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Abstract
In this paper, we discuss the normal product form of the density operator of multimode
Gaussian states and obtain the correlation equation between the kernel matrix R of
the Gaussian density operator in the norm al product form and its kernel matrix G
in the standard quadratic form. Further, we explore the time evolution mechanism

of R and obtain the Gaussian dynamical equation under the normal product
·
R =

i(RJH − HJR). Ourwork is devoted to searching for anothermechanism forGaussian
dynamics. By exploring the description of the normal ordered density matrix under
the coherent state representation, we find that our mechanism is feasible and easy to
operate.

Keywords Gaussian dynamics · Normal product form · Covariance matrix

1 Introduction

Quantum information science with continuous variable systems is developing rapidly,
presenting many exciting prospects in both its experimental realization and theoretical
research. Concepts and protocols, such as entanglement and teleportation, initially
intended only for discrete quantum systems, have been extended to continuous variable
systems, allowing more efficient implementation and measurements. In this context,
Gaussian states, as continuous variable quantum states, play an important role in
both the experimental and theoretical fields. Gaussian states are defined as quantum
states that have GaussianWigner functions, while Gaussian dynamics studies the time
evolution mechanism of Gaussian state under Gaussian unitary transformation. Two
points should be paid special attention to here, one is that the Gaussian state itself must
be of Gaussian type, and the other is that the Hamiltonian of the dynamical system in
which the Gaussian state evolves is of standard quadratic form.
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There are many works on the dynamics mechanism of Gaussian state evolution in
quadratic systems [1–7]. However, many studies focused on the evolution mechanism
of the covariance matrix of the Gaussian state, which almost became the paradigm of
Gaussian dynamics, and most of the research was done in this way. Here, let us make a
brief introduction to this mechanism. For a standard quadratic system, its Hamiltonian
can be written as follows:

̂H = 1

2
̂ATĤA + hT ̂A, (1)

where T represents the transpose of the matrix, hT is a real row matrix and
H is a positive definite, Hermitian and symmetric 2n × 2n matrix, while ̂A =
(â1, ..., ân, â1†, ..., ân†)T , in which âi and âi † represents the creation and annihi-
lation operators for n-mode Gaussian bosonic systems, satisfying the usual bosonic
commutation relations [âi , â j ] = [âi †, â j

†] = 0 and [âi , â j
†] = δi j . Without loss of

generality, and for the convenience of discussing problems, we adopts ̂H = 1
2
̂AT H ̂A

in the following. Then, for a Gaussian state, its time-evolution covariance matrix σ(t)
is according to the following rules [8, 9]

·
σ(t) = dσ(t)

dt
= (JH)σ + σ(JH)T , (2)

where J =
(

0 In
−In 0

)

, In is n × n identity matrix. Thus, by solving Eq. (2), the time

evolution of the Gaussian state can be mapped as

σ(t) → S(t)σ (0)ST (t). (3)

Note that S(t) ≡ exp(JHt), which is a symplectic matrix and satisfies with

ST JS = SJST = J. (4)

However, can we directly give the law of the time evolution of the Gaussian state
ρG(t) itself? This is the main topic to be studied in the present paper. In short, we give
the law of the time evolution of the kernel R of the Gaussian density matrix in the
normal product form through effective theoretical derivation, which is an important
development of theGaussian dynamicsmechanism.Comparedwith the previouswork,
our work is dedicated to directly giving the time evolution of the Gaussian density
matrix, breaking the previous theoretical paradigm with the covariance matrix as a
bridge. Moreover, due to the operational simplicity of the normal ordered operator in
the coherent state representation, we can in principle solve analyticallymany problems
related to the evolution of density matrices, such as the evolution of von Neumann
entropy.

Our work is arranged as follows: In Sect. 2, we first give a brief review of the
Gaussian state and its covariance matrix. Then, we use the covariance matrix of the
Gaussian state ρG(t) as a bridge to obtain the algebraic relationship between the kernel
G of the Gaussian state density matrix and the kernel R of the normal form of the
density matrix, so that once we get R, we can give G, vice versa. In Sect. 3, we
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introduce the coherent state representation description of the Gaussian state, which is
the basis for our follow-up work. In Sect. 4, we will show the time evolution law of
the kernel matrix R of the normal product of ρG(t)

·
R = i(RJH − HJR). (5)

2 Gaussian state and its covariancematrix

The density of a Gaussian state can generally be written as [10]

ρG = e−̂G

Tr(e−̂G)
. (6)

Note that ̂G = 1
2
̂ATĜA. By Williamson’s theorem [11], for a positive definite, Her-

mitian and symmetric 2n × 2n matrix G, it can be decomposed into the following
form

G = ST ˜KS, (7)

where, S denotes a symplectic matrix, ˜K =
(

K 0
0 K

)

and K = diag(ω1, . . . , ωn).

According to [10], for the Gaussian state given by Eq. (6), its covariance matrix can
be written as

σ = S−1ν̃S−T , (8)

in which, ν̃ =
(

ν 0
0 ν

)

, ν = diag(ν1, . . . , νn), and νi = 1+e−ωi

1−e−ωi
. Then[12]

σ = I + e−�G

I − e−�G
� = coth

(

�G

2

)

�, (9)

where, � =
(

In 0
0 −In

)

.

We also know that the characteristic function of any Gaussian state can be written
as [13–15]

C(Z) = e− 1
2Z

†CZ. (10)

Note that Z = (z1, . . . , zn, z∗1, . . . , z∗n)T . Because its characteristic function in phase
space is Gaussian, we call it Gaussian state. By using

eZ
†�̂A =: eZ†�̂A− 1

4Z
†Z : , (11)

where, : · · · : represents normal ordering. Then,

123



253 Page 4 of 14 R. He

ρG =
∫

(dZ)eZ
†�̂AC(Z)

=
∫

(dZ) : eZ†�̂A− 1
4Z

†Z : e− 1
2Z

†CZ

=
∫

(dZ) : e− 1
2Z

†(C+ 1
2 I)ZeZ

†�̂A : . (12)

By using the technique of integration within ordered product (IWOP) [16] and the
integral formula

∫

(dZ)e− 1
2Z

†VZeZ
†X = 1√

detV
e− 1

2X
TEV−1X, (13)

where, E =
(

0 In
In 0

)

, let us continue our derivation

ρG = 1
√

det (C+ 1
2 I)

: exp

[

−1

2
(�̂A)TE(C+1

2
I)−1(�̂A)

]

:

= 1
√

det (C+ 1
2 I)

: exp

[

−1

2
̂AT�E(C+1

2
I)−1�̂A

]

: . (14)

Here, we emphasize that in the normal product form, the bosonic operators are
all numbers, so we can perform integral and differential operations without any
obstacles, which is the most unique feature of IWOP technique. Now, we can set
R ≡ �E(C+ 1

2 I)
−1�, then

ρG = √
detR : exp

(

−1

2
̂ATR̂A

)

: . (15)

Since the Wigner function of the Gaussian state ρG can be written as

W (Z) = 1√
det σ

exp(−Z†σ−1Z). (16)

Note that σ here is the covariancematrix in Eq. (2). According to the Fourier transform
relationship between C(Z) and W (Z), we can get

σ−1

2
= �C−1� (17)

or

C = 1

2
�σ�. (18)
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Substituting Eq. (9) into Eq. (18), we have

C = �

2

I + e−�G

I − e−�G
. (19)

Then, taking Eq. (19) into Eq. (14), we can get

R = �E
(

I
2
+�

2

I + e−�G

I − e−�G

)−1

�

= − 2E¨
(

I + �
I + e−�G

I − e−�G

)−1

�

= − 2

(

E+ I + e−�G

I − e−�G
J
)−1

= − 2

(

E + JJ−1 I + e−�G

I − e−�G
J
)−1

= − 2

(

E + J
I + e−J−1�GJ

I − e−J−1�GJ

)−1

= − 2

(

E + J
I + e−EGJ

I − e−EGJ

)−1

. (20)

In this way, we obtain the relationship of the kernel matrix R of the normal product
of ρG(t) and G, which is exactly the same results as in [17]. In Gaussian dynamics,
as long as we know the time evolution of R, we can infer the evolution of G from
Eq. (20). That is to say, we can directly calculate the time evolution of the density
matrix of the Gaussian state by using this method. Moreover, according to the above
calculation, we can also deduce the relationship between R and σ

R = −2E(σ + I )−1. (21)

As far as we know, there is currently no similar work that draws the same conclusion
as Eq. (21).

3 Coherent state representation of Gaussian state

Nowwe introduce n-mode coherent states |Z〉 ≡ |z1, ..., zn〉 and suppose that ρ(Z) =
〈Z|ρG |Z〉. In normal product form, bosonic creation and annihilation operators could
be replaced by the complex parameter of the coherent state, thus, we have

ρ(Z) = √
detR〈Z| : exp

(

−1

2
̂ATR̂A

)

: |Z〉

= √
detRe− 1

2Z
TRZ. (22)
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For a single-mode coherent state |z〉, we have

|z〉〈z |̂a =
(

z + ∂

∂z∗

)

|z〉〈z|, (23)

â†|z〉〈z| =
(

z∗ + ∂

∂z

)

|z〉〈z|. (24)

We can generalize the relationship given by the above two equations to the multimode
case and have

̂A|Z〉〈Z| =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

â1
...

ân
â†1
...

â†n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

|Z〉〈Z| =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

z1
...

zn
z∗1
...

z∗n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
...

0
∂

∂z1
...
∂

∂zn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|Z〉〈Z|

=
(

Z + E − J
2

∂

∂ZT

)

|Z〉〈Z|. (25)

Similarly, the following formula can be derived

|Z〉〈Z|̂AT =
(

ZT + E + J
2

∂

∂Z

)

|Z〉〈Z|. (26)

Taking into account Eqs. (25) and (26), in the coherent state representation, we obtain

〈Z|ρG ̂A|Z〉 = 〈Z|ρG |Z〉(Z +
←−−

∂

∂ZT

E − J
2

)

= ρ

(

Z)(Z +
←−−

∂

∂ZT

E − J
2

)

(27)

and

〈Z|̂AT ρG |Z〉 =
(

ZT + E + J
2

∂

∂Z

)

〈Z|ρG |Z〉

=
(

ZT + E + J
2

∂

∂Z

)

ρ(Z), (28)

where, we have set ρ(Z) ≡ 〈Z|ρG |Z〉, which is actually a Husimi-Q function in the
phase space representation. Eqs. (27) and (28) are the results obtained by referring to
Eq. (6.1) in Ref. [17], but they are different from the form of Eq. (6.1) and we explicitly
describe them in the form of coherent state representation.
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4 Gaussian dynamics equation in normal product form

For anopendynamic system, the timeevolutionmechanismof the system is determined
by the following Lindblad equation [8, 18]

·
ρ(t) = −i[ ̂H , ρ(t)] +

∑

i

[

ĉiρ(t)ĉi
† − 1

2
ĉi

†ĉiρ(t) − 1

2
ρ(t)ĉi

†ĉi

]

, (29)

where ̂H is quadratic, ĉi and ĉi † are the linear forms of the creation and annihilation
operators. The first term of Eq. (29) is the Schrödinger term of unitary evolution.
The following summation term represents the effect of the interaction between the
system and the environment on the evolution of the system state, which describes the
possible transitions, dissipation, and decoherence that the system undergoes due to
the interaction between the system and the environment. In practical applications, for
closed systems, the influence of environmental factors can be ignored, and the internal
Hamiltonian dominates the process of system evolution. Quantum ensembles evolve
based on the Schrödinger equation. On the contrary, when the internal Hamiltonian
can be ignored and the environment dominates, the Lindblad operator plays a major
role, and we are concerned about the interaction between the system and the environ-
ment. Therefore, in order to study the stochastic dynamic characteristics in the open
quantum system, that is, the laws of dissipation and decoherence of the system, we
can first ignore the unitary evolution part of the system and only study the Lindblad
operator term of the system. Therefore, the dynamic master equation of the reduced
density matrix of the system with the time evolution is as follows:

·
ρ(t) =

∑

i

[

ĉiρ(t)ĉi
† − 1

2
ĉi

†ĉiρ(t) − 1

2
ρ(t)ĉi

†ĉi

]

. (30)

Although the content discussed in this paper can be fully extended to the case where
the quantum system is affected by the coherent environment, that is, considering the
second term on the right side of Eq. (29), for the sake of brevity and beauty of the
text, we only analyze the time evolution mechanism of Gaussian states in quadratic
Hamiltonian systems independent of the environment. That is to say, we only discuss
the quantum Liouville equation

·
ρG(t) = i[ρG(t), ̂H ]. (31)

Note that here ̂H = 1
2
̂ATĤA (For simplicity, we did not adopt the more general form

given by Eq. (1)) and ρG = e−̂G

Tr(e−̂G )
= √

detR : exp
(− 1

2
̂ATR̂A

) : . Substituting ̂H

and ρG into Eq. (31), we get

d[√detR : exp(− 1
2
̂ATR̂A) : ]

dt
= − i

2

√
detR

[

̂ATĤA, : exp

(

−1

2
̂ATR̂A

)

:
]

.

(32)
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By using the commutation formula [AB,C] = A[B,C] + [A,C]B, we obtain

d[√detR : exp(− 1
2
̂ATR̂A) : ]

dt
= − i

2

√
detR̂ATH

[

̂A, : exp

(

−1

2
̂ATR̂A

)

:
]

− i

2

√
detR̂AT

[

H, : exp

(

−1

2
̂ATR̂A

)

:
]

̂A

− i

2

√
detR

[

̂AT , : exp

(

−1

2
̂ATR̂A

)

:
]

ĤA.

(33)

Considering the following normal product properties [19]

: ∂

∂ â
f (̂a, â†) : = [ : f (̂a, â†) : , â†], (34)

: ∂

∂ â†
f (̂a, â†) : = [̂a, : f (̂a, â†) : ], (35)

and the derivation rule of quadratic matrix

d(XT AX)

dX
= 2XT A, (36)

d(XT AX)

dXT
= 2AX , (37)

under the condition A = AT (A is a symmetric matrix), we can simplify Eq. (33) into
the following form

d[√detR : exp
(− 1

2
̂ATR̂A

) : ]
dt

= − i

2

√
detR̂ATH : J ∂

∂ ̂AT
exp

(

−1

2
̂ATR̂A

)

:

+ i

2

√
detR : ∂

∂ ̂A
exp

(

−1

2
̂ATR̂A

)

J : ĤA

− i

2

√
detR̂AT

[

H, : exp

(

−1

2
̂ATR̂A

)

:
]

̂A

= i

2

√
detR̂ATH : JR̂A exp

(

−1

2
̂ATR̂A

)

:

− i

2

√
detR : ̂ATR exp

(

−1

2
̂ATR̂A

)

J : ĤA

− i

2

√
detR̂AT

[

H, : exp

(

−1

2
̂ATR̂A

)

:
]

̂A.

(38)
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In the dynamics of phase space, the time evolution formula of Husimi-Q function ρ(Z)

can be derived as follows:

dρ(Z)

dt
= Tr(

·
ρ|Z〉〈Z|)

= −iT r(ρ ̂H |Z〉〈Z| − ̂Hρ|Z〉〈Z|)
= −i〈Z|ρ ̂H |Z〉 + i〈Z| ̂Hρ|Z〉, (39)

In fact, we just need to average the coherent states on both sides of the Liouville
equation. By calculating the average value of the coherent states on both sides of Eq.
(38), we have

d[√detR〈Z| : exp
(− 1

2
̂ATR̂A

) : |Z〉]
dt

= i

2

√
detR〈Z|̂ATHJR : exp

(

−1

2
̂ATR̂A

)

̂A : |Z〉

− i

2

√
detR〈Z| : ̂AT exp

(

−1

2
̂ATR̂A

)

: RJĤA|Z〉

− i

2

√
detR〈Z|̂AT

[

H, : exp

(

−1

2
̂ATR̂A

)

:
]

̂A|Z〉. (40)

We first calculate the third part of the right-hand side of Eq. (40) and have

− i

2

√
detR〈Z|̂AT [H, : exp

(

−1

2
̂ATR̂A

)

: ]̂A|Z〉

= − i

2

√
detR

(

ZT + E + J
2

∂

∂Z

)

〈Z|[H, : exp

(

−1

2
̂ATR̂A

)

: ]|Z〉
(

Z +
←−−

∂

∂ZT

E − J
2

)

= − i

2

√
detR

(

ZT + E + J
2

∂

∂Z

)

(H〈Z| : exp

(

−1

2
̂ATR̂A

)

: |Z〉

−〈Z| : exp(−1

2
̂ATR̂A) : |Z〉H)(Z +

←−−
∂

∂ZT

E − J
2

)

= − i

2

(

ZT + E + J
2

∂

∂Z

)

(Hρ(Z) − ρ(Z)H)

(

Z +
←−−

∂

∂ZT

E − J
2

)

. (41)

Since ρ(Z) is a number, Hρ(Z) − ρ(Z)H = 0. So we show − i
2

√
detR〈Z|̂AT [H, :

exp(− 1
2
̂ATR̂A) : ]̂A|Z〉 = 0. We continue to calculate the first two terms on the

right-hand side of Eq. (40),
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i

2

√
detR〈Z|̂ATHJR : exp

(

−1

2
̂ATR̂A

)

̂A : |Z〉

= i

2

√
detR(ZT + E + J

2

∂

∂Z
)[HJR〈Z| : exp

(

−1

2
̂ATR̂A

)

̂A : |Z〉] (42)

and

− i

2

√
detR〈Z| : ̂AT exp

(

−1

2
̂ATR̂A

)

: RJĤA|Z〉

= − i

2

√
detR〈Z| : ̂AT exp

(

−1

2
̂ATR̂A

)

: RJH|Z〉(Z +
←−−

∂

∂ZT

E − J
2

). (43)

Then,

dρ(Z)

dt
= d[√detR〈Z| : exp

(− 1
2
̂ATR̂A

) : |Z〉]
dt

= −1

2

√
detRZT

·
RZ

˜
ρ(Z)+d

√
detR
dt

˜
ρ(Z)

= i

2

√
detR(ZT + E + J

2

∂

∂Z
)[HJR〈Z| : exp

(

−1

2
̂ATR̂A

)

̂A : |Z〉]

− i

2

√
detR〈Z| : ̂AT exp

(

−1

2
̂ATR̂A

)

: RJH|Z〉(Z +
←−−

∂

∂ZT

E − J
2

)

= i

2

√
detR(ZT + E + J

2

∂

∂Z
)[HJR

˜
ρ(Z)Z]

− i

2

√
detR[ZT ˜

ρ(Z)RJH](Z +
←−−

∂

∂ZT

E − J
2

)

= i

2

√
detRZT (HJR − RJH)Z

˜
ρ(Z) + i

2

√
detR

E + J
2

∂

∂Z
[HJR

˜
ρ(Z)Z ]

− i

2

√
detR[ZT ˜

ρ(Z)RJH]
←−−

∂

∂ZT

E − J
2

). (44)

Note that here we have set
˜
ρ(Z) = ρ(Z)/

√
detR. Multiplying E + J on the left-hand

side of Eq. (44) and E − J on its right-hand side and noting that (E + J)2 = 0 and
(E − J)2 = 0, we obtain

(E + J)ZT
·
RZ (E − J)−2 (E + J)

1√
detR

d
√
detR
dt

(E − J)

= −i (E + J)ZT (HJR − RJH)Z (E − J) . (45)
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Because ZT
·
RZ, d

√
detR
dt and ZT (HJR − RJH)Z are all numbers, Eq. (45) can be

written as

(E + J) (E − J)ZT
·
RZ − 2 (E + J) (E − J)

d ln
√
detR

dt
= −i (E + J) (E − J)ZT (HJR − RJH)Z. (46)

Obviously, we have

ZT [ ·
R − i(RJH − HJR)]Z = d ln detR

dt
. (47)

For anyR,H andZ, Eq. (47) always holds, thenwe get Eq. (5) given in the introduction
and d ln detR

dt = 0. In this way, we derive the Gaussian dynamics equation in the normal
product form. At the same time, there is reason to believe that ln detR is a constant
that does not change with time. According to the formula det eA = eTr(A), we can
obtain ln detR = Tr(lnR).

In addition, since ln detR = Tr(lnR), then

d ln detR
dt

= dTr(lnR)

dt

= Tr(
·
RR−1)

= Tr [i(RJH − HJR)R−1]
= iT r(RJHR−1 − HJ)

= i[Tr(RJHR−1) − Tr(HJ)]
= i[Tr(JH)−Tr(HJ)]
= 0. (48)

So, we show that if
·
R = i(RJH − HJR), then d ln detR

dt = 0 naturally satisfies.
Compared with Eqs. (2) and (5), it is not difficult to draw

R(t) = U(t)R(0)UT (t), (49)

where U(t) ≡ exp(−iJHt). In this way, we get the solution of Eq. (5) smoothly.
In continuous variable systems, in order to provide a more complete description of

the quantum state ρ, it is necessary to indirectly introduce the characteristic function
[6].

χ(ρ) = Tr(ρ ̂Dζ ), (50)

where ̂Dζ is Weyl displacement operator and ζ ∈ R2n. According to the Weyl–Fourier
relationship,

ρ = 1

(2π)n

∫

d2nζχ(ρ)̂Dζ . (51)
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Therefore, each characteristic function corresponds to a unique quantum state. That
is to say, quantum states can be obtained based on their characteristic functions.
At the same time, we can obtain the correlation between the Wigner function and the
characteristic function of the quasi-probability distribution through Fourier transform

W (ζ ) = 1

(2π)n

∫

d2nκeiκ
T �ζ χ(κ). (52)

Asmentioned earlier, aGaussian state is a quantum statewhose characteristic function
is a Gaussian function. These Gaussian states play a key role in the processing of
continuous variable quantum information. The Wigner function of the Gaussian state
can be written as [6]

W (Z) = 1√
det σ

exp
[

−(Z−Z)†σ−1(Z−Z)
]

. (53)

From the above equation, the general Gaussian state ρ can be completely determined
by the first moment Z and the covariance matrix σ . It should be noted that in our
work, for processing convenience, we write the Wigner function in the form of Eq.
(16). In general, any quantum state ρ in a Hilbert space must be determined by a
different order correlation, but the Gaussian state can be completely determined by
using only the first-order correlation Z and the second-order correlation σ .

The significance of our work is that we do not need introduce phase space func-
tions such as characteristic function and Wigner function to indirectly determine the
Gaussian state and characterize its evolution. If we know the R-matrix in the normal
product form, we can directly write the quantum state ρ from Eq. (15); Next, it can be
determined from the evolution with time of R in Eq. (5); Furthermore, the R(t) that
evolves with time can be calculated according to Eq. (49) to determine the evolution
with time of ρ(t). The discovery of Eqs. (5) and (49) is very important, and in prin-
ciple, they can be applied to any physical systems where Gaussian state evolves in a
Gaussian channel.

5 Conclusion

The time evolution mechanism of Gaussian states is a long-standing and ever-new
topic. This papermainly provides anothermechanism for dealingwith the dynamics of
Gaussian states. Different from the previous covariancemechanism, ourwork gives the
equation for the time evolution of the kernel matrixR of Gaussian states in the normal
product form, which provides a new perspective for Gaussian quantum information
processing.

The advantage of writing the density matrix of the Gaussian state in the normal
product form is that the specific functional form of the density matrix under the coher-
ent state representation can be directly given, which can be done simply by replacing
bosonic operators in the density matrix with the complex parameters of the coher-
ent state. This processing method will bring us convenience to solve some problems.
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Moreover, in the normal product, we regard bosonic operators as numbers, so we can
perform integration and differentiation operations without any obstacles, which can-
not be replaced by conventional methods. This processing method undoubtedly has
great potential and has the value of further research.

Following the theoretical ideas proposed in this paper, in principle, the closed
evolution of the Gaussian state that does not interact with the environment can be
extended to the case in which the system is coherent with the environment; that is, the
Lindblad equation can be solved smoothly, which will be our follow-up work.
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