorithm procedure
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Table 3 Benchmark datasets

Datasets No. of real
attributes

No. of
classes

No. of
instances

Training
instances

Test instances

Iris 4 3 150 105 45

Blood 4 2 721 498 223

Seeds 7 3 210 150 60

Figure 5a shows the maximum fitness curves of the three algorithms, while Fig. 5b,
c shows the average fitness curves without fitting and after fitting. Figure 6 shows the
prediction results of the three algorithms.

From Fig. 5a, it can be observed that the maximum fitness of 95.2381% is reached
in the 195th generation of the iteration, and the optimal combination of prediction
model parameters selected at this time is: Best c � 12.8615 and Best g � 33.2836. As
shown in Fig. 6a, the prediction accuracy at this point is 97.7778%.

From Fig. 5a, it can be observed that the maximum fitness of 96.1905% is reached
in the 37th generation of iteration, and the optimal combination of prediction model
parameters selected at this time is: Best c � 7.9179 and Best g � 0.29326. As shown
in Fig. 6b, the prediction accuracy at this point is 97.7778%.

From Fig. 5a, it can be observed that the maximum fitness of 98.0952% is reached
in the 33rd generation of iteration, and the optimal combination of prediction model
parameters selected at this time is: Best c� 18.0841 and Best g� 0.097752. As shown
in Fig. 6c, the prediction accuracy at this point is 100%.

Comparing the three algorithms, it can be observed that the prediction accuracy of
QGA-SVM is 2.222% higher than that of GA-SVM and IQGA-SVM. Moreover, the
maximumfitness of IQGA-SVM is 1.9047%higher than that of QGA-SVM, andwhen
IQGA-SVM reaches its maximum fitness, the evolution generation is 4 generations
less than that of QGA-SVM. Therefore, we can conclude that IQGA-SVM has a better
prediction accuracy and a faster convergence rate.

6.2.2 Blood dataset

The optimal combination of g and C parameters selected by GA-SVM, QGA-SVM,
and IQGA-SVMwas used to establish amodel, which was then tested for performance
using the blood dataset. In this experiment, the population size is chosen as 40 and
evenly divided into two sub-populations, and the maximum evolutionary iteration
number is set to 500. At half of the maximum iteration number, randomly select 1/4
of individuals in the each sub-population for exchange. We show the fitness curves in
Fig. 7, use three methods to make 5 predictions on the benchmark dataset, and select
the most frequent data group for display, as shown in Fig. 8.

Figure 7a shows themaximumfitness curves of the three algorithms,while Fig. 7b, c
shows the average fitness curveswithout and after fitting. Figure 8 shows the prediction
results of the three algorithms.
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Fig. 5 Fitness curves of three
algorithms in iris dataset
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Fig. 6 The prediction results of
three algorithms in iris dataset
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Fig. 7 Fitness curves of three
algorithms in blood dataset
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Fig. 8 The prediction results of
three algorithms in blood dataset
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From Fig. 7a, it can be observed that the maximum fitness of 77.5238% is reached
in the 5th generation of iteration and the optimal combination of prediction model
parameters at this point is: Best c � 15.814 and Best g � 1.2342. As shown in Fig. 8a,
the prediction accuracy at this point is 76.2332%.

From Fig. 7a, it can be observed that the maximum fitness of 77.5238% is reached
in the 2nd generation of iteration and the optimal combination of prediction model
parameters at this point is: Best c � 64.6139 and Best g � 0.48876. As shown in
Fig. 8b, the prediction accuracy at this point is 76.2332%.

From Fig. 7a, it can be observed that the maximum fitness of 77.9048% is reached
in the 341th generation of iteration, and the optimal combination of prediction model
parameters selected at this time is: Best c � 6.7449 and Best g � 36.1681. As shown
in Fig. 8c, the prediction accuracy at this point is 81.6143%.

Comparing three algorithms, it can be seen that GA-SVM achieved high fitness in
the 5th generation andQGA-SVMin the 2nd generation (early stages of the algorithm),
but subsequent iterations did not result in higher fitness. The algorithm was trapped
in a local optimum and unable to escape. On the other hand, IQGA-SVM jumped out
of local optima in the 341th generation (middle stage of the algorithm), confirming
advantages of the IQGA in escaping local optima. The maximum fitness of IQGA-
SVM is 0.381% higher than that of QGA-SVM and GA-SVM, and the prediction
accuracy of IQGA-SVM is 5.3811% higher than that of QGA-SVM and GA-SVM.
Therefore, we can conclude that IQGA-SVM has a better prediction accuracy and the
advantage of breaking through local optimal solutions.

6.2.3 Seeds dataset

The optimal combination of g and C parameters selected by GA-SVM, QGA-SVM,
and IQGA-SVMwas used to establish amodel, which was then tested for performance
using the seeds dataset. In this experiment, the population size is chosen as 40 and
evenly divided into two sub-populations, and the maximum evolutionary iteration
number is set to 500. At half of the maximum iteration number, 1/4 of individuals in
the each sub-population were randomly selected for exchange. We show the fitness
curves in Fig. 9, use three methods to make 5 predictions on the benchmark dataset,
and select the most frequent data group for display, as shown in Fig. 10.

Figure 9a shows the maximum fitness curves of the three algorithms, while Fig. 9b,
c shows the average fitness curves without fitting and after fitting. Figure 10 shows
the prediction results of the three algorithms.

From Fig. 9a, it can be observed that the maximum fitness of 98% is reached in
the 76th generation of iteration, and the optimal combination of prediction model
parameters selected at this time is: Best c � 14.527 and Best g � 4.5343. As shown
in Fig. 10a, the prediction accuracy at this point is 81.6667%.

From Fig. 9a, it can be observed that the maximum fitness of 98% is reached in
the 28th generation of iteration, and the optimal combination of prediction model
parameters selected at this time is: Best c � 0.1955 and Best g � 11.437. As shown
in Fig. 10b, the prediction accuracy at this point is 81.6667%.

From Fig. 9a, it can be observed that the maximum fitness is achieved at 29th
generation of iteration, with a value of 98.6667%. The optimal parameter combination
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Fig. 9 Fitness curves of three
algorithms in seeds dataset
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Fig. 10 The prediction results of
three algorithms in seeds dataset
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for the best predicted model selected at this time is: Best c � 5.5718 and Best g �
0.097752. Additionally, as shown in Fig. 10c, the prediction accuracy obtained under
this parameter combination is 83.3333%.

Comparing the three algorithms, we obtained that the prediction accuracy of IQGA-
SVM is 1.6663% higher than that of GA-SVM. Moreover, the maximum fitness of
IQGA-SVM is 0.6667% higher than that of QGA-SVM and GA-SVM. Furthermore,
when IQGA-SVM reaches its maximum fitness, the evolution generation is 1 genera-
tion less than that of QGA-SVM. Thus, we can conclude that IQGA-SVM has better
prediction accuracy and a faster convergence rate.

6.2.4 Comparison with back-propagation neural network

In the previous section, IQGA-SVM, GA-SVM, and QGA-SVM are used to clas-
sify the three benchmark datasets, and the experimental results are compared. The
experimental results show that IQGA-SVM has better performance. However, the
performance comparison between IQGA-SVM and neural network-based methods is
necessary [23, 24].

We choose back-propagation neural network for comparison with IQGA-SVM,
which is a multi-layer feed-forward neural network trained according to the error
back-propagation algorithm and the most widely used neural network. Similarly, we
use the same three benchmark datasets to test the performance of back-propagation
neural networks.

In this experiment, the number of input and output layers varies according to the
benchmark datasets, with the number of hidden layers equal to 6, the number of
training epochs equal to 1000, the learning rate equal to 0.01, and the training objective
minimum error equal to 0.0001. We select the most frequent data group for display,
as shown in Fig. 11.

Figure 11a–c shows the results of back-propagation neural network prediction for
iris dataset, blood dataset and seeds dataset, respectively. From Fig. 11a–c, the pre-
diction accuracy can be obtained as 93.333%, 77.5785% and 80%, respectively.

According to the above results, the prediction accuracy of the bp neural network is
inferior to that of IQGA-SVM. The accuracy of the back-propagation neural network
in predicting blood dataset is better than that of GA-SVM and QGA-SVM, but it is
worse than that of GA-SVM and QGA-SVM in predicting other datasets.

6.2.5 Results

Asa result of these experiments, IQGA-SVMhas shown some advantages in prediction
results and speed, namely better prediction accuracy and faster convergence rate. The
experimental results are shown in Table 4.

We also plot the error bars based on the results of five sets of experiments performed
separately for these several differentmodels to show themaximum and average values,
as shown in Fig. 12. Figure 12a–c shows the five predictions made by these models on
iris dataset, blood dataset and seeds dataset, respectively, and the experimental results
are plotted as error bars.
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Fig. 11 Prediction results of bp
neural network
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Table 4 Benchmark datasets test results

Datasets Parameter GA-SVM QGA-SVM IQGA-SVM bp neural network

Iris Maximum fitness 95.2381% 96.1905% 98.0952% –

Iterations 195 37 33 –

Prediction accuracy 97.7778% 97.7778% 100% 93.3333%

Blood Maximum fitness 77.5238% 77.5238% 77.9048% –

Iterations 5 2 341 –

Prediction accuracy 76.2332% 76.2332% 81.6143% 77.5785%

Seeds Maximum fitness 98% 98% 98.6667% –

Iterations 76 28 29 –

Prediction accuracy 81.6667% 81.6667% 83.3333% 80%

Figure 12a shows that the standard deviation of IQGA-SVM is 0 with an average
value of 100%, the standard deviation of QGA-SVM is 0.00993 with an average value
of 99.556%, and the standard deviation of GA-SVM is 0.01216 with an average value
of 98.668%. The standard deviation of bp neural network is 0.01991 with an average
value of 94.666%.

Figure 12b shows that the standard deviation of IQGA-SVM is 0.00246 with an
average value of 81.794%, the standard deviation of QGA-SVM is 0.02947 with an
average value of 78.386%, and the standard deviation of GA-SVM is 0.02406 with
an average value of 77.309%. The standard deviation of bp neural network is 0.0068
with an average value of 94.666%.

Figure 12c shows that the standard deviation of IQGA-SVM is 0.00745 with an
average value of 83%, the standard deviation of QGA-SVM is 0.00913with an average
value of 82.333%, and the standard deviation of GA-SVM is 0.01178 with an average
value of 81.667%. The standard deviation of bp neural network is 0.01816 with an
average value of 79.667%.

From the above, IQGA-SVM has a smaller standard deviation and a larger average
prediction accuracy.

7 Conclusion

In this paper, an IQGA is proposed and applied to parameter optimization of SVM,
resulting in the establishment of the model called IQGA-SVM. The model is used for
classification experiments, and finally ideal results are obtained.

The IQGA addresses the problem of local optima and being trapped in local optimal
solutions that often occur in traditional quantum genetic algorithms, as well as the use
of a fixed rotation angle adjustment strategy. To optimize the algorithm, a crossover
and evolution strategy and a dynamic rotation angle strategy are proposed, and a
quantum convergence gate is added to address the problem of premature convergence
of quantum bit probability amplitudes to 0 or 1.
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Then, the feasibility of the IQGA was verified by optimizing complex binary func-
tions. Subsequently, three benchmark classification datasets were used to conduct
experiments on IQGA-SVM and compare it with GA-SVM and QGA-SVM. Experi-
ments demonstrate that IQGA-SVM performs better: When tested on the iris dataset,
IQGA-SVM has a maximum fitness that is 0.9523% and 3.8095% higher than QGA-
SVM and GA-SVM, respectively. Moreover, compared to QGA-SVM, IQGA-SVM
requires 27 fewer iterations. Additionally, IQGA-SVM has a prediction accuracy that
is 2.2222% higher than GA-SVM.When tested on the blood dataset, IQGA-SVM has
a maximum fitness that is 0.381% higher than QGA-SVM and GA-SVM. Moreover,
IQGA-SVM can break through local optimal solutions during the iteration process.
Additionally, IQGA-SVMhas a prediction accuracy that is 5.3811%higher thanQGA-
SVM and GA-SVM. When tested on the seeds dataset, IQGA-SVM has a maximum
fitness that is 0.6667% and 2% higher than QGA-SVM and GA-SVM, respectively.
Moreover, compared to QGA-SVM, IQGA-SVM requires 10 fewer iterations, and
IQGA-SVM has a prediction accuracy that is 1.6666% higher than GA-SVM. The
above results indicate that when applied to classification, IQGA-SVM application in
classification shows some advantages in prediction result and speed, namely better
prediction accuracy and faster convergence rate. We also introduce bp neural network
for comparison, and conclude that bp neural network is worse than IQGA-SVM in the
accuracy and stability of prediction.

In this paper, we conduct researches on the QGA and optimize the algorithm. The
experiment proves that IQGA has better convergence rate and accuracy than that of
QGA. However, the algorithm performs quantum computation on classical computers,
which has certain limitations. Future work should be directed toward quantum com-
puters and the experimental implementation of quantum machine learning algorithms
on a real quantum computer.
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