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Abstract
Entangled states play a fundamental role in quantum mechanics and are at the core
of many contemporary applications, such as quantum communication and quantum
computing. Therefore, determining whether a state is entangled or not is an important
task. Here, we propose a method to detect the entanglement of unknown two-qubit
quantum states. Ourmethod is based on the violation of the Clauser–Horne–Shimony–
Holt inequality. This maximizes the value of the inequality even when it contains an
unknown quantum state. The method iteratively generates local measurement settings
that lead to increasing values of the inequality. We show by numerical simulations for
pure and mixed states that our algorithm exceeds the classical limit of 2 after a few
iterations.

1 Introduction

Quantum mechanics predicts the existence of quantum states of composite systems
that cannot be written as products of states of their individual components [1]. These
are the so-called entangled states. Today, these states play a central role in quantum
information theory [2, 3] and in many applications, such as, for instance, quantum
cryptography [4], quantum teleportation [5, 6], frequency standards improvement [7–
9], one-way quantum computing [10], clock synchronization [11], and entanglement-
assisted orientation in space [12], among many others. Interestingly, entangled states
play a key role in the argument put forward by Einstein, Podolsky, and Rosen [13].
This was aimed at ascribing objective values to measurable quantities, that is, values

B L. Pereira
luciano.ivan@iff.csic.es

1 Instituto Milenio de Investigación en Óptica, Universidad de Concepción, Concepción, Chile

2 Facultad de Ciencias Físicas y Matemáticas, Departamento de Física, Universidad de
Concepción, Concepción, Chile

3 Instituto de Física Fundamental IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-023-03953-y&domain=pdf
http://orcid.org/0000-0003-1183-2382


203 Page 2 of 24 J.Cortés-Vega et al.

that exist prior to and independently of measurements. Bell’s inequality [14] shows
that precisely the existence of entangled states precludes such conception of reality.

In view of the foundational significance of entangled states and their many appli-
cations, theoretical and experimental characterization and detection of entangled
states are important research subjects. One of the first criteria employed to study the
entanglement of quantum states is the violation of the Clauser–Horne–Shimony–Holt
inequality [15, 16] (CHSH), which is the generalization of Bell’s inequality to two
observers each having the choice of two measurement settings with two outcomes. In
this scenario, the violation of the CHSH inequality indicates the presence of entangle-
ment. This approach has also been studied in the context of the theory of entanglement
witnesses [17, 18]. These are observables with positive expectation values with respect
to the complete set of separable states that for at least one entangled state provide a
negative expectation value. Thus, a negative expectation value signals the presence
of entanglement. It has been shown that the CHSH inequality can be related to an
entanglement witness [18, 19].

Here, we study the detection of entanglement of unknown states via the violation
of the CHSH inequality. Since the majority of the entanglement measures and entan-
glement detectors are based on the knowledge of the quantum state, the unknown
character of the state increases the difficulty of the problem. The presence of unknown
quantum states is common in quantum communication [20–22] and quantum com-
puting [23–25], where an objective entangled state is prepared, but it is modified by
the action of the environment. Furthermore, experimental setups to study the CHSH
inequality generally aim to generate maximally entangled pure states. However, tech-
nical limitations, experimental inaccuracies, and noise can lead to partially entangled
mixed states that are difficult to characterize. In particular, decoherence generated
by an unwanted interaction between a bipartite quantum system and an environment
leads to the loss of quantum coherence, entanglement, and Bell nonlocality [26]. The
later has been called Bell nonlocality sudden death [27, 28], and its consequence is
that states affected by this phenomenon cannot be purified. Entanglement detection
of unknown quantum states has been previously studied from the point of view of
quantum tomography [29, 30] by means of an adaptive scheme [31, 32], employing
a succession of measurements of witness operators [33, 34], via the measurement of
the energy observable [35], via local parity measurements on twofold copies of the
unknown state [36], series of local random measurements from which entanglement
witnesses are constructed [37], and variational determination of geometrical entangle-
ment [38], among many others. We follow a different approach. For a given known
state, the maximal violation of the CHSH inequality is obtained by maximizing the
inequality onto the set of 4-tuples of dichotomic observables. This procedure is typ-
ically carried out by means of semidefinite programming (SDP) techniques. If the
state is unknown, then the function to be optimized, that is, the target function, con-
tains unknown fix parameters and SDP cannot be employed to find the measurements
leading to the maximal violation. Analogously, the use of an entanglement witness
also requires the knowledge about the state. To overcome this problem, we employ a
recently developed optimization algorithm [39], the complex simultaneous perturba-
tion stochastic approximation (CSPSA), which can handle functions with unknown
parameters. CSPSA works natively within the field of the complex numbers. Thereby,
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noparameterizationof the complex arguments onto the real numbers is necessary.Also,
this algorithm has exhibited an improved convergence rate in certain applications such
as, for instance, the estimation of unknown quantum pure states [40]. CSPSA uses a
stochastic approximation of the complexWirtinger gradient of the target function, that
is, the function to be optimized, which requires the value of the target function at two
different points in the optimization space. In the case at hand, these two values can be
obtained experimentally, regardless of whether the state remains unknown. CSPSA
iteratively generates a sequence of sets with four local measurement settings with
increasing values of the CHSH function until reaching the highest possible violation
of the inequality.

We first study via numerical simulations the performance of the method here pro-
posed when applied to unknown pure 2-qubit states. In this case, the maximal value
achieved by the CHSH function depends on the Schmidt coefficient of the state.
Thereby, the performance of the method can be compared with an analytical bound.
We show that for the set formed by states that have the same set of local Schmidt bases,
the method leads in tens of iterations to a value close to the maximum of the CHSH
function for each value of the Schmidt coefficient. We also consider sets of states that
have the same concurrence value but different local Schmidt bases. In this case, the
method also approaches the corresponding maximum value of the CHSH inequality in
tens of iterations. However, the higher the concurrence value, the fewer iterations are
required for a violation of the CHSH inequality. Also, all states with the same concur-
rence value exhibit a very similar behavior of the CHSH function as a function of the
number of iterations, that is, CSPSA produces results that are nearly independent of
the particular set of local Schmidt bases. We also consider the average behavior of the
method on the Hilbert space of two qubits. In this case, the method reaches a CHSH
function value greater than 2 after 17 iterations for an ensemble size of 102. After
25 iterations, the interquartile range is also above 2, which indicates that for 75% of
the simulated states the method reached a violation of the CHSH inequality. A further
increase in the ensemble size leads to a reduction in the number of iterations required to
achieve a violation of the CHSH inequality. In order to study the accuracy achieved by
our method, we employ the squared error. We show that the mean and median squared
error on the 2-qubit Hilbert space are nearly indistinguishable. After 25 iterations, the
mean square error achieves a value in the order of 10−1 for an ensemble size of 102.
A further increase in the ensemble size to 103 leads to a decrease in mean square error
in the order of half order of magnitude. Thereafter, we study the case of two-qubit
mixed states. Unlike the case of pure states, there is no known analytical formula for
the maximum value of the CHSH function for an arbitrary mixed state. However, in
the particular case of Werner states, that is, a maximally entangled state affected by
white noise, it is possible to obtain the maximum value of the CHSH function in terms
of the mixing parameter. We show that CSPSA is capable of achieving a value close to
the maximum violation of the CHSH inequality for all Werner states. As the ensemble
size increases, the value of the function provided by CSPSA becomes closer to the
maximal violation. Finally, we analyze the results achieved by CSPSA for unknown
mixed states. For these states, there is no analytical expression for maximal violation,
so we calculate this value via semidefinite programming (SDP). After generating 106

density matrices, a subset of 8×103 density matrices that violate the CHSH inequality
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is identified. These states have a small value of the negativity, a well-known entangle-
ment measure. Within this subset, the mean and median values of the CHSH function
provided by CSPSA achieve a value close to the theoretical maximal violation after
approximately 75 iterations.

Our results show that the maximization of the CHSH function via the CSPSA
method allows detecting the entanglement of unknown states, pure or mixed, with a
high degree of accuracy. Furthermore, the highest value of the CHSH function can also
be achieved. Our approach requires the ability to adapt local measurements, which are
carried out on single copies of the unknown state. This can be implemented in various
experimental platforms [16, 41–45]. We stress the fact that no a priori information
about the unknown state, such as purity, Schmidt coefficient, or Schmidt bases, has
been employed to optimize the performance of CSPSA.

2 CHSH inequality and CSPSA optimization algorithm

The target function to be optimized is the Clauser–Horne–Shimony–Holt function S
defined by the expression [15]

S(z, z∗) = E(za, zb) + E(za, z′b) + E(z′a, zb)
−E(z′a, z′b), (1)

where the expectation value E(za, zb) is given by the average of the products of
the outcomes of two locally performed dichotomic measurements A(za) and B(zb)
defined by the settings za and zb, respectively. The vector z contains the settings of the
four local measurements, that is, z = (za, z′a, zb, z′b). The CHSH inequality adopts
the form |S| ≤ 2.

A quantum mechanical dichotomic observable A(za) is defined as the one having
±1 eigenvalues, that is, an observable with the spectral decomposition

A(za) = |ψ(za)〉〈ψ(za)| − |ψ⊥(za)〉〈ψ⊥(za)|, (2)

where |ψ(za)〉 is an arbitrary two-dimensional quantum state

|ψ(za)〉 = za,1|0〉 + za,2|1〉√|za,1|2 + |za,2|2
. (3)

The state |ψ⊥(za)〉 is orthogonal to |ψ(za)〉, and the components za,1 and za,2 of the
vector za are complex numbers. Thereby, the expectation value E(za, zb) is given by
the expression

E(za, zb) = Tr(ρ|ψ(za)〉〈ψ(za)| ⊗ |ψ(zb)〉〈ψ(zb)|)
+Tr(ρ|ψ⊥(za)〉〈ψ⊥(za)| ⊗ |ψ⊥(zb)〉〈ψ⊥(zb)|)
−Tr(ρ|ψ(za)〉〈ψ(za)| ⊗ |ψ⊥(zb)〉〈ψ⊥(zb)|)
−Tr(ρ|ψ⊥(za)〉〈ψ⊥(za)| ⊗ |ψ(zb)〉〈ψ(zb)|), (4)
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where ρ is a fixed known two-qubit state.
The problem of violating the CHSH inequality consists in finding a complex vector

z such that for a given known state ρ leads to a maximal value of |S(z, z∗)| larger
than the classical bound of 2. This optimization problem can be solved by means
of semidefinite programing or other numerical optimization techniques. However,
when the state ρ entering in the function S is unknown, the standard approaches to
the problem cannot be employed. The reason for this is that the function S and its
derivatives cannot be evaluated.

Algorithm 1 CSPSA optimization of S(ρ, z)
Consider a state ρ. This plays the role of the unknown state.
Set initial guess ẑ0, and gain coefficients a, A, s, b, and r .
for k = 1, . . . , kmax do

Set

ak = a

(k + 1 + A)s
, ck = b

(k + 1)r
.

Choose �k,i randomly in the set {±1,±i}.
Calculate ẑk± = ẑk ± ck�k .
Estimate from experimentally acquired data or numerically simulate the values S(ρ, ẑk±) considering

an ensemble of N equally prepared pairs of qubits in the state ρ.
Estimate the gradient as

ĝk,i = S(ρ, ẑk+) − S(ρ, ẑk−)

2ck�
∗
k,i

.

Actualize the guess ẑk+1 = ẑk + ak ĝk .
Normalize coefficients ẑk+1

In order to overcome this problem, we resort to the recently introduced CSPSA
[39] optimization algorithm for real-valued functions of complex arguments. This
algorithmworks natively on thefieldof the complexnumbers,whichmakeunnecessary
the use of real parameterizations of the complex arguments. For a target function
f (z, z∗) : Cn × C

n → R, CSPSA is defined by the iterative rule

ẑk+1 = ẑk + ak ĝk( ẑk, ẑ
∗
k), (5)

where ak is a positive gain coefficient and ẑk is the estimate of the maximizer z̃ of
f (z, z∗) at the k-th iteration. The iteration starts from an initial guess ẑ0, which is
randomly chosen. The function ĝk( ẑk, ẑ

∗
k) is an estimator for the Wirtinger gradient

[46] of f (z, z∗) whose components are defined by

ĝk,i = f ( ẑk+, ẑ∗k+) + εk,+ − ( f ( ẑk−, ẑ∗k−) + εk,−)

2ck�∗
k,i

, (6)
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with

ẑk± = ẑk ± ck�k, (7)

where ck is a positive gain coefficient and εk,± describes the presence of noise in the
values of f ( ẑk±, ẑ∗k±). The components of the vector �k ∈ C

n are identically and
independently distributed random variables in the set {±1,±i}. The gain coefficients
ak and ck control the convergence of CSPSA and are chosen as

ak = a

(k + 1 + A)s
, ck = b

(k + 1)r
. (8)

The values of a, A, s, b and r are adjusted to optimize the rate of convergence depend-
ing on the target function. We use the values: a = 1.0, b = 0.25, s = 1.0, r = 1/6,
and A = 0.

Two main properties of CSPSA are: (i) it has a mathematical proof of asymptotic
convergence in mean to the maximizer z̃ of f (z, z∗) and (ii) ĝk is an asymptotically
unbiased estimator of the Wirtinger gradient. With proper conditions, these properties
are maintained even in the presence of the noise terms εk,± entering in Eq. (6). CSPSA
is the generalization of the Simultaneous perturbation stochastic approach (SPSA) [47,
48] from the field of real numbers to the field of complex numbers. SPSA has been
applied to the problem of estimating pure states [49, 50] and experimentally realized
[51].

Thus, the application of CSPSA to the maximization of the CHSH function pro-
ceeds as follows: an initial guess ẑ0 for the vector containing the measurement settings
and a vector �0 are randomly generated. These two vectors are employed to calcu-
late the vectors ẑ0± according to Eq. (7). Thereafter, the values S( ẑ0±, ẑ∗0±) of the
CHSH function are obtained, which involves the realization of measurements on a
finite ensemble of N copies of the unknown state ρ. The values S( ẑ0±, ẑ∗0±) are then
employed to calculate the estimator for theWirtinger gradient ĝ0( ẑ0, ẑ

∗
0) using Eq. (6).

Finally, a new estimate ẑ1 for the vector of settings is obtained by means of Eq. (5).
This process is iterated until achieving a violation of the CHSH inequality or until
reaching a predefined number of iterations. Algorithm 1 shows a pseudocode for the
optimization of the CHSH function via CSPSA.

According to Eq. (6), the use of CSPSA to maximize the CHSH function S(z, z∗)
requires the capability of obtaining the values S( ẑk±, ẑ∗k±) at each iteration, which in
turn requires an experimental platform capable of measuring the CHSH function at
any value of the setting vector z. In photonic platforms where a qubit is encoded in the
polarization degree of freedom of a single photon, the local measurements on a qubit
are carried out by the interaction of the photon with a sequence of half- and quarter-
wave plates followed by a polarizing beam splitter and single-photon detectors. In this
case, a setting vector is given by the rotation angles of the wave plates. Thereby, it is
possible to implement any local measurement up to the angular resolution of the wave
plates. It is possible to achieve a high degree of control in other experimental platforms,
for instance, in time-bin or energy–time encoded qubits, where local measurements
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can be implemented introducing electronically controlled phase shifts. Thus, we will
assume that the CHSH function can be measured for any value of the setting vector z.

3 Results

A single run of CSPSA starts with the choice of an initial guess z0 of the four local
measurement bases and proceeds through the choice of the vector �k at every itera-
tion. Since there is no a priori information about the initial state, the initial guess for
each of the local measurements, which are defined by Eqs. (2) and (3), is randomly
chosen according to a Haar uniform distribution. The choice of �k is equally ran-
dom. Thereby, CSPSA is an intrinsically stochastic optimization algorithm. A third
source of randomness is the value of the CHSH function. This is obtained by means
of probabilities that are inferred from local measurements made on a set of equally
prepared copies of the unknown state. Since the size N of the ensemble is finite, the
inferred probabilities are affected by finite statistic noise. Thereby, CSPSA exhibits
three different sources of randomness and, consequently, each run of CSPSA will fol-
low a different trajectory in the optimization space, that is, the space of all four setting
vectors. Here, we report the results of numerical experiments for the cases of pure and
mixed states considering the sources of randomness affecting the performance of the
proposed method.

To study the violation of the CHSH inequality with an unknown state ρ, pure or
mixed, we compute the expected value S̄(ρ) by sampling a sufficiently large number
of independent trajectories, each obtained through the optimization of S by CSPSA
for ρ, as

S̄(ρ) = 1

K

∑

z0,{�1,...,�k }
S(ρ, z0, {�1, . . . ,�k}), (9)

where S(ρ, z0, {�1, . . . ,�k}) is the value of the CHSH function evaluated on a par-
ticular trajectory generated by a single run of CSPSA and K is the total number of
simulated trajectories. S(ρ, z0, {�1, . . . ,�k}) depends on the unknown state ρ, the
set z0 of complex numbers that defines the initial guess for the four local measure-
ments, and the particular sequence of choices {�1, . . . ,�k}. The mean S̄(ρ) will be
studied as a function of the number k of iterations for a fixed ensemble size N .

Since we are interested in the overall behavior of the algorithm for unknown states,
we calculate the mean S̄C of S̄(ρ) in a set �C , that is,

S̄C = 1

M

∑

ρ∈�C

S̄(ρ), (10)

where M is the number of states in �C and C is a parameter that characterizes the
states in the set. Alternatively, we calculate the median S̃C of S̄(ρ) in the set �C and
the interquartile range. This is done to determine whether the distribution of S̄(ρ) in
�C exhibits a symmetric distribution or not and the possible existence of outliers.
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Fig. 1 CHSH function S(|ψλ〉) as a function of the Schmidt coefficient λ for two-qubit states with fixed
local Schmidt bases. Continuous green line represents the theoretical prediction given by Eq. (12). Solid red
circles (blue x’s) represent the mean S̄(|ψλ〉) (median S̃(|ψλ〉)) of S(|ψλ〉) obtained via CSPSA considering
104 initial guesses for each state |ψλ〉 after 200 iterations and an ensemble size N = 102

3.1 Unknown pure states

We start our analysis of the proposed algorithm by considering the violation of the
CHSH inequality for the set �λ of two-qubit pure states defined by the Schmidt
decomposition

|ψ(λ)〉 = √
λ|0〉1|0〉2 + √

1 − λ|1〉1|1〉2, (11)

where λ ∈ [0, 1/2] is the Schmidt coefficient and {|0〉1, |1〉1} and {|0〉2, |1〉2} are fixed
local Schmidt bases of each qubit. States in �λ lead to a value of the function S given
by

S(λ) = 2
√
1 + 4λ(1 − λ). (12)

In Fig. 1 , we show S̄(ρλ) for ρλ = |ψλ〉〈ψλ| as a function of λ for N = 102 after
200 iterations and K = 104. Initial guesses for the set of four local observables are
randomly chosen. In particular, information about the fixed bases in |ψλ〉 has not
been used to improve the performance of CSPSA. As is apparent from Fig. 1, CSPSA
provides mean and median of S(|ψλ〉) that closely resemble the theoretical prediction
of Eq. (12) for any value of λ. A much better agreement can be obtained by increasing
the ensemble from N = 102 to N = 104, which is illustrated in Fig. 2.

Table 1 provides a summary of simulations conducted for states expressed in
Schmidt decomposition with parameter λ, for an ensemble size of N = 102 and
104, with 75 total iterations for each ensemble size. The calculation of relative error
indicates that as a larger ensemble size is used, the method’s accuracy improves by
up to 2.78 times (λ = 0.40). However, as the λ parameter decreases, the method’s
accuracy decreases. This is because the method requires more iterations to achieve an
accuracy close to 0.1%
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Fig. 2 CHSH function S(|ψλ〉) as a function of the Schmidt coefficient λ for two-qubit states with fixed
local Schmidt bases. Continuous green line represents the theoretical prediction given by Eq. (12). Solid red
circles (blue x’s) represent the mean S̄(|ψλ〉) (median S̃(|ψλ〉)) of S(|ψλ〉) obtained via CSPSA considering
104 initial guesses for each state |ψλ〉, 200 iterations, and an ensemble size N = 104

Table 1 Comparison between the mean value of the CHSH function Smean provided by the training of
the measurement for pure states and the maximal theoretical value Sth for a given value of the Schmidt
coefficient λ with the corresponding relative error for ensemble size N = 102 and N = 104

N = 102 N = 104

λ Sth Smean Rel. error (%) Smean Rel. error (%)

0.05 2.18174 2.14750 1.56937 2.17267 0.41576

0.10 2.33238 2.28645 1.96921 2.31447 0.76812

0.15 2.45764 2.40160 2.28009 2.42883 1.17220

0.20 2.56125 2.50275 2.28392 2.52772 1.30893

0.25 2.64575 2.58907 2.14217 2.61088 1.31820

0.30 2.71293 2.66427 1.79385 2.68507 1.02694

0.35 2.76405 2.72608 1.37371 2.74492 0.69238

0.40 2.80000 2.77039 1.05735 2.78939 0.37907

0.45 2.82135 2.79817 0.82143 2.81667 0.16594

0.50 2.82843 2.80716 0.75186 2.82575 0.09459

Next we analyze the case of pure states with a known value of the concurrence C ,
which is given by the expression

C(λ) = 2
√

λ
√
1 − λ. (13)

The local Schmidt bases of the state are unknown. In the simulations, we choose a
fixed value C of the concurrence, which in turn fixes the value of the Schmidt coeffi-
cient. The local Schmidt bases are randomly chosen. As in the previous simulations,
the knowledge about the value of the concurrence is not employed to improve the
performance of CSPSA. Figure3shows the behavior of S̄C , which is the mean of S̄(ρ)
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Fig. 3 Mean S̄C of S̄(ρ) in �C as a function of the number of iterations for several values of the concur-
rence C in the interval [0.1, 1.0], from bottom to top. The mean S̄(ρ) is calculated with 104 independent
trajectories, and each local measurement is simulated with an ensemble size N = 102. Upper and lower
straight lines represent the values 2

√
2 and 2, correspondingly
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k
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S̃
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C=0.1, S = 2.009
C=0.2, S = 2.039
C=0.3, S = 2.088
C=0.4, S = 2.154
C=0.5, S = 2.236

C=0.6, S = 2.332
C=0.7, S = 2.441
C=0.8, S = 2.561
C=0.9, S = 2.69
C=1.0, S = 2.828

Fig. 4 Median of S̄(ρ) in�C as a function of the number of iterations for several values of the concurrenceC
in the interval [0.1, 1.0], from bottom to top. The mean S̄(ρ) is calculated with 104 independent trajectories
and each local measurement is simulated with an ensemble size N = 102. Upper and lower straight lines
represent the values 2

√
2 and 2, correspondingly

calculated on a set �C of pure states with a fixed value C of the concurrence, as a
function of the number k of iterations for several values of C . Each set �C contains
100 states chosen according to a Haar uniform distribution and S̄(ρ) is calculated with
104 trajectories. Each one of the four local measurements is simulated considering an
ensemble size of N = 102. According to Fig. 3, the quantity S̄C exhibits a fast increase
in the value of the CHSH function within the first tens of iterations followed by a linear
behavior, which asymptotically approaches the maximal value of the function S for
the value C of the concurrence. The overall behavior of S̄C does not depend on the
value of C .

Figure 4 displays the median S̃C of S̄(ρ) in�C as a function of the number of itera-
tions for several values of the concurrence C . Shaded areas represent the interquartile
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Table 2 Comparison between the mean value of the CHSH function Smean provided by the training of
the measurement for Werner states and the maximal theoretical value Sth for a given value of the Schmidt
coefficient λ with the corresponding relative error for ensemble size N = 102 and N = 104

N = 102 N = 104

λ Sth Smean Rel. error (%) Smean Rel. error (%)

0.1 0.28284 0.19894 44.39538 0.26176 11.03198

0.2 0.56569 0.53751 15.01758 0.55785 3.26864

0.3 0.84853 0.83032 6.65521 0.84455 1.47923

0.4 1.13137 1.11675 4.04333 1.12920 0.77079

0.5 1.41421 1.40173 2.81114 1.41273 0.42588

0.6 1.69706 1.68596 2.00816 1.69590 0.29306

0.7 1.97990 1.96982 1.51432 1.97884 0.18606

0.8 2.26274 2.25371 1.19582 2.26176 0.13380

0.9 2.54558 2.53751 0.93708 2.54458 0.11920

1.0 2.82843 2.82175 0.75232 2.82741 0.09076

range. Monte Carlo experiments are carried out as in Fig. 3. As is apparent from this
figure, themedian exhibits the same overall behavior as themean S̄C .Mean andmedian
reach after a few tens iterations values that are nearly indistinguishable and contained
within the interquartile range. This indicates that the stochasticity of CSPSA does not
lead to outliers in the histogram of S̄(ρ) for all simulated sets �C . The interquartile
range, which is a quartile-based measure of variability, decreases rapidly with the
number of iterations and becomes a very narrow fringe. This is an indication that the
histogram of S̄(ρ) for a particular�C after a few tens iterations is highly concentrated
around the mean.

Table 2 provides a summary of simulations conducted for Werner states based with
parameter λ, for an ensemble size of N = 102 and 104, with 75 total iterations for each
ensemble size. This table shows that for small values ofλ, the relative error is very high.
This is because for weakly entangled states, the method necessarily requires a large
ensemble size and a high number of iterations to achieve accurate results. However,
the same table shows that for λ values close to 0.4, the error with an ensemble size of
104 particles is less than 1%. This demonstrates that with equal resources, very high
precision can be achieved.

Thus, Figs. 3 and 4, and Table 2 clearly indicate that CSPSA can be employed
to iteratively increase the value of the CHSH function for unknown pure states and
detect entanglement. The greater the entanglement of the unknown state, the fewer
iterations will be required to obtain a violation of the CHSH inequality. Furthermore,
approximately 70 iterations are necessary to reach a value of the CHSH function close
to the maximal violation allowed by quantum mechanics.

Figures5 and 6 depict the mean S̄C and the median S̃C of S̄(ρ) in �C , corre-
spondingly. In this case, local measurements are simulated with an ensemble size of
N = 104, that is, a quadratic increase with respect to previous simulations. As is
apparent from Figs. 5 and 6, the overall behavior remains unchanged with respect to
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Fig. 5 Mean S̄C of S̄(ρ) in�C as a function of the number of iterations for several values of the concurrence
C in the interval [0.1, 1.0], frombottom to top. Themean S̄(ρ) is calculatedwith 104 independent trajectories
and each local measurement is simulated with an ensemble size N = 104. Upper and lower straight lines
represent the values 2
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Fig. 6 Median of S̄(ρ) in�C as a function of the number of iterations for several values of the concurrenceC
in the interval [0.1, 1.0], from bottom to top. The mean S̄(ρ) is calculated with 104 independent trajectories,
and each local measurement is simulated with an ensemble size N = 104. Upper and lower straight lines
represent the values 2

√
2 and 2, correspondingly

Figs. 3 and 4. In particular, both values of ensemble size, N = 102 and N = 104, show
small differences in the asymptotic linear regime. For instance, for weakly entangled
states, that is, C = 0.1, after the total of iterations, in Fig. 4 CSPSA is close to 2 but
below. In Fig. 6, CSPSA is slightly above 2. Similar differences can be observed for
other values of C . Furthermore, a small reduction in the number of iterations required
to violated the CHSH inequality can be observed. This reduction depends on the ini-
tial amount of entanglement of the unknown state. Also, the increase in N leads to
narrower interquartile ranges.

This is more clearly illustrated in Fig. 7 , which shows the median S̃C of S(ρ) in
�C for C = 0.5 and C = 0.9 for three values of ensemble size N = 102, 103, 104.
The interquartile range is also depicted. As is apparent from Fig.7, CSPSA provides
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Fig. 7 Median S̃C of S̄(ρ) in �C as a function of the number of iterations for C = 0.5 and C = 0.9. Each
local measurement is simulated with an ensemble size N = 104, 103, 102. The median S̃(ρ) for each value
of C is calculated with 104 independent trajectories. Upper and lower straight lines represent the values
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Fig. 8 Number of iterations kS>2 such that the interquartile range is above S = 2 as a function of the
concurrence C for N = 102, 103, and 104, from top to bottom

very similar values of S̃C almost independently of the size of the ensemble employed.
However, in the regime of a few tens of iterations, N = 102 leads to lower values of
S̃C , while N = 103 and 104 lead to very similar values of S̃C , which are higher than in
the case N = 102. This has for consequence that higher values of N lead to a decrease
in the number of iterations required to observe a violation of the CHSH inequality, but
this improvement is saturated for an enough large sample size.

This later effect is analyzed with the help of Fig. 8 that displays the number of
iterations kS>2 required to obtain a violation of the inequality with 75% of the states
generated for a given value of C and with N = 102, 103, 104. Here, we observe that
N = 104 and N = 103 lead to a very similar behavior while N = 102 requires
the largest number of iterations to reach a violation of the CHSH inequality. Also,
the lower the concurrency value, the greater the number of iterations required for
the violation. In fact, Fig. 8 suggests that kS>2 decreases exponentially with C . This
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Fig. 9 Mean S̄H and median S̃H of S̄(|ψ〉〈ψ |) with |ψ〉 ∈ H and interquartile range for N = 102

figure also illustrates the interplay between kS>2 and the total ensemble size NS>2
required for violating the CHSH inequality. For example, in the case of C = 0.1 and
N = 102, we have that approximately kS>2 = 100, which leads to NS>2 = 8 × 104.
For N = 104, we have that approximately kS>2 = 35, and thus, NS>2 = 280 × 104.
Clearly, the reduction in the value of kS>2 comes at the expense of using a much larger
total ensemble NS>2. For states with a high value of concurrence C , the reduction in
the value of kS>2 by increasing the value of N is marginal.

So far, our study of the violation of CHSH inequality through CSPSA has been
done considering that the initial amount of entanglement is known. This was done to
show that CSPSA drives the value of the CHSH function S close to the maximum
value regardless of the amount of entanglement. We now lift this assumption and
consider unknown pure states. In order to do this, we generate a set �H with 100
pure states in the Hilbert space H = H1 ⊗ H2 of two qubits according to a Haar
uniform distribution and calculate the mean S̄H and the median S̃H of S̄(|ψ〉〈ψ |) in
�H, together with the corresponding interquartile range. These quantities are depicted
in Fig. 9as a function of the number of iterations. The behavior exhibited by the mean
and media is very similar and characterized by a fast increase within the first tens of
iterations followed by an asymptotic linear regime. Figure9 also shows the mean and
media of the maximal theoretical values of S for each state in�H, which are indicated
as two superposed straight lines. As can be seen from Fig. 9, CSPSA produces a mean
and a median that are very closely to the theoretical values. Also, the expected number
of iterations kS>2 such that 75% of the simulated states violates the CHSH inequality
is about 25. Figure10shows the same information as Fig. 9 but with N = 104. In this
case, we see that the quadratic increase in the ensemble size allows CSPSA to reach
mean and media values that are even closer to the theoretical values. Furthermore,
there is a small reduction in the number of iterations required to obtain a value of S
greater than two from 25 to 20.

Our previous simulations seem to indicate that the optimization of the CHSH func-
tion for an unknown state through the CSPSA method provides maximum values of
the CHSH functional close to the theoretical maximum values. In order to analyze
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Fig. 10 Mean S̄H and median S̃H of S̄(|ψ〉〈ψ |) with |ψ〉 ∈ H and interquartile range for N = 104

this, we employ the mean square error. For a given state ρ = |ψ〉〈ψ | and a single
realization of CSPSA, we calculate the square error SE(ρ) as

SE(ρ) = |S(ρ, z0, {�1, . . . ,�k} − Smax (ρ)|2. (14)

The mean square error MSE(ρ) for a fixed unknown state ρ with respect to a large
set of realizations is given by

MSE(ρ) = 1

K

∑

z0,{�1,...,�k }
SE(ρ), (15)

which corresponds to an estimation accuracy metric. This is then used to calculate the
average of the mean square error MSE on the total Hilbert space H as

MSE = 1

M

∑

ρ∈�H

MSE(ρ). (16)

Figure 11 shows the mean MSE of the square error on the Hilbert space as a
function of the number of iterations for N = 102, 103, 104. For each value of ensemble
size, MSE displays a fast decrease followed by an approximately asymptotic lineal
behavior. N = 103 and N = 104 produce very similar values of the mean square error
while an ensemble size of N 2 produces a value that is almost half order of magnitude
higher. After 25 iterations, the difference between the maximal theoretical value and
the value achieved by CSPSA is between 10−1 and 10−2. Adding 50 more iterations
this difference is approximately between 10−2 and 10−3. Let us recall that after 75
iterations the lower bound of the interquartile range of S̄(|ψ〉〈ψ |) has an approximate
value of 2.12, so that for 75% of states in the bipartite Hilbert space we can ascertain
its entangled nature and assign an accurate value of the CHSH function. A further
improvement in the accuracy achieved by CSPSA can be obtained at the expense of a
large increase in the number of iterations, after adding 150 iterations we obtain a new
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Fig. 11 Mean square error MSE as a function of the number k of iterations for N = 102, 103, and 104,
from top to bottom. Shaded areas represent interquartile range

decrease by one order of magnitude, that is, the mean MSE of the square error on the
Hilbert space is approximately in the interval between 10−3 and 10−4.

3.2 Unknownmixed states

In the previous section, we have studied the violation of the CHSH inequality for
unknown pure states by means of a CSPSA-driven sequence of local measurements.
Here, we study the case of mixed bipartite states.

We start by reproducing the value of the CHSH function on the set of the Werner
states, which are given by the expression

ρλ = λ|ψs〉〈ψs | + (1 − λ)

d
I, (17)

where |ψs〉 is the maximally entangled singlet state defined as

|ψs〉 = 1√
2
(|0〉|1〉 − |1〉|0〉) (18)

and I is a 4-dimensional identity operator. This mixture of the singlet state with white
noise is separable if and only if λ ≤ 1/3 and violates the CHSH inequality if and only
if λ > 1/

√
2. The maximal value of the CHSH function for a Werner state ρλ is given

by

S(ρλ) = 2
√
2λ. (19)

Figure 12displays the mean S̄(ρλ) and median S̃(ρλ) as a function of λ obtained via
CSPSA for an ensemble size N = 102 after 75 iterations.With the exception of the first
5 points, Fig. 12 shows a very good agreement between themaximal value of theCHSH
function ofEq. (19) and the value achievedwith the help ofCSPSA.Furthermore,mean
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Fig. 12 Mean S̄(ρλ) (solid red dots) and median S̃(ρλ) (blue x’s) as a function of λ for Werner states.
Continuous black line depicts the maximal value of the CHSH function of Eq. (19). Local measurements
are simulated with an ensemble size N = 102 and 75 iterations are realized
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Fig. 13 Mean S̄(ρλ) (solid red dots) and median S̃(ρλ) (blue x’s) as a function of λ for Werner states.
Continuous black line depicts the maximal value of the CHSH function of Eq. (19). Local measurements
are simulated with an ensemble size N = 104 and 75 iterations are realized

and median exhibit values that also are very close and the interquartile (not depicted)
range is very narrow. Thus, within the family of Werner states CSPSA drives the
sequence of local measurement bases very close to the optimal set. An increase in the
ensemble size leads to even better results. This is illustrated in Fig. 13, where local
measurements are simulated with an ensemble N = 104. In this case, all points are
closer to the maximal value of the CHSH inequality.

Next we proceed with the case of unknown mixed states. We randomly generated a
set of 106 two-qubit mixed states. In order to determine whether a mixed state violates
or not the CHSH inequality, we employ the M quantity criterion [52]. A mixed state
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ρ acting on a Hilbert space H = H2 ⊗ H2 can be represented in the form

ρ = 1

4

(

I ⊗ I +
3∑

i=1

riσi ⊗ I + I ⊗
3∑

i=1

siσi

+
3∑

n,m=1

tnmσn ⊗ σm

⎞

⎠ , (20)

where I represents the 2-dimensional identity operator, {σn}3n=1 are the standard Pauli
matrices, and the real coefficients ri , si and tn,m define the mixed state. The quantity
M is defined by M(ρ) = u+ ũ, where u and ũ denote the greater positive eigenvalues
of the matrix Uρ := T T

ρ Tρ being the coefficients of the matrix T (ρ) given by tnm =
Tr(ρσn ⊗ σm). A state ρ violates the CHSH inequality if and only if the condition
M(ρ) > 1 holds [52]. Employing this criterion, the initial set of 106 mixed states
was reduced to a set � containing 8 × 103 mixed states with M(ρ) > 1 that violate
the CHSH inequality.

To analyze the values of the CHSH function obtained through CSPSA, we use
those obtained through SDP. In the SDP case, we need to fix the state that is used
in the maximization. However, let us recall that even when the states are fixed, the
maximization of S remains to be a nonlinear problem. Therefore, to find the maximum
value of S for each state in � we use the see-saw method [53, 54] to iterate a SDP test
[55, 56] where either observable A or B remains fixed while optimizing in the other
variable. The SDP that we solve is the following

given ρ�, A(za), A(z′a), (21)

max
B(zb),B(z′b)

S(ρ�, A(za), A(z′a), B(zb), B(z′b)), (22)

with the conditions

|	(zb)〉〈	(zb)|, |	⊥(zb)〉〈	⊥(zb)| ≥ 0 ∀ zb, z
′
b, (23)

|	(zb)〉〈	(zb)| + |	⊥(zb)〉〈	⊥(zb)| = I ∀ zb, z
′
b. (24)

Notice that this SDP takes Alice’s observables A(za) and A(z′a) as inputs and for a
given mixed state from the � set, it finds Bob’s observables B(zb) and B(z′b) that
maximally violate S. Then, we take the observables B outputted by this SDP as inputs
in a new iteration to obtain optimal observables A. This procedure is iterated until
some suitable convergence condition is satisfied. We performed this optimization for
every mixed bipartite state in the set �, which allows us to find better lower bounds
on S, together with the optimal observables A and B.

Figure 14 displays the behavior of the mean S̄�, median S̃�, and interquartile range
as functions of the number of iterations. This figure also displays the values of these
quantities obtained via SDP. As is apparent from this figure, the values of themean and
median provided via CSPSA are very close and tend to agree with the values delivered
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Fig. 14 Mean S̄� (red solid line) and median S̃� (blue solid line) obtained via CSPSA on the set � of
randomly generated mixed entangled states as a function of the number k of iterations. Mean S̄� (yellow
solid line) and median S̃� (green solid line) obtained via SDP on the set � of randomly generated mixed
entangled states as a function of the number k of iterations. Shaded areas correspond to interquartile range.
CSPSA simulations consider ensemble size N = 104

by SDP after tens of iterations. Also, the interquartile ranges tend to overlap. However,
in the case of mixed states the number of iterations needed to obtain a violation of the
CHSH inequality is much greater than in the case of pure states. This is due to the fact
that the mixed states in � typically have small values of the negativity, a well-known
measure of entanglement, and thus, as in the case of weakly entangled pure states,
need more iterations to reach a violation of the CHSH inequality.

4 Conclusions

We have studied the problem of detecting the entanglement of unknown two-qubit
states, mixed or pure, by violating the Clauser–Horne–Shimony–Holt inequality. Our
approach to this problem is based on themaximization of the CHSH function bymeans
of a stochastic optimizationmethod, the complex simultaneous perturbation stochastic
approximation. This allows optimizing functions with unknown parameters, which in
our case correspond to the unknown quantum state. CSPSA employs an iterative rule
which requires at each iteration the value of the target function, that is, the CHSH
function, at two different points in the optimization space. This is formed by vectors
on the field of the complex numbers containing the measurement settings of four
observables. The values of the CHSH function can be experimentally obtained even
if the two-qubit state remains unknown. Thereby, CSPSA generates a sequence of
measurement settings that in mean lead to increasing values of the CHSH inequality.

To analyze the characteristics of the proposedmethod,we carried out several numer-
ical experiments. In particular, due to the stochastic nature of CSPSA, we employ
random sampling to obtain estimates of the mean, median, and interquartile range of
the quantities of interest. We first note that for a fixed unknown state, CSPSA pro-
vides very similar values of the mean and median of the CHSH function and a very
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narrow interquartile range. This indicates that CSPSA does not generates outliers, that
is, for a given unknown state different realizations of our method provide very close
results. This feature has been observed for each state in a universe of 5×104 randomly
generated pure two-qubit states.

The typical behavior of the mean of the CHSH function, as a function of the num-
ber of iterations, corresponds to a rapid increase followed by an approximately linear
asymptotic behavior, which approaches the maximal value of the CHSH function.
Unknown states characterized by the same concurrence value exhibit a very similar
behavior of the CHSH function. However, the rate of convergence toward the maxi-
mumdepends on the initial value of the concurrence. The higher the concurrence value,
the fewer iterations are required to obtain a violation of the CHSH inequality and, con-
sequently, detect entanglement. For example, states with maximum concurrence need
13 iterations while states with a concurrence of 0.1 need approximately 75 iterations
to reach a violation. The number of iterations required to detect entanglement can be
decreased by increasing the size of the ensemble of identically prepared copies that
is employed to estimate the expectation values entering in the CHSH function. In our
simulations, however, the effect of increasing the ensemble size is more notorious in
the case of highly entangled states. We have studied the mean of the CHSH function
on the 2-qubit Hilbert space. In this case, for an ensemble size of 102 the entanglement
of the randomly generated states is detected in mean by violating the CHSH inequal-
ity after 17 iterations, while after 25 iterations 75% of the randomly generated states
violate the CHSH inequality. These figures can be reduced by increasing the ensemble
size. We have also studied the accuracy provided by our method in the estimation of
themaximum value of the CHSH function. As accuracymetric, we have used themean
squared error, which shows that after 25 iterations the difference between the maximal
theoretical value and the value achieved by CSPSA is between 10−1 and 10−2. After
75 iterations, the accuracy is approximately between 10−2 and 10−3. We have also
considered the case of mixed states. The proposed method is capable of reproducing
the maximal value of the CHSH function for Werner states and for randomly chosen
mixed states.

Therefore, the numerical simulations indicate that the maximization of the CHSH
function through CSPSA leads to the detection of the entanglement of unknown states,
pure or mixed. In mean, 25 iterations detect the entanglement of 75% of the generated
states. Also, it is possible to reach an accurate value of the maximal violation.

There are some variations in the method here proposed that could reduce the num-
ber of iterations used to detect entanglement. We implement CSPSA considering the
standard choice for the gain coefficients. However, these can be optimized. This is
in general a difficult problem. Nevertheless, some simple heuristic prescriptions have
been discussed in the study of various proposals of variational quantum eigensolvers
[57]. These are based on SPSA, a version of CSPSA that works on the field of the real
numbers. It seems possible that the SPSA performance-enhancing prescriptions could
also be used to improve the CSPSA convergence rate, which would reduce the number
of iterations required to detect entanglement. The usage of second-order methods or
quantum natural gradient could also speed up the protocol [58–62]. These employ
additional measurements of the objective function to estimate its Hessian matrix, or
fidelity to estimate themetric tensor. Thereafter, thesematrices are used to precondition
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the gradient in order to improve the convergence rate, avoiding the need for tuning of
some gain coefficients. Another possibility arises when considering the large amount
of information generated by our method. At each iteration, 4 local observables are
measured, which after several iterations provide a considerable amount of informa-
tion about the unknown state. Thus, we can obtain an estimate of the unknown states
by means of maximum likelihood [40]. This, together with the estimate of the opti-
mal measurement settings provided by CSPSA, can be used as initial guesses in a
SDP problem to optimize the CHSH function. The solution of this problem can be
used as the initial guess of the optimal measurement settings in the next iteration of
CSPSA. This procedure does not increases the amount of measurements to be car-
ried out but the computational cost. Besides, the use of a priori information, which
restricts the dimension of the parameter space, can be employed to further increase the
CSPSA convergence rate and achieve entanglement detection with a reduced number
of iterations.

We would like to remark that our approach to the violation of the CHSH inequal-
ity with unknown states can be employed in other interesting problems, where some
properties of the optimization algorithm are advantageous. The construction of entan-
glement witnesses is a demanding computational task [33, 34], especially if the state
is unknown, but it could be done efficiently with our method. In this case the optimiza-
tion is also performed in the space of observables. Also, the search for the optimal
measurement settings beyond the bipartite case is also possible, for instance, the viola-
tion of a multiqubit Bell inequality [63–65]. This is a challenging subject because the
dimension of the total Hilbert space scales exponentially with the number of qubits,
so finding the optimal measurement settings by means of quantum tomography and
SPD is unfeasible. Our approach could provide an advantage in this problem, since
the required resources scale with the number of iterations and not with the number of
qubits. In addition, in the multipartite scenario it seems feasible to study the analogies
of Bell nonlocality sudden death through unknown states [66, 67].
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