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Abstract
Nonlocality is a distinctive feature of quantum theory,which has been extensively stud-
ied for decades. It is found that the uncertainty principle determines the nonlocality
of quantum mechanics. Here we show that various degrees of nonlocalities in corre-
lated system can be characterized by the generalized uncertainty principle, by which
the complementarity is attributed to the mutual dependence of observables. Concrete
examples for different kinds of nonclassical phenomena pertaining to different orders
of dependence are presented. We obtain the third-order “skewness nonlocality” and
find that the Bell nonlocality turns out to be merely the second-order “variance non-
locality” and the fourth-order dependence contains the commutator squares, which
hence is related to the quantum contextuality. More applications of the generalized
uncertainty principle are expected.

Keywords Generalized uncertainty principle · Quantum nonlocalities · Skewness
nonlocality · Quantum contextuality

1 Introduction

In classical physics, observables are represented successfully by real numbers, or
something composed of real numbers, e.g., inertia tensor and resistance in Ohm’s law
as the direct product of other two physical quantities. And, naturally, it is implicitly
assumed that the properties of real numbers are hold by observables.When confronted
with the microworld, Heisenberg questioned the assumption by dint of a Gedanken
experiment where the canonically conjugated quantities, x and p, can only be deter-
mined simultaneously with certain indeterminacy [1]. Soon afterward, people realized
that the uncertainty relations for incompatible observables are in fact the destined
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results of quantum mechanics (QM). Unsatisfied with the quantum indeterminacy,
Einstein with his collaborators exemplified the “incompleteness” of QM via an entan-
gled bipartite system, viz. the renowned EPR paradox [2], by which and from then on,
the inherent nature of QM nonlocality was formally in the spotlight.

To keep on taking the classical recognition on reality and locality, people attempt to
construct various models to mimic the QM results with local hidden variables. In order
to distinguish the QM from local hidden variable theory(LHVT), Bell put forward a
set of inequalities by which all LHVTs should abide [3], while quantum theory does
not. Among the various Bell inequalities (BIs), one of the most outstanding ones is
the Clauser–Horne–Shimony–Holt (CHSH) inequality [4]

∣
∣E(X , Y ) − E(X , Y ′) + E(X ′, Y ) + E(X ′, Y ′)

∣
∣ ≤ 2. (1)

Here the left four terms denote the correlation functions of observables X , X ′ and Y ,
Y ′ in a bipartite qubit system. In quantum theory, the left-hand side of relation (1) may
reach 2

√
2, breaking the lower bound of 2 [5].

A heuristic question regarding the inequality violation may arise: why the quantum
limit is 2

√
2, but rather not more [6]? We know that the quantum correlations and

relativistic causality do not uniquely define quantum physics. Theories possess the
same features with QM but even stronger correlations which break the quantum limit
may exist, e.g., communication complexity [7, 8] and information causality [9]; how-
ever, the physical meanings there are still vague [10]. To determine the fundamental
axioms of QM, indirectly, people seek and test the principles beyond the QM. More-
over, Kochen–Specker (KS) contextuality [11] is known to be a logically independent
nonclassical concept compared with the Bell nonlocality [12]. In the literature, there
exist some inequalities witnessing the contextuality [13], but the corresponding the-
oretical bases still need further investigations [14]. Considering that the nonclassical
natures of Bell nonlocality and KS contextuality are potential resources for quantum
secure communication [15] and quantum computation [16], it is tempting to think
whether there are some other yet unknown quantum nonlocal phenomena or not. And,
if yes, what are the criteria by which various nonlocal phenomena may be quantita-
tively characterized?

Recently, it was found that the uncertainty principle governs the nonlocality of
quantum mechanics [17]. In this work, we propose a method to further determine
the different strengths of nonlocal correlations. First, in the framework of generalized
uncertainty principle (GUP) [18], we demonstrate quantitatively that the uncertainty
relationmaygovern the degrees of nonlocality ranging from the superquantum to quan-
tum, and from the Bell local to nonsteering, etc. Second, by attributing the uncertainty
relation to the dependence relation of incompatible observables, new types of nonlo-
cal phenomena that are fundamentally different from the BI violation are obtained.
An example of the third-order “skewness nonlocality” is constructed, and the Bell
nonlocality turns out to be the second-order “variance nonlocality.” We provide as
well concrete examples for the quantum contextuality which is found pertaining to the
squares of commutators appearing in the fourth-order dependence.
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2 The degrees of quantum nonlocality

The fundamental postulates ofQMtell that physical observablesmaybe represented by
Hermitian matrices, and the measurement results of an observable can only be those
eigenvalues of the Hermitian matrix. Two observables X and Y in N -dimensional
representation may sum as X + Y = Z , and there exists the relation [19]:

l
∑

i=1

αi +
l

∑

j=1

β j ≥
l

∑

k=1

γk, 1 ≤ l ≤ N , (2)

where αi , β j , and γk are eigenvalues of X , Y , and Z , arranged in descending order.
Note, the relation (2) has various applications in quantum information sciences [20].
Suppose Y and Y ′ are two-dimensional observables with eigenvalues ±1, according
to relation (2) the summation (Y − Y ′) + (Y + Y ′) = 2Y yields

α1 + β1 ≥ γ1 = 2. (3)

Here α1, β1, and γ1 are the largest eigenvalues of (Y − Y ′), (Y + Y ′), and 2Y ,
respectively. When Y and Y ′ are orthogonal qubit observables, e.g., Pauli matrices
Y = σx and Y ′ = σz , we have α1 = β1 = √

2 and then relation (3) exhibits the fact√
2 + √

2 > 2.
Now, let yi and y′

j be the eigenvalues of Y and Y ′ with observing probabilities pyi

and py′
j
, the expectation value of Y + Y ′ can be expressed as

〈Y + Y ′〉 = (�y ⊕ �y ′) · ( �py ⊕ �py′), (4)

where �y and �y ′ are vectors composed of the eigenvalues, �py and �py′ signify the
corresponding probability distributions. For qubit observables, the following relation
obviously holds by definition

〈Y + Y ′〉 ≤ (�y ⊕ �y ′)↓ · �s ↓. (5)

Here ↓ denotes that the components are rearranged in descending orders and �s is
the optimal bound for the majorization uncertainty relation �py ⊕ �py′ ≺ �s [21].
Note, according to a recent study, the uncertainty relation can be interpreted as the
dependence between different measurements [18]. In this sense, the expectation value
〈Y + Y ′〉 may reach 2 when Y and Y ′ are independent observables with eigenvalues
±1. However, the uncertainty relation, i.e., �py ⊕ �py′ ≺ �s, would limit the expectation
value 〈Y + Y ′〉 of a dependent pair of observables to be less than 2 (see Appendix A).

With the above preparations, we are ready to examine how quantum nonlocality
emerges and behaves. Considering the correlation E(X , Y ) in CHSH inequality (1),
it may exhibit in LHVT and quantum theory, respectively, as

LHVT : E(X , Y ) =
∫

ξλ A(λ, X)B(λ, Y ) dλ, (6)
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QM : E(X , Y ) = 〈X ⊗ Y 〉. (7)

Here ξλ stands for the unknown distribution of some hidden variables λ, positive and
normalized; A(λ, X) and B(λ, Y ) are measurements performed by Alice and Bob,
respectively. In LHVT, the dichotomic functions A(λ, X) and B(λ, Y ) are given the
values of ±1 and are determined jointly by λ and the observables, X and Y .

2.1 The LHVT correlations

In LHVT, obviously the following inequality holds:

−2 ≤ A(λ, X)[B(λ, Y ) − B(λ, Y ′)] + A(λ, X ′)[B(λ, Y ) + B(λ, Y ′)] ≤ 2. (8)

The lower and upper bounds ±2 are obtained from the following arguments: (1)
the values of A(λ, X) and A(λ, X ′) are independent and both can be ±1; (2) the
values of B(λ, Y ) and B(λ, Y ′) are also independent, while the combination of
B(λ, Y ) − B(λ, Y ′) and B(λ, Y ) + B(λ, Y ′) falls in the scope of [−2, 2]. There-
fore, after integrating over the distribution ξλ, one can readily find the well-known
CHSH inequality [4]

−2 ≤ E(X , Y ) − E(X , Y ′) + E(X ′, Y ) + E(X ′, Y ′) ≤ 2. (9)

2.2 The nonsteerable correlation

For the steerability, a kind of quantum nonlocal correlation, if A(lice) cannot steer
B(ob), then the hidden stateσ (λ) of the d-dimensional quantum system B, on condition
of measurement result i of any observable X , may be represented by the assemblage
defined as a set of dB × dB Hermitian matrices [22]

σi |x =
∑

λ

ξλ p(λ)
i (x)σ (λ). (10)

Here the probability distribution p(λ)
i (x) is normalized

∑

i p(λ)
i (x) = 1. Evaluating

the correlations in (1) by means of the above assemblage, the two terms on B sector
in Eq. (8) turn out to be:

B(λ, Y ) − B(λ, Y ′) = Tr[σ (λ)(Y − Y ′)], (11)

B(λ, Y ) + B(λ, Y ′) = Tr[σ (λ)(Y + Y ′)]. (12)

One may notice that: (1) the values of A(λ, X) and A(λ, X ′) remain independent and
both can be ±1; (2) B(λ, Y ) and B(λ, Y ′) are not independent anymore, due to the
uncertainty relation imposed onσ (λ) [23]; (3) the uncertainty relation in formof Eq. (5)
constrains the magnitudes of (11) and (12) to be less than

√
2. And furthermore, we

have (see Appendix A for details)
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[

E(X , Y ) − E(X , Y ′)
]2 + [

E(X ′, Y ) + E(X ′, Y ′)
]2 ≤ 2. (13)

Note that the relation (13) is a generally established condition for any nonsteerable
correlation, which complies with (9).

2.3 The quantum correlation

To reveal the strength of QM correlation, following we construct a toy model in
bipartite system, in which in lieu of assemblage (10) we define

σi1|x =
∑

λ

ξλ p(λ)
i1

(x)σ (λ)(x), (14)

σi2|x ′ =
∑

λ

ξλ p(λ)
i2

(x ′)σ (λ)(x ′). (15)

Note, different from σ (λ) in assemblage (10), here the hidden states σ (λ)(x) and
σ (λ)(x ′) rely on the measurements X and X ′, respectively, and are mutually inde-
pendent. Then we readily get

B(λ, Y ) − B(λ, Y ′) = Tr[σ (λ)(x)(Y − Y ′)], (16)

B(λ, Y ) + B(λ, Y ′) = Tr[σ (λ)(x ′)(Y + Y ′)], (17)

and may have the following observations: (1) A(λ, X) and A(λ, X ′) remain to be
independent and both can achieve ±1; (2) B(λ, Y ) and B(λ, Y ′) are interrelated on
each other according to the uncertainty relation [23]; (3)Unlike (11) and (12), Eqs. (16)
and (17) are independent with each other and may reach the corresponding maxima of
2 cos θ

2 and 2 sin θ
2 , respectively (see Appendix A for the arguments). Hence, we have

[E(X , Y ) − E(X , Y ′)]2 + [E(X ′, Y ) + E(X ′, Y ′)]2 ≤ 4. (18)

Considering the inequality (a+b)2 ≤ 2(a2+b2), one then notices that Eq. (18) breaks
the nonsteerable condition (13) and CHSH inequality (9), which may be regarded as
a corollary of relations (3) and (5).

2.4 The superquantum correlation

Now we make a further assumption about the quantum mechanical results of Eqs.
(16) and (17): Let Y and Y ′ be independent observables, i.e., there is no uncertainty
relation constraining them. Therefore, as discussed below (5), we certainly have

−4 ≤ E(X , Y ) − E(X , Y ′) + E(X ′, Y ) + E(X ′, Y ′) ≤ 4, (19)

which gives a more broad range for correlations then CHSH (9). We may think it as
a kind of correlation beyond quantum mechanics, say superquantum correlation. In
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Fig. 1 Various degrees of nonlocality. The connections between different types of nonlocality are signified
with arrows. Note, the relationship between Leggett model and other types of nonlocalities is still unclear

Fig. 1, different types of nonlocality of various models are presented, among them the
connections between some types of nonlocalities had been investigated: 1© is studied
in Ref. [17]; 2© and 3© are studied in Ref. [23]. Note, whether the Leggett model [24]
could be assigned to the nonlocal pattern in Fig. 1 or not remains to be an interesting
and open question. Next, we shall manifest how the nonlocal phenomenon behaves
while higher-order dependences are taken into account.

3 Various quantum nonlocalities

Even within the regime of quantum mechanics, there are different tiers of nonlocality,
which fortunately can be distinguished by the generalized quantum uncertainty princi-
ple, developed in Ref. [18]. According to it, the uncertainty relation may be expanded
in terms of cumulants, each corresponding to a certain strength of nonlocality. Here, in
this work we find the different orders of nonlocality can be employed to characterize
the various quantum correlations.

Given a random variable X , the moment generating function takes the following
form

〈es X 〉 =
∞
∑

n=0

〈Xn〉 sn

n! , s ∈ C. (20)
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Here 〈X〉means the expectation value of a variable X and the parameter s is a complex
number. The logarithm of Eq. (20) generates the cumulants [25], that is

K (s X) ≡ log(〈es X 〉) = log

(

1 + s〈X〉 + s2

2! 〈X2〉 + s3

3! 〈X3〉 + · · ·
)

=
∞
∑

m=1

sm

m!κm(X), (21)

where the sum runs over a power series of s whose coefficients κm(X) are called the
mth-order cumulant.

According to Ref. [18], for arbitrary observables X and Y , there exists a generalized
uncertainty relation

K [(s + s∗)X ] + K [(t + t∗)Y ] ≥ K (Zst ) + K ∗(Zst ), s, t ∈ C. (22)

Here K (·) signifies the generating function of cumulants defined in Eq. (21); * means
the complex conjugation; Zst = log(es X etY ) = Z1 + Z11 + · · · is defined as

Z1 = s X + tY , Z11 = 1

2
[s X , tY ], . . . , (23)

in light of the well-known Baker-Campbell-Hausdorff (BCH) formula.

3.1 The second order: commutators and Bell nonlocality

For any bipartite system, a joint operation of measurement may be expressed as S =
∑

i, j mi j Xi ⊗ Y j with mi j ∈ R. Note, the nth-order cumulant κn(S) exists, given
the nth and lower orders of moments of an observable exist [25]. For illustration, we
consider a typical representative joint observable of the bipartite qubit system

S ≡ X ⊗ Y − X ⊗ Y ′ + X ′ ⊗ Y + X ′ ⊗ Y ′ (24)

with local representations

X = σx , X ′ = σy, Y = cos θσx + sin θσy, Y ′ = − sin θσx + cos θσy . (25)

Here X and X ′ are orthogonal, and so do the Y and Y ′.
The second-order cumulant is the variance κ2(S) ≡ 〈S2〉 − 〈S〉2. For LHVT, the

cumulant 0 ≤ κ2(S) ≤ 4 (see details in Appendix B), and we have

Proposition 1 A bipartite system possesses the second-order nonlocality if the follow-
ing Bell inequality is violated

κ2(S) ≥ 0 ⇒ |〈S〉| ≤ 2, (26)
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which is in fact the CHSH inequality
∣
∣E(X , Y ) − E(X , Y ′) + E(X ′, Y ) + E(X ′, Y ′)

∣
∣ ≤

2.

The key point in deriving equation (26) is the evaluation of S2 = 4I ⊗ I +[X , X ′]⊗
[Y , Y ′]. The expectation values of commutators are supposed to be zero for LHVT
[26, 27], and we readily arrive at the CHSH inequality |〈S〉| ≤ 2 (see Fig. 2a).

3.2 The third order: the skewness of nonclassical correlation

The third-order cumulant names the skewness, i.e., κ3(S) ≡ 〈S3〉−3〈S2〉〈S〉+2〈S〉3.
Considering that in LHVT, for a typical observable with expectation value satisfying
−2 ≤ 〈S〉 ≤ 2, the cumulant |κ3(S)| in classical statistics has the limit of 8 [28], we
then have:

Proposition 2 A bipartite system contains the third-order nonlocality if the following
“skewness” inequality is violated

|κ3(S)| =
∣
∣
∣〈(S − 〈S〉)3〉

∣
∣
∣ ≤ 8. (27)

Here S is defined as in Eq. (24).

The key point in deriving equation (27) is the evaluation of the high-order commu-
tators like [[X , X ′], X ], whose expectation values are zeros in the joint distribution
model of LHVT [26] (see Appendix B and C). The QM prediction for relation (27) in
spin singlet state is plotted as Fig. 2b.

Fig. 2 The Bell nonlocality and the skewness nonlocality. In the spin singlet state: a the quantum prediction
of |〈S〉| may reach the value of 2

√
2 which violates the classical limit of 2; b the quantum prediction of

skewness |κ3(S)| = |〈(S − 〈S〉)3〉| may reach a pretty high value of 64
√
6/9 which evidently violates the

classical limit of 8
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Fig. 3 The contextuality of two
spin-1/2 particles. The boxed
operators in each column and
row are commutative and thus
simultaneously measurable. The
four boxed quantities, when
multiplying in different orders,
may lead to some contradictive
results

3.3 The fourth-order: the commutator squares and contextuality

In the fourth-order cumulant

S4 = 16I ⊗ I + [X , X ′]2 ⊗ [Y , Y ′]2 + 8[X , X ′] ⊗ [Y , Y ′], (28)

a new type of operator appears, that is the second term on the right-hand side of the
equation. With the operator choice in (25), one can readily find [X , X ′]2 ⊗[Y , Y ′]2 =
16I ⊗ I and then the (28) turns to

S4 = 32I ⊗ I + 8[X , X ′] ⊗ [Y , Y ′]. (29)

Note, in LHVT the expectation value of nontrivial commutator is not well defined. For
instance the observable L2

z may have nontrivial expectation value, while (i[Lx , L y])2
is identically zero in any joint distribution model of LHVT. We shall show below how
the commutator squared in the fourth cumulant (28) implies for the KS contextuality.

Considering the KS contextuality of two spin-1/2 particles given in Ref. [29], the
measurements in each row and column of Fig. 3 are commutable, e.g., the first row
{X ⊗ I , I ⊗ Y , X ⊗ Y }, where X , X ′, Y , and Y ′ are defined in (25) and Z = σz .
Multiplying the observables in boxes of Fig. 3 in rows, we have X X ′ ⊗ Y Y ′ = R,
while in columns we get X X ′ ⊗ Y ′Y = C . Since the values assigning to R and C
should be the same in classical point of view, their product is then a square number
and positive. While in QM, the following expression is apparently negative due to
commutator squared

RC = (X X ′ ⊗ Y Y ′)(X X ′ ⊗ Y ′Y ) = 1

4
[X , X ′]2 ⊗ I , (30)

where relations X X ′ = 1
2 ([X , X ′] + {X , X ′}) = [X , X ′]/2 and Y 2 = Y ′2 = I are

employed. Taking into accountwhat discussed in Sect. 3.1, wemaymake the following
conjecture:

Conjecture 1 The BI violation is related to the nontrivial expectation value of com-
mutators, while the contextuality is related to the nontrivial expectation values of the
commutator squares (or higher powers).

From Conjecture 1, we notice that the KS contextuality [11] may relate to the
squares of commutators (details given in Appendix D). Though to establish an explicit
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and quantitative relation between contextuality and powers of commutators still needs
moreworks, it is yet reasonable to believe that the correspondence of different nonlocal
phenomena to dependent orders of incompatible observables should exist.

4 Conclusions

We demonstrate in this work that one may characterize the degree of nonlocality,
from superquantum to classical, by exploiting the generalized uncertainty relation.
It is found that in a microworld where entangled states exist but without uncertainty
constraint, the magnitude of correlations constrained by CHSH inequality may reach
maximally 4. However, the operators in QM satisfy the uncertainty relation, which
constrains the CHSH inequality to an upper bound of 2

√
2. For classically correlated

real observables, which are in separable states and has no uncertainty relation, the
correlations of LHVT in CHSH inequality have an upper limit of 2. Moreover, novel
steering and separability criteria are obtained in addition to the above results.

In the second part of this paper, we signify different strengths of nonlocal corre-
lations in quantum physics. The higher-order dependence of observables existing in
the generalized uncertainty relation found corresponds to the higher order nonclassi-
cal phenomenon. By dint of an explicit example of “skewness nonlocality,” the Bell
nonlocality shown behaves as the “variance nonlocality.” Considering commutator
squares, the quantum contextuality is thought a nonclassical phenomenon lying in the
fourth-order dependence. Remarkably, we notice that the square of commutator had
already found applications in describing quantum chaos in many body systems [30]. It
is expected that the higher-order dependence may unveil the yet unknown nonclassi-
cal phenomena and have some unique applications in quantum information, quantum
computation, and quantum many-body system.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11128-023-04003-3.
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