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Abstract
This paper investigates quantum entanglement in a two-qubit Heisenberg XYZ sys-
tem with Kaplan–Shekhtman–Entin–Wohlman–Aharony and Dzyaloshinskii–Moriya
couplings along the x-axis. By the concept of concurrence, the effects of these two
types of interactions on thermal entanglement are studied in detail for both antifer-
romagnetic and ferromagnetic cases. By setting the strengths coupling of the spin,
we quickly recover the Ising and XXX Heisenberg models. Additionally, we find that
the influence of Kaplan–Shekhtman–Entin–Wohlman–Aharony and Dzyaloshinskii–
Moriya couplings can enhance entanglement and influence the critical temperature
beyond the entanglement vanishes.
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1 Introduction

Information processing is a well-developed and growing discipline, theoretically and
for applications [1–4]. Through technological progress such as miniaturization and
other advances, information processing devices are being driven to their ultimate phys-
ical limits, where we meet the quantum level. At this level, it then becomes necessary
to explicitly consider the quantum nature of the effects involved when processing
information. Nevertheless, at this quantum level, we also reach new properties inac-
cessible in classical, which bring new and specific means exploitable for the treatment
of information with increased performances. Among the most significant properties,
specifically quantum superposition plays a significant role in information processing
and quantum entanglement [5]. Indeed, quantum superposition, for example, makes
it possible to envisage parallel information processing. At the same time, quantum
entanglement offers correlation or remote coupling possibilities that can be exploited
for unexpected information processing benefits. However, the field of quantum infor-
mation has thus developed for several decades [6–9]. In fact, we can illustrate its
progression and contributions through various emblematic processes. Non-local quan-
tum correlations arising from entanglement and the appearance of a violation of the
laws of relativistic causality allowed physicists to make detailed theoretical studies
[10, 11] and also in practice [12–14]. These investigations gave rise to informational
effects such as superdense coding [15, 16],which allowed unattainable communication
speeds in conventional, or like the teleportation of a quantum state that is destroyed
during its measurement and is reconstructed remotely in an exact manner [17–19].

Low-dimensional quantum spin systems have recently enticed significant atten-
tion in characterizing quantum information systems due to their magnetic properties
arising from quantum fluctuations and low dimensionality. Quantum impacts are
specifically appropriate in the spin−1/2 quantum systems. The quasi-one-dimensional
antiferromagnetic spin−1/2 has been theoretically and experimentally explored [20].
Regarding this, numerous experimentations on higher-dimensional compounds [21–
25] demonstrate that the isotropic exchange coupling in various systems is inadequate
to explain magnetic effects such as weak ferromagnetism.

Theoretically, theDzyaloshinskii–Moriya (DM) termwasfirst put upbyDzyaloshin-
skii [26] as a spin vector product to explain the low ferromagnetism of antiferro-
magnetic materials and was based on symmetry reasons. The spin–orbit coupling in
perturbation was considered when Moriya obtained the formula for this term, and he
demonstrated that it is first order in the fine structure constant [27]. Moriya’s calcu-
lus revealed that a symmetric anisotropy term was detected in addition to the DM
component, but it was deemed negligible by Moriya concerning the anti-symmetric
part. However, investigations [28, 29] have shown this assumption needs to be cor-
rected if the underlying microscopic pattern from which the spin–spin couplings arise
possesses SU(2) spin symmetry. Since the DM term alone breaks SU(2) symmetry,
the symmetric term can compensate for the destruction of SU(2) generated by the
DM interaction. For this class of systems, the symmetric anisotropy term is called the
Kaplan–Shekhtman–Entin–Wohlman–Aharony (KSEA) interaction which is tuned so
that SU(2) symmetry is retrieved [28–30]. On the other hand, the two-qubit Heisenberg
model with the DM and KSEA interactions received much attention from physicists
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to explain quantum entanglement and correlation [31, 32]. Furthermore, magnetism
systems, such as theHeisenberg spin chains, have been the subject of intensive study in
recent years and are considered natural candidates for exploiting quantum resources.
In fact, many important works were produced, considering the isotropic Heisenberg
XXX chain [31–33], the anisotropic Heisenberg XY chain [34, 35] and the anisotropic
Heisenberg XYZ chain [36].

Recently, the entanglement counted by concurrence in a two-qubitHeisenbergXXX
model with KSEA and DM couplings has been explored in work [33]. The authors
determined the concurrence expression by using the physical quantities related to the
selected system; their findings indicated that temperature, spin coupling constant andx-
components ofKSEAandDMcouplings could all play a role in determining the degree
of intricacy between states. Moreover, these results implied that state separabilities
are achieved in high-temperature regions or by switching spin coupling. On the other
hand, the state entanglement was obtained at low temperatures by operating increased
values of the x-components of the parameters KSEA and DM couplings. Moreover,
the authors demonstrated that the KSEA and DM couplings similarly affect high-
temperature concurrence behaviors.

We noticed that the entanglement for an XYZ spin model with the DM coupling
along the x-axis had yet to be discussed. Although, the study made by [33] did not
exploit the different types of anisotropic interactions. They are focused only on the
models ofmagnetism in low-dimensionalmaterials basedon the homogeneousHeisen-
berg XXX model. We think it is very interesting and should be included in studies
of spin chain entanglement by considering a two-qubit in the anisotropic Heisenberg
XYZ model under the x-direction of KSEA and DM couplings. Solving the Hamil-
tonian system, we derive the corresponding eigenvalues as well as eigenstates, which
will be used to determine the density matrix, which is considered a key to studying
the system’s entanglement by concurrence. Indeed, for Jx = Jy = Jz = J , one can
easily find the different quantities obtained in [33]. Moreover, the Ising model will
only investigate by replacing Jx = Jy = 0 and Jz �= 0 and switching the KSEA and
DM couplings.

The structure of this paper is as follows. In section 2, we introduce the Hamiltonian
of the system with the x-component parameters of the KSEA and DM couplings.
Afterward, by varying the parameters of the�x and the coupling constant Jx , we study
the ground-state entanglement of the system at zero temperature. Moreover, phase
diagrams are given to study the system’s dominance states. In section 3, we determine
the thermal density matrix ρ(T ) in order to analyze the expression of concurrence C ,
which will be used to investigate the system’s entanglement. In addition, by exploring
the analytical results, we examine the critical temperature Tc above which the thermal
entanglement completely vanishes. In section 4, we study two special cases, such as
the Ising and the Heisenberg XXX models with the x-components KSEA and DM
couplings. In section 5, numerical studies will be performed to highlight the system
behavior. Finally, the paper will be closed with a findings overview and perspectives
of the studied system.
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2 Themodel and the ground-state entanglement

For a two-qubit anisotropic Heisenberg XYZ chain with DM and KSEA interactions,
the Hamiltonian of spin 1

2 is written by

HN =
N−1∑

i=1

(
Jxσ

x
i σ x

i+1 + Jyσ
y
i σ

y
i+1 + Jzσ

z
i σ z

i+1 + −→
D · (−→σ i × −→σ i+1)

)
+ HK SE A,

(1)

where Jx , Jy and Jz are the coupling constants, the σ
x,y,z
i are the Pauli matrices, and−→

D is the DM vector coupling. The anisotropic anti-symmetric interaction DM results
from the spin–orbit coupling [26, 27, 35]. What comes next, we restrict ourselves
our study to the case where the DM interaction exists only along the x-axis, i.e.,
(
−→
D = Dx .

−→x ). For simplicity, we set � = 1.
In general, the KSEA anisotropic symmetric interaction can be written as [37]

HK SE A =
N−1∑

i=1

(
σ x
i σ

y
i σ z

i

)
⎛

⎝
0 a12 a13
a12 0 a23
a13 a23 0

⎞

⎠

⎛

⎝
σ x
i+1

σ
y
i+1

σ z
i+1

⎞

⎠ . (2)

We consider a special kind of KSEA interaction: a12 = 0, a13 = 0 and a23 = �x ,
we restrict to chains of only two spins N = 2, and the Hamiltonian equation (1) may
be expressed in the standard computing base B = {|00〉 , |01〉 , |10〉 , |11〉} using its
matrix form which is defined by

H =

⎛

⎜⎜⎝

Jz G2 G3 Jx − Jy
G∗

2 −Jz Jx + Jy G∗
3

G∗
3 Jx + Jy −Jz G∗

2
Jx − Jy G3 G2 Jz

⎞

⎟⎟⎠ , (3)

where G2,3 = ±i Dx − i�x . The spectrum of H is easily obtained as

H|ψ1,2〉 = ε1,2|ψ1,2〉 (4)

H|ψ3,4〉 = ε3,4|ψ3,4〉.

Here, the eigenstates are written by

|ψ1,2〉 = 1√
2
(− sin(ϕ1,2)|00〉 ∓ i cos(ϕ1,2)|01〉 ± i cos(ϕ1,2)|10〉 + sin(ϕ1,2)|11〉)

|ψ3,4〉 = 1√
2
(sin(ϕ3,4)|00〉 ∓ i cos(ϕ3,4)|01〉 ∓ i cos(ϕ3,4)|10〉 + sin(ϕ3,4)|11〉),

(5)
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where ϕ1,2 and ϕ3,4 are defined by

ϕ1,2 = arctan

(
2Dx

�1 ± 	

)

ϕ3,4 = arctan

(
2�x

�2 ∓ 


)
, (6)

as well as the quantities �1, �2, 
 and 	 are given by

�1 =
√
4D2

x + 	2

�2 =
√
4�2

x + 
2


 = Jy − Jz
	 = Jy + Jz . (7)

The energies of the system are expressed by

ε1,2 = −Jx ∓ �1 (8)

ε3,4 = Jx ∓ �2. (9)

At this stage, we have determined the spectrum of our system, and it is important
to address the ground-state entanglement of the system at absolute zero temperature
T = 0, which is necessary before exploring thermal quantum entanglement. In order
to highlight the dependence of the ground-state energy on the coupling Jx , we use
Eqs. (8) and (9), and the ground-state energies can be written as

⎧
⎨

⎩

ε1 = −Jx − �1 i f Jx > �2−�1
2

ε3 = Jx − �2 i f Jx < �2−�1
2

ε1 = ε3 = −�1+�2
2 i f Jx = �2−�1

2 .

(10)

For the two first cases, the fundamental states are, respectively, the maximally entan-
gled states |ψ1〉 and |ψ3〉, which implies that C = 1. However, at the critical point
Jx = 1

2 (�2 −�1) (the lines delimiting distinct ground states in Fig. 1), the fundamen-
tal state is 1√

2
(|ψ1〉+|ψ3〉), which is an equal mixture of the doublet states |ψ1〉 and

|ψ3〉, leading to the minimal concurrence C = 0.
To obtain the phase diagram of the system studied, we plot the function �x =
±

√
(2Jx+�1)2−
2

2 extracted from the condition of the previous equation in terms of
Jx .

3 Thermal density matrix and concurrence

After determining the spectrumof a system, even though this system is in amixed state,
it is simple to determine its density matrix. When a system is in thermal equilibrium,

123



225 Page 6 of 16 B. Adnane et al.

Fig. 1 The phase diagram of a two-qubit XYZ Heisenberg model. Here, 	 = 0 and 
 = 2

its state at a given temperature T can be represented by the density matrix ρAB(T ).
That will be succeeded by using the spectral decomposition of the Hamiltonian (2),
which allows the thermal density matrix ρAB(T ) to be represented as

ρAB(T ) = 1

Z

4∑

l=1

e−βεl |ψl〉〈ψl |, (11)

where β = 1
kBT

, in which T is the temperature and kB is the Boltzmann constant. For
simplicity, we take kB = 1, and the partition function of the system is defined by

Z = Tre−βH = 2eβ Jx cosh (β�1) + 2e−β Jx cosh (β�2) . (12)

The system density matrix, as discussed previously in thermal equilibrium, can be
represented in the normal calculation basis by inserting (5) and (4) into Equation (11)
and obtaining

ρAB(T ) = 1

Z

⎛

⎜⎜⎝

r ν μ s
ν∗ γ η μ∗
μ∗ η γ ν∗
s μ ν r

⎞

⎟⎟⎠ . (13)
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The elements of this density matrix, after a cumbersome algebraic manipulation, are
given by

r , γ = eβ Jx �1 cosh (β�1) ∓ 	 sinh (β�1)

2�1
+ e−β Jx �2 cosh (β�2) ± 
 sinh (β�2)

2�2

η, s = −eβ Jx �1 cosh (β�1) ± 	 sinh (β�1)

2�1
+ e−β Jx �2 cosh (β�2) ∓ 
 sinh (β�2)

2�2

ν, μ = ∓ieβ Jx Dx sinh (β�1)

�1
+ ie−β Jx �x sinh (β�2)

�2
. (14)

For the density matrix ρAB , the concurrence of the state is given by

C(ρAB) = max

[
0, 2max (λ1, λ2, λ3, λ4) −

4∑

i=1

λi

]
, (15)

where λi (i = 1, 2, 3, 4) are the square roots of the eigenvalues of the matrix

R = ρABσ
y
1 ⊗ σ

y
2 ρ∗

ABσ
y
1 ⊗ σ

y
2 . (16)

A simple calculation can be used to obtain the following R matrix

R = 1

Z2

⎛

⎜⎜⎝

U1 Q1 Q2 U2
Q∗

1 V1 V2 Q∗
2

Q∗
2 V2 V1 Q∗

1
U2 Q2 Q1 U1

⎞

⎟⎟⎠ , (17)

where the components of the matrix R are represented by

U1,2 = ±e2β Jx �1 cosh (2β�1) − 	 sinh (2β�1)

2�1
+ e−2β Jx �2 cosh (2β�2) + 
 sinh (2β�2)

2�2

V1,2 = ±e2β Jx �1 cosh (2β�1) + 	 sinh (2β�1)

2�1
+ e−2β Jx �2 cosh (2β�2) − 
 sinh (2β�2)

2�2

Q1,2 = ∓ie2β Jx Dx sinh (2β�1)

�1
+ ie−2β Jx �x sinh (2β�2)

�2
. (18)

After some straightforward calculation, we get

λ1,2 = eβ Jx cosh (β�1) ∓ eβ Jx sinh (β�1)

2eβ Jx cosh (β�1) + 2e−β Jx cosh (β�2)

λ3,4 = e−β Jx cosh (β�2) ∓ e−β Jx sinh (β�2)

2eβ Jx cosh (β�1) + 2e−β Jx cosh (β�2)
. (19)
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Thus, the corresponding concurrence can be expressed as

C(ρAB(T )) = max[|λ2 − λ4| − λ1 − λ3, 0], (20)

C(ρAB(T )) =

⎧
⎪⎪⎨

⎪⎪⎩

max[0, eβ Jx sinh(β�1)−e−β Jx cosh(β�2)

eβ Jx cosh(β�1)+e−β Jx cosh(β�2)
]; if Jx ≥ 1

2 (�2 − �1)

max[0, −eβ Jx cosh(β�1)+e−β Jx sinh(β�2)

eβ Jx cosh(β�1)+e−β Jx cosh(β�2)
]; if Jx < 1

2 (�2 − �1).

(21)

The XYZ model presents a quantum phase transition with the critical temperature
Tc. When the temperature increases, the thermal variation will be introduced in the
system; thus, the entanglement will be modified due to the mixing of the fundamental
and excited states. When the temperature is higher than a critical temperature, the
entanglement is null, and this means that the entanglement disappears completely at
T ≥ Tc. The quantum phase transition occurs at the critical temperature Tc. However,
from Eq. (21), the critical temperature Tc is determined by two different equations as
follows:

⎧
⎪⎨

⎪⎩

e2Jx/Tc sinh(�1/Tc)
cosh(�2/Tc)

= 1; if Jx ≥ 1
2 (�2 − �1)

e−2Jx/Tc sinh(�2/Tc)
cosh(�1/Tc)

= 1; if Jx < 1
2 (�2 − �1).

(22)

When �2 = 0, the first equation reduces to equation e2Jx/Tc sinh (�1/Tc) = 1
and the second equation has no solution. On the other hand, when �1 = 0, the first
equation a does not admit any solution and the second equation reduces to equation
e−2Jx/Tc sinh (�2/Tc) = 1.
From the above two equations, we know that when the temperature is larger than
the critical temperature, when �1 = 2Jx it is found that Tc = 4Jx

ln3 for the coupling

constant according to x-component Jx > −�1
2 and when �2 = −2Jx it is found that

Tc = −4Jx
ln3 for the coupling constant according to x-component Jx < �2

2 .
For the antiferromagnetic case we observe that the critical temperature Tc increases
as the parameter Jx increases. Oppositely Tc decreases as Jx increases for the ferro-
magnetic case. Of course, the critical temperatures are same when Jx = 0.
The first limiting case concerns the high-temperature regime. The eigenvalues of the
matrix R are represented in the following manner

λ1,2 � 1

4
+ 1

4
(Jx ∓ �1)β

λ3,4 � t
1

4
+ 1

4
(Jx ∓ �2), β (23)

Following a comparison of the eigenvalues of R at high temperature, the expression
of concurrence, in this case, may be expressed by the relationship

C(T ) �
⎧
⎨

⎩

max[0, 1
2 ((Jx + �1) β − 1)]; if Jx ≥ 1

2 (�2 − �1)

max[0, 1
2 ((−Jx + �2) β − 1)]; if Jx < 1

2 (�2 − �1).

(24)
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When the temperature T approaches a certain value, the expression of concurrence
reveals that C → 0 makes the system states separable and not entangled at high tem-
perature.
The last limiting case is studying strong DM and KSEA interactions. In this perspec-
tive, we assume that Dx � 	, �x � 
 and Jx → 0; as a result, the eigenvalues of
the matrix R are expressed in the following form

λ1,2 � cosh (2βDx ) ∓ sinh (2βDx )

2 cosh (2βDx ) + 2 cosh (2β�x )

λ3,4 � cosh (2β�x ) ∓ sinh (2β�x )

2 cosh (2βDx ) + 2 cosh (2β�x )
. (25)

It is clear that (25) depends on �x and Dx . Therefore, the expression of concurrence
is also dependent on the �x and Dx . The concurrence is expressed by

C(T ) �

⎧
⎪⎨

⎪⎩

max[0, sinh(2β�x )−cosh(2β�x )+sinh(2βDx )
cosh(2β�x )+cosh(2βDx )

]; if �x ≥ Dx

max[0, − cosh(2βDx )
cosh(2β�x )+cosh(2βDx) ]; if �x < Dx .

(26)

For the large values of �x and Dx , if �x < Dx , the concurrence takes the value
C = 0, and this condition indicates that the states become separable. Inversely, when
�x ≥ Dx , the concurrence approaches 1, which indicates that the states are entangled.

4 Special cases

Before starting the numerical study, two special cases are discussed. Using the ana-
lytical formula in equation (21) and by adjusting some quantities, such as the spin
couplings Jx , Jy and Jz , we give a detailed study for the general XYZ Heisenberg
model. Then, we shall consider the Ising model (Jx = Jy = 0 with Jz �= 0) and the
XXX model (Jx = Jy = Jz = J ). Now, we arrive to analyze the amount of quantum
entanglement via the concurrence C in spin systems in the presence of the DM and
KSEA interactions.

4.1 Isingmodel

To start, we consider the Ising model corresponding to the case (Jx = Jy = 0 and
Jz �= 0), which implies that 
 = −Jz and 	 = Jz with Dx = �x = 0, which
indicates that �1 = �2 = |Jz |. Replacing in Eq. (21), we obtain

C(T ) = max[0,− e− |Jz |
T

e− |Jz |
T + e

|Jz |
T

] = 0. (27)

We can see from the density matrix of eq. (13) why the Ising thermal system does
not entangle any temperature T, and it is diagonal in the standard basis involving no
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Fig. 2 The concurrence C in terms of temperature T for three values of the coupling constant J

quantum entanglement. This is not surprising given that the maximum four entangled
states as eigenvectors |ψ1,2〉 and |ψ3,4〉 are degenerate, implying that the Ising thermal
state lacks entanglement.

4.2 XXXmodel

Let us now to analyze the concurrence C in Heisenberg XXXmodel corresponding to
the case, where Jx = Jy = Jz = J and Dx = �x = 1. In this situation, the expression
of C is written by

C(T ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max[0, − cosh( 2
T )+e

2J
T sinh( 2

√
1+J2
T

cosh( 2
T )+e

2J
T cosh( 2

√
1+J2
T

]; if J ≥ 0

max[0, sinh( 2
T )−e

2J
T cosh( 2

√
1+J2
T

cosh( 2
T )+e

2J
T cosh( 2

√
1+J2
T

]; if J < 0.

(28)

Conversely to the Ising model, the concurrence for the XXXmodel is different to zero
at low temperature. For T → 0, the ground state of the system is a single state |ψ2〉
or |ψ4〉, which is maximally entangled states. And by increasing the temperature, the
singlet mixes with the triplets in an intricate state until the critical temperature in this
case the concurrence is null, which is clearly noted in figure (2). Now, to investigate
the behaviors of the system we plots the thermal concurrence in terms of temperature
for different values of parameter J with Dx = �x = 1.

5 Results and discussion

This section of the paper will focus on numerical analysis based on the preceding
parts. To accomplish this, we will investigate numerous aspects of entanglement in a
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Fig. 3 The concurrence C(ρ) as a function of T and�x for different values of DM interaction. Here, Jx = 1,
	 = 2 and 
 = 0

two-qubit Heisenberg XYZ chain with x-directions of the DM andKSEA interactions.
By varying the x-components of the DM and KSEA interactions, we will investigate
concurrence in terms of temperature T and the coupling parameters for the spin inter-
actions Jx , Jy and Jz . Also, we illustrate the concurrenceC in connection to numerous
system-influencing parameters.

Figure3 shows the behavior of the concurrenceC(ρ) as function of the temperature
T and �x for different values of the parameter Dx (i.e., the DM interaction strength).
In Fig. 3a, the blue area represents non-entangled or separable states in the system.
In Fig. 3b–d, we analyze the concurrency of the system taking into account the DM
interaction. It is evident that as the parameter D rises, the area of the entangled states
grows.

In Fig. 4, we plot the concurrence C as a function of temperature T . We observe
that while the temperature rises, the concurrence reduces, and we can clearly find that
for a certain temperature, increasing �x can reduce concurrency if �x is less than
�xc = 1

2

√
(2Jx + �1)2 − 
2 → √

15 and can increase concurrence if �x is higher
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Fig. 4 The dependence of the concurrence C for the XYZ model with the absolute temperature T for
different parameters ( Dx = 3, 
 = 2 and 	 = 0)

Fig. 5 The dependence of the concurrence C for the XYZ model with the �x for Jx = −1, 
 = 1 and
	 = 0

than �xc and the concurrence is always null even if temperature varies for the case
�x = �xc.
Figure5 shows the concurrence depending on Dx at a fixed temperature and spin
coupling coefficients for two values of positive �x . In Fig. 4a, for T = 0.5 at Dx = 0
the concurrency is zero for �x = 0 and takes maximum value for �x = 2, and when
we increase the value of |Dx |, the concurrence will be decreased to zero after the
concurrence will be increased to a maximum value. In Fig. 5b, for T = 3 when we
increase the value of |Dx |, the concurrence will be increased to a peak value, and Dx
has a smaller critical value and more entanglement for �x = 0 compared to �x = 2.
In Fig. 6, by fixing 	, 
, Dx , �x and varying Jx for different values of temperature
T we see that the concurrence increases if we pick values of Jx greater or lower than
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Fig. 6 The concurrence C is a function of Jx for different values of T. We get C ≈ 1 only for T ≈ 0; we
have set 
 = 2, 	 = 0 and �x = 3 for Fig. (a)

Fig. 7 The Dx -dependence of the critical temperature Tc for antiferromagnetic and ferromagnetic with
choosing 
 = 2 and 	 = 0

�2−�1
2 , noting that the concurrence is null for Jxc = 1.44. However, there is a value

of Jx beyond which C does not rise. This behavior is more drastic if we are in the
region where Jx ≥ �2−�1

2 . There, only for T ≈ 0 we obtain C ≈ 1. For any other
value of T , increasing Jx makes C → Cmax , where Cmax < 1. And more, the higher
the T, the lower the value of Cmax . We are in the region where Jx < �2−�1

2 , which is
in agreement with the results in Fig. (1).

Figure7 depicts the behavior of critical temperature versus the parameters of the
Dx for different values of �x . In Fig. 7a, we plot Tc as a function of Dx with choosing
Jx = 1; as this figure shows, Tc increases monotonically with rising |Dx | in the region
|Dx | ≥ Dxc. When the value of the parameter Dx is constant, we find that Tc reduces
with an increase in �x . However, it behaves differently in the region |Dx | < Dxc. In
Fig. 7b, we plot Tc as a function of Dx by choosing Jx = −1; we see that we have the
same behavior with the lower critical temperature compared to the case of Jx = 1,
which is in conformity with the findings correspond to the XXX model investigated
in Fig. 2.

6 Conclusion and perspectives

In this work, we have investigated the thermal entanglement in a two-qubit Heisenberg
XYZchainwith the x-components of theDMandKSEA interactions. TheHamiltonian
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model was introduced, and the eigensystems of the studied system have been found
through mathematical calculations. However, the eigenstates allow us to describe the
phase diagram of the ground state at absolute zero temperature. Afterward, we have
established the expression of concurrence in terms of the spin’s coupling constant
Ji (i = x, y, z), the x-components of DM and KSEA interactions, and the temperature
T . Next, we analyzed the numerical behavior of the measured entanglements of our
model. Additionally, we have studied various limits and also special cases, such as
Ising andXXXHeisenbergmodels, by fixing some quantities involved in our study. On
the other hand, we have shown that the degree of entanglement of the system states has
affected by the spin’s coupling constant J , the temperature T and the x-components
of DM or KSEA interactions. Indeed, when the spin coupling Jx is increased, and
for small values of �x , the critical temperature is more elevated, the state system is
maximally entangled.Additionally,with the great values of�x , the critical temperature
will be lower, and the system becomes less entangled. Finally, we have deduced that
the separability of the states has been obtained at high temperatures or critical value
of �xc. Besides, the entanglement of the states can be obtained for large values of Dx

or low temperatures.
Still, some fascinating queries have to be managed. Can we utilize the studied

system to examine entanglement’s dynamic behaviors and illustrate the fundamental
characteristics of quantum entanglement at a finite time? A connected question arose,
what about other correlation measurements to study? These points and associated
queries are under consideration.
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