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Abstract
For a prime p and a positive integer e, let Fpe be the finite field and R :=
Fpe [u, v]/〈 f (u), g(v), uv − vu〉, where f (u) and g(v) are non-constant square-free
polynomials of degree r and s, respectively. This paper constructs quantum and linear
complementary dual (briefly, LCD ) codes from skew constacyclic codes over the ring
R. Toward this, we first discuss the explicit structure of skew constacyclic codes and
their Euclidean as well as Hermitian duals overR. Then, we establish a necessary and
sufficient condition for these codes to contain their Euclidean (Hermitian) duals. Fur-
ther, by applying CSS (Hermitian) construction, many new quantum codes with better
parameters are obtained. Moreover, a necessary and sufficient condition is established
for these codes over R to be Euclidean (Hermitian) LCD. Finally, many examples of
MDS codes over Fpe are provided under the gray images of the skew Euclidean LCD
codes.
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1 Introduction

Cyclic codes over the finite field were introduced by Prange [49] in 1957 and further
generalized as constacyclic codes by Berlekamp [7]. These codes are the most studied
linear codes due to their rich algebraic structure and contain many classical codes such
as quadratic residue codes, Reed–Solomon codes and BCH codes. But the study of
codes over rings attracted researchers after the seminal work of Hammons et al. [33]
in which they established a link between linear codes over Z4 and nonlinear binary
codes. They [33] showed that certain good nonlinear codes (e.g., Kerdock, Preparata
and Goethal codes) could be viewed as gray images of linear codes over Z4. In 1933,
Ore [35] introduced a generalization of the polynomial ring as a skew polynomial ring
which served as an example of a noncommutative ring. Recently, Boucher et al. [10]
studied cyclic codes over a skew polynomial ring with non-trivial automorphism and
called skew cyclic codes. Along with their algebraic richness, they [12] obtainedmany
new codes whose minimum distances are comparatively larger than previously best-
known codes. Again, skew cyclic codes are generalized as skew constacyclic codes
in [11] over Galois rings and further studied by Jitman et al. [34] over chain rings.
After that, many authors [8, 21, 27, 30, 47, 53, 60] studied skew codes such as skew
constacyclic, skew quasi-cyclic, skew multi-twisted codes, etc.

In recent decades, the problemof constructing quantum codeswith good parameters
has become a very active research area due to their importance in quantumcomputation
and quantum information transmission. After introducing the first quantum code by
Shor [54] and a connection between classical binary codes and quantum codes by
Calderbank et al. [14], the study of quantum error-correcting codes increased at an
astonishing rate.

Let q be a prime power and (Cq)⊗n = C
q ⊗ C

q ⊗ · · · ⊗ C
q (n − times) be an

n-dimensional complex Hilbert space. A q-ary quantum codeQ of length n over Fq is
a qk-dimensional subspace of (Cq)⊗n , denoted by [[n, k, d]]q where d is theminimum
distance ofQ. A quantum code with the minimum distance d can correct both bit flip
and phase shift type of errors up to � d−1

2 �. As in [51], similar to the singleton bound
for classical codes, quantum codes satisfy k ≤ n− 2d + 2 and a quantum code attains
this bound, known as the quantum maximum distance separable (MDS) code.

In 1999, Rains [52] obtained many non-binary quantum MDS codes of minimum
distance 2 from classical linear codes over Fq . Further, Grassl et al. [24] constructed
many classes of quantum MDS codes over Fq . In 2015, Grassl and Rötteler [25]
obtained several classes of quantumMDS codes with magnificent minimum distances
over small fields. Afterward, many authors [1, 2, 16, 25, 26, 28, 31, 37, 41, 56, 57]
used different classes of linear codes over a finite field to construct optimal quantum
codes.

It has also been noticed that classical linear (cyclic or constacyclic) codes over
finite rings can be viewed as an excellent resource for producing many good quantum
codes. In 2009, Qian et al. [50] obtainedmany binary quantum codes from cyclic codes
over the ring F2 + uF2 where u2 = 0. Further, Kai and Zhu [36] presented several
new quantum codes from cyclic codes over the ring F4 + uF4 with u2 = 0. In 2015,
Ashraf and Mohammad [3] constructed quantum codes over Fp from cyclic codes
over the non-chain ring Fp + vFp. Dertli et al. [17] studied cyclic codes over the ring
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F2+uF2+vF2+uvF2 and constructed somenewbinary quantumcodes.Again,Ashraf
and Mohammad [4] generalized their work over the ring Fq +uFq + vFq +uvFq and
obtainedmanynewnon-binaryquantumcodes.Later,Gao andWang [22] discussed the
structural properties of u-constacyclic codes over the ringFp+uFp,where u2 = 1 and
constructed several new non-binary quantum codes. Further, Ma et al. [44] considered
the ringFp+vFp+v2Fp and obtained some new quantum codes. Recently, Habibul et
al. [32] constructed quantum codes from constacyclic codes over the family of the non-
chain rings Rk,m . For more literature on quantum codes from cyclic or constacyclic
codes over different rings, we refer [20, 29, 40, 45, 58]. On the other hand, Ezerman et
al. [19] constructed asymmetric quantum codes over GF(4) from skew cyclic codes
in 2010. Recently, Li et al. [39] constructed many quantum codes by considering skew
constacyclic codes over Fq2 [u, v]/ < u2 − u, v2 − v, uv − vu >. In 2022, Verma et
al. [55], obtained several new quantum codes and quantum MDS codes from additive
skew constacyclic codes over Rl,m .

In 1992, Massey [46] introduced linear complementary dual (LCD) codes, a new
class of linear codes. These codes had shown to be an optimal linear coding solution
of a two-user binary adder channel. Later, Yang and Massey [59] gave a necessary
and sufficient condition for cyclic codes over a finite field to be LCD. In 2015, Liu
and Liu [43] studied LCD codes over finite chain ring. Afterward, Li [38] studied
Hermitian LCD codes from cyclic codes. In 2018, Carlet et al. [15] studied Euclidean
and Hermitian MDS LCD codes. Again, Liu and Wang [42] studied LCD codes over
rings. Recently, Prakash et al. [48] discussed the structure of LCD codes over a non-
chain ring Fq + uFq where u2 = 1 and q is a power of an odd prime. More recently,
Boulanouar et al. [6] obtained some results for skew constacyclic codes over the finite
field to be LCD, and as an application, many MDS codes are presented.

Since skew polynomial rings are noncommutative and not a unique factorization
domain (UFD), polynomials exhibit more factorizations and, consequently, more ide-
als than in the case of commutative rings. Recently, skew codes have been used to
construct many new linear codes with better Hamming distance than already known
linear codes with the same parameters [12].

In this paper, with the motivation of the above works, we focus on the following:

(i) Obtain the quantum codes from skew constacyclic codes over a non-chain ringR
using CSS and Hermitian constructions.

(ii) Criterion for skew constacyclic codes over a non-chain ring R to be LCD and by
using a gray map construct some MDS codes.

For a prime p and a positive integer e, the ringR := Fpe [u, v]/〈 f (u), g(v), uv −
vu〉 is a finite commutative non-chain ring, where f (u) and g(v) are non-constant
square-free polynomials of degree r and s, respectively. From the earlier research on
codes over rings [20, 29, 32, 39, 40, 45], we observe that codes over the finite non-chain
ring are a good resource to produce codes with optimal parameters. But due to the
fixed structure of non-chain rings, there are many restrictions on the parameters during
the construction of quantum codes. Therefore, in this paper, we consider the general
non-chain ring R to avoid any constraints on the parameters of the codes during the
construction of quantum codes. Mainly, in this paper, we focus on the construction of
new quantum codes over qubits with good parameters from codes over rings with a
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large automorphism group. By this approach, we obtain codeswith excellentminimum
distance.

The paper is organized as follows: Section. 2 discusses the structure of ring R
along with some definitions and results related to skew constacyclic codes over R.
Section3 establishes a necessary and sufficient condition for skew constacyclic codes
over R to contain their duals. Then, by using CSS construction on these Euclidean
dual containing skew constacyclic codes overR, we obtain some new quantum codes
with better parameters than previously known codes. We also provide algorithms
that are easy to implement in MAGMA computation software [9] to construct good
quantum codes. Section4 uses Hermitian construction to obtain quantum codes from
Hermitian dual containing skew constacyclic codes over R. Section5 contains the
result on LCD codes with a necessary and sufficient condition for skew constacyclic
codes over R to be LCD (Euclidean/Hermitian). In Sect. 6, we obtain many new
and better quantum codes mentioned in Tables 1 and 2 by using CSS and Hermitian
constructions, respectively. We also get many linear MDS codes (Table 3) from gray
images of Euclidean LCD skew constacyclic codes over R. Section7 concludes the
article.

2 Background

In this section, we will first describe the structure of the ring R and the duality pre-
serving gray map. Then, some known results for linear codes over the ring R will be
reviewed that are used in subsequent sections.

For a prime p and positive integer e, let Fpe be a finite field andR := Fpe [u, v]/ <

f (u), g(v), uv−vu >, where f (u) and g(v) are non-constant square-free polynomials
of degree r and s, respectively. Here, we assume that at least one of r and s is greater
than 1, or else R is isomorphic to Fpe . Then, there exist μi , ν j ∈ Fpe with μi 	= μ

′
i

and ν j 	= ν
′
j for all i 	= i

′
, j 	= j

′
, 1 ≤ i, i

′ ≤ r and 1 ≤ j, j
′ ≤ s such that

f (u) = (u − μ1)(u − μ2) · · · (u − μr ),

g(v) = (v − ν1)(v − ν2) · · · (v − νs).

Consider the elements εi and ς j of the ring R as

εi = εi (u) = (u − μ1)(u − μ2) . . . (u − μi−1)(u − μi+1) · · · (u − μr )

(μi − μ1)(μi − μ2) · · · (μi − μi−1)(μi − μi1) · · · (μi − μr )
,

ς j = ς j (v) = (v − ν1)(v − ν2) . . . (v − ν j−1)(v − ν j+1) · · · (v − νs)

(ν j − ν1)(ν j − ν2) · · · (ν j − ν j−1)(ν j − ν j1) · · · (ν j − νs)
,

with the convention that ε1 = 1 when r = 1 and ς1 = 1 when s = 1.
Clearly,

εiεi ′ =
{

εi , if i = i
′

0, if i 	= i
′ and ς jς j ′ =

{
ς j , if j = j

′

0, if j 	= j
′
.
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Also,
∑r

i=1 εi = 1 modulo f (u) and
∑s

j=1 ς j = 1 modulo g(v).
Now, for 1 ≤ i ≤ r and 1 ≤ j ≤ s, define γi j = γi j (u, v) = εi (u)ς j (v).

Hence, for 1 ≤ i, i
′ ≤ r and 1 ≤ j, j

′ ≤ s,

γi jγi ′ j ′ =
{

γi j , if (i, j) = (i
′
, j

′
)

0, if (i, j) 	= (i
′
, j

′
)

i.e., for 1 ≤ i, i
′ ≤ r and 1 ≤ j, j

′ ≤ s, {γi j } is the set of primitive orthogonal
idempotents inR. Therefore, by usingChinese Remainder Theorem, we decompose
the ring R as

R =
⊕
i, j

γi jR ∼=
⊕
i, j

γi jFpe .

Also, any element r ∈ R can be uniquely expressed as

r(u, v) =
∑
i, j

βi jγi j ,

where βi j ∈ Fpe for 1 ≤ i ≤ r and 1 ≤ j ≤ s.
Let GLrs(Fpe ) be the set of all rs × rs nonsingular matrices over Fpe and A ∈

GLrs(Fpe ) such that A · AT = κ I where κ ∈ F
∗
pe , A

T is the transpose of matrix A, I
is the identity matrix and F

∗
pe is the set of nonzero elements of Fpe . Define the gray

map associated with matrix A as

ϕ : R → F
rs
pe

by

ϕ(r(u, v)) = ϕ

⎛
⎝∑

i, j

βi jγi j

⎞
⎠

= (β11, β12, . . . , β1s, . . . , β21, β22, . . . , β2s, . . . , βr1, βr2, . . . , βrs)A

= rA.

Here, we enumerate the vector (β11, β12, . . . , β1 s, . . . , β21, β22, . . . , β2 s, . . . , βr1,

βr2, . . . , βrs) as r . This map ϕ can be extended from Rn to F
rsn
pe componentwise.

Also, it is easy to check that ϕ is Fpe -linear and distance-preserving bijective map.
Recall that a linear code C of length n over R is a submodule of an R-module Rn

and elements of C are called codewords. The Hamming weight wH (a) for a codeword
a = (a0, a1, . . . , an−1) ∈ C is defined as the number of nonzero components in
a. Moreover, if a, d ∈ C, then the Hamming distance dH (a, d) between a and d is
defined as wH (a − d) and the Hamming distance of the code C is given as dH (C) =
min{dH (a, d) | a 	= d,∀ a, d ∈ C}. Also, the Lee weight of an element r(u, v) ∈ R
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is defined as the Hamming weight of ϕ(r(u, v)), i.e., wL(r(u, v)) = wH (ϕ(r(u, v)))

and for any element a = (a0, a1, . . . , an−1) ∈ Rn the Lee weight is defined as
wL(a) = ∑n−1

i=0 wL(ai ). Again, the Lee distance between any two codewords a, d
is define by dL(a, d) = wL(a − d) = wH (ϕ(a − d)) = wH (ϕ(a) − ϕ(d)) and Lee
distance for the code C is dL(C) = min{dL(a, d) | a 	= d, a, d ∈ C}.

Let C be a linear code of length n over the ring R. For each pair (i, j), 1 ≤ i ≤ r ,
1 ≤ j ≤ s, define the set

Di j :=
⎧⎨
⎩ti j ∈ F

n
pe | ∃ ti ′ j ′ ∈ Fpe , (i, j) 	= (i ′, j ′) such that ti jγi j+

∑
i ′, j ′

ti ′ j ′γi ′ j ′ ∈ C

⎫⎬
⎭ .

Clearly, the setsDi j are linear codes of length n overFpe for each pair (i, j), 1 ≤ i ≤ r ,
1 ≤ j ≤ s. Moreover, if C is any linear code of length n overR, then we can uniquely
express it as C = ⊕

i, j γi jDi j . Further, the generator matrix for linear code C overR
can be given as M = (

γi j Mi j
)
where the matrices Mi j are generator matrices of Di j

for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s. Also, if C = ⊕
i, j γi jDi j is a linear code

overR of length n, gray distance dG , and | C |= pe
∑r

i=1
∑s

j=1 ki j , then ϕ(C) is a linear
[rsn, K , dH ] code over Fpe where dG = dH , K = ∑r

i=1
∑s

j=1 ki j and ki j denotes
the dimension of the codeDi j for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, respectively.

The following Lemma illustrates the units of the ring R.

Lemma 1 Let λ = λ(u, v) = ∑
i, j γi jβi j ∈ R where βi j ∈ Fpe . Then, λ is a unit in

R if and only if for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, the corresponding element
βi j is a unit in Fpe .

Proof Let λ = λ(u, v) = ∑
i, j γi jβi j ∈ R be a unit in R where βi j ∈ Fpe . Then,

there exists an element ξ = ∑
i ′ j ′ γi ′ j ′ αi ′ j ′ ∈ R such that λξ = 1. This implies that∑

i, j γi jβi j
∑

i ′ j ′ γi ′ j ′ αi ′ j ′ = 1. Since for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, the
elements γi j are primitive orthogonal idempotents inR. Thus, βi jαi j = 1, i.e., βi j are
units in Fpe for all (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s.

Conversely, for all (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, let βi j be units in Fpe . Now,
from the unique representation of λ = λ(u, v) ∈ R, we can write λ = ∑

i, j γi jβi j .

Consider an element t = ∑
i, j γi jβ

−1
i j . Then λt = ∑

i, j γi jβi j
∑

i, j γi jβ
−1
i j = 1.

Thus, λ is a unit in R. ��
The element λ = ∑

i, j γi jβi j ∈ R always denotes a unit in R, where βi j is
corresponding unit in Fpe . We denote the set of all units of the ring R by R∗.

2.1 Skew constacyclic codes over the ringR and their gray images

In this subsection, we give a sketch of the skew polynomial ringR and a short review
based on some results on skew constacyclic codes over the ringR given in [8]. More-
over, we also find the gray images of these codes.

Let Fpe be a finite field and G = AutFp (Fpe ) be the set of automorphisms σ of
Fpe given by σ(z) = zı , for some 0 ≤ ı ≤ e − 1. Then G is a cyclic group of order
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e generated by θ with fixed field Fp, where θ is the Frobenius automorphism of Fpe

given by z �−→ z p, for all z ∈ Fpe . Now, define a map

� : R −→ R

as

�(r(u, v)) = �

⎛
⎝∑

i, j

βi jγi j

⎞
⎠ =

∑
i, j

θ(βi j )γi j .

Clearly, � |Fpe = θ. Let us consider the set

R[x;�] = {b0 + b1x + · · · + bnx
n | bi ∈ R ∀ i, n ∈ N}.

Then the setR[x;�] forms a ring under the usual addition of polynomials, and mul-
tiplication is defined by (axi )(bx j ) = a�i (b)xi+ j . This ring is known as a skew
polynomial ring. Since in general, (ax)(bx) = a�(b)x2 	= b�(a)x2 = (bx)(ax).
Therefore, R[x;�] is a noncommutative ring unless � is an identity automorphism.

Note thatR[x;�] is neither left nor right Euclidean, but unitary skew polynomials
satisfy the right division algorithm in the same way as it does for chain rings [34]. In
particular, if a(x) and b(x) are two skew polynomials, where the leading coefficient
of b(x) is unit, then there exist unique skew polynomials q(x) and r(x) in R[x;�]
such that a(x) = q(x)b(x) + r(x), where r(x) = 0 or deg(r(x)) < deg(b(x)). If
r(x) = 0, then we say b(x) is a right divisor of a(x). Also, the least common right
multiple (lcrm) and the greatest common left divisors (gcld) can be defined similarly.
Now, we define skew constacyclic codes over R.

Definition 1 Let λ ∈ R∗ and � ∈ Aut(R). Let τ(�,λ) : Rn −→ Rn be a skew
constacyclic shift operator defined by τ(�,λ)(r) = (λ�(rn−1),�(r0), . . . , �(rn−2)),
for any r = (r0, r1, . . . , rn−1) ∈ Rn . Then a linear code C of length n overR is said to
be a skew (�, λ)-constacyclic code ifC is closedunder skewconstacyclic shift operator
τ(�,λ). In particular, a skew (�, λ)-constacyclic code is called a skew negacyclic if
λ = −1 and skew cyclic if λ = 1. Moreover, if� is identity automorphism, then skew
(�, λ)-constacyclic code is the usual λ-constacyclic code over R.

Suppose λ ∈ R∗, � ∈ Aut(R). Define a map ρ : Rn −→ R[x;�]
(xn−λ)

as ρ(d) =
ρ(d0, d1, . . . , dn−1) �→ d(x) = (d0 + d1x + · · · + dn−1xn−1) mod (xn − λ). Then
similar to the polynomial representation of constacyclic codes, we can also identify
each codeword c = (c0, c1, . . . , cn−1) ∈ C by a polynomial c(x) = c0 + c1x + · · · +
cn−1xn−1 ∈ R[x;�]/〈xn −λ〉. Note that the problem to find all λ-constacyclic codes
of length n over the ring R is equivalent to finding all the ideals of the quotient ring
R[x]

〈xn−λ〉 . However, being R[x;�] a noncommutative ring, R[x;�]
〈xn−λ〉 need not be a ring.

But it forms a leftR[x;�]−module structure under the scalar multiplication define by
u(x)(v(x)−(xn −λ)) = u(x)v(x)+(xn −λ). Thus, a skew (�, λ)-constacyclic code
of length n overR is define as a leftR[x;�]-submodule of the module R[x;�]

〈xn−λ〉 . Note

that if �(λ) = λ and o(�) | n, then x(xn − λ) = xn+1 − �(λ)x = (xn − λ)x , where
o(�) represents the order of�. Also, (xn −λ)λ

′ = �n(λ
′
)xn −λ

′
λ = λ

′
(xn −λ), for
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all λ
′ ∈ R. Therefore, 〈xn − λ〉 forms two sided ideal inR[x;�] and in this case the

quotient R[x;�]
〈xn−λ〉 forms ring structure and any skew (�, λ)-constacyclic code of length

n overR can be viewed as a left ideal in R[x;�]
〈xn−λ〉 . Although, in both cases, these codes

are generated by a monic right divisor of xn − λ.

Theorem 1 ([8], Theorem 6) Let C = ⊕
i, j γi jDi j be a linear code of length n over

R. Then, C is a skew (�, λ)-constacyclic code if and only if Di j is a skew (θ, βi j )-
constacyclic code over Fpe , for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, respectively.
Here, βi j ’s are units defined in Lemma 1.

Theorem 2 ([8], Theorem 8) LetC = ⊕
i, j γi jDi j be a skew (�, λ)-constacyclic code

of length n overRand fi j (x)be the generator polynomial of skew (θ, βi j )-constacyclic
code Di j over Fpe for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, respectively. Then

1. there exists a polynomial g(x) ∈ R[x;�] such that C = 〈 f (x)〉 and (xn − λ) is
right divisible by f (x), where f (x) = ∑r

i=1
∑s

j=1 γi j fi j (x).
2. C = 〈γ11 f11(x), . . . , γ1 s f1 s(x), . . . , γr1 fr1(x), . . . , γrs frs(x)〉 and | C |

= persn−∑r
i=1

∑s
j=1 deg fi j (x).

Next, we discuss the gray images of skew (�, λ)-constacyclic codes C of length n
over R. We begin with the following definition.

Definition 2 Suppose n = st (where s, t are positive integers) andϒ�,t : Rn −→ Rn

be a linear operator defined by

ϒ�,t (c) = (c1 | c2 | · · · | ct )
= (τ�,λ(c

1) | τ�,λ(c
2) | · · · | τ�,λ(c

t ))

where ci ∈ Rs for i = 1, 2, . . . , t , then C is said to be a skew quasi-twisted code of
length n and index t if ϒ�,t (C) = C. If � is the identity automorphism, then C is a
quasi-twisted code of length n and index t over R.

Theorem 3 ([8], Theorem 13) Let C = ⊕
i, j γi jDi j be a skew (�, λ)-constacyclic

code of length n over R. Then, ϕ(C) is a skew quasi-twisted code of length rsn over
Fpe and index rs.

We close this section with the following remarks.

Remark 1 Let g(x) = ∑�
i=0 gi x

i ∈ Fpe [x; θ ], g0 	= 0.The leftmonic skew-reciprocal
polynomial g∗(x) of g(x) is define as g∗(x) = 1

θ�(g0)
(
∑�

i=0 θ i (g�−i )xi ). Also, the

left monic skew Hermitian reciprocal polynomial g†(x) of g(x) is defined as g†(x) =
θ(g∗(x)). Boucher et al. [[13], Theorem 1] proved that if β is a fixed unit under the
automorphism θ such that β2 = 1 and C = 〈 f (x)〉 is a skew β-constacyclic code of
length n over Fpe , where n is multiple of o(θ), then C⊥E = 〈h∗(x)〉. If o(θ) is 2, then
C⊥H = 〈h†(x)〉 where f (x)h(x) = h(x) f (x) = xn − β. Here, C⊥E and C⊥H are
skew β−1-constacyclic codes and named as Euclidean and Hermitian dual of code C
defined in Sects. 3 and 4, respectively.

Remark 2 From here onwards, λ ∈ R∗ represents a unit fixed by the automorphism
θ , and the length of skew λ-constacyclic code is the multiple of the order of �.
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3 Quantum codes from Euclidean dual containing skew
(2,�)-constacyclic code overR

This section contains the construction of quantum codes from Euclidean dual con-
taining skew (�, λ)-constacyclic code over R. Here, we begin with the following
definition.

Definition 3 Let C be a linear code C of length n over R. Then, Euclidean dual C⊥E

of C is defined as

C⊥E = {a ∈ Rn |< a, d >E= 0 for all d ∈ C},

where < a, d >E= ∑n−1
i=0 aidi denotes the Euclidean inner product of vectors

a = (a0, a1, · · · , an−1) and d = (d0, d1, . . . , dn−1). Code C is called Euclidean self-
orthogonal, Euclidean self-dual and Euclidean dual containing if C ⊆ C⊥E , C = C⊥E

and C⊥E ⊆ C, respectively.

Recently, Jitman et al. [34] proved that the dual of a skew (�, λ)-constacyclic
code of length n over a chain ring is a skew (�, λ−1)-constacyclic code provided n
is a multiple of o(�) and �(λ) = λ. It is also easy to prove the same result over a
non-chain ring appeared in [8].

Lemma 2 ([8], Theorem 7) A linear code C = ⊕
i, j γi jDi j of length n over R is

skew (�, λ)-constacyclic code if and only if C⊥E = ⊕
i, j γi jD⊥E

i j is a skew (�, λ−1)-

constacyclic code over R and D⊥E
i j is a skew (θ, β−1

i j )-constacyclic code over Fpe .

Moreover, C is Euclidean self-dual over R if and only if Di j is a Euclidean self-dual
code over Fpe for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s.

Lemma 3 ([8], Theorem 8) Let C = ⊕
i, j γi jDi j be a skew (�, λ)-constacyclic code

of length n over R. If Di j = 〈 fi j (x)〉 such that (xn − βi j ) = hi j (x) fi j (x) for each
pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, respectively, then

1. C⊥E = ⊕
i, j γi jD⊥E

i j is a skew (�, λ−1)-constacyclic code of length n over R.

2. C⊥E = 〈∑i
∑

j γi j h
∗
i j (x)〉, where h∗

i j (x) is skew-reciprocal polynomial of hi j (x)
for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s.

3. | C⊥E |= pe
∑r

i=1
∑s

j=1deg( fi j (x)).

Now, we recall CSS construction (Lemma 4) and then establish a necessary and suffi-
cient condition for skew (�, λ)-constacyclic codes to contain their Euclidean duals.

Lemma 4 ([14]) Let C1 = [n, k1, d1]pm and C2 = [n, k2, d2]pm be two linear codes

such that C⊥E
2 ⊆ C1. Then, there exists a quantum code [[n, k1 + k2 − n, d]]pm where

d = min{w(r) : r ∈ (C1\C⊥E
2 ) ∪ (C2\C⊥E

1 )} ≥ min{d1, d2}. Moreover, if C⊥E
1 ⊆ C1,

then there exists a quantum code [[n, 2k1 − n, d1]]pm .
Lemma 5 Let Di j = 〈 fi j (x)〉 be a skew (θ, βi j )-constacyclic code of length n over
Fpe . Then Di j is a Euclidean dual containing code if and only if for each pair (i, j),
1 ≤ i ≤ r , 1 ≤ j ≤ s, h∗

i j (x)hi j (x) is right divisible by x
n − βi j , where xn − βi j =

hi j (x) fi j (x) and h∗
i j (x) is the skew-reciprocal polynomial of hi j (x) and β2

i j = 1.
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Proof Suppose Di j = 〈 fi j (x)〉 is a skew (θ, βi j )-constacyclic code of length n over
Fpe and for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, h∗

i j (x)hi j (x) is right divis-

ible by xn − βi j . Consider li j (x) ∈ D⊥E
i j . Then, there exists a vi j (x) in Fpm [x; θ ]

such that li j (x) = vi j (x)h∗
i j (x). Now, we multiply by hi j (x) from right, we get

li j (x)hi j (x) = vi j (x)h∗
i j (x)hi j (x). As h∗

i j (x)hi j (x) is right divisible by xn − βi j ,

h∗
i j (x)hi j (x) = ui j (x)(xn − βi j ) = ui j (x)hi j (x) fi j (x), for some skew polynomials

ui j (x). Since n is multiple of o(θ) and θ(βi j ) = βi j , hi j (x) and fi j (x) commutes.
Hence, li j (x) = vi j (x)ui j (x) fi j (x), i.e., li j ∈ Di j . Thus, Di j is Euclidean dual con-
taining skew (θ, βi j )-constacyclic code over Fpe .

Conversely, supposeD⊥E
i j ⊆ Di j , for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s. Then,

fi j (x) divides h∗
i j (x), where xn − βi j = hi j (x) fi j (x) = fi j (x)hi j (x). Therefore,

there exist some skew polynomials ti j (x) such that h∗
i j (x) = ti j (x) fi j (x). Again, if

we right multiply by hi j (x) in both sides, we get h∗
i j (x)hi j (x) = ti j (x) fi j (x)hi j (x) =

ti j (xn − βi j ). Thus, h∗
i j (x)hi j (x) is right divisible by xn − βi j , for each pair (i, j),

1 ≤ i ≤ r , 1 ≤ j ≤ s. ��
Theorem 4 Let C = ⊕

i, j γi jDi j be a skew (�, λ)-constacyclic code of length n over
R generated by f (x) = ∑r

i=1
∑s

j=1 γi j fi j (x) where for each pair (i, j), 1 ≤ i ≤ r ,
1 ≤ j ≤ s, polynomial fi j (x) is the generator polynomial of Di j over Fpe and
β2
i j = 1. Then, C⊥E ⊆ C if and only if h∗

i j (x)hi j (x) is right divisible by xn − βi j ,
where xn − βi j = hi j (x) fi j (x), for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s.

Proof Let C = ⊕
i, j γi jDi j be a skew (�, λ)-constacyclic code of length n over R

and f (x) is a generator polynomial of C. Then, by Lemma 3, C⊥E = ⊕
i, j γi jD⊥E

i j is

skew (�, λ−1)-constacyclic code over R generated by h∗(x) = ∑
i
∑

j γi j h
∗
i j (x)〉,

where h∗
i j (x) is skew-reciprocal polynomial of hi j (x) for each pair (i, j), 1 ≤ i ≤ r ,

1 ≤ j ≤ s.
Now, if C⊥E ⊆ C, then

⊕
i j γi jD⊥E

i j ⊆ ⊕
i j γi jDi j . Hence, for each pair (i, j),

1 ≤ i ≤ r , 1 ≤ j ≤ s by taking modulo γi j on both sides, we have D⊥E
i j ⊆ Di j .

Thus, by Lemma 5, h∗
i j (x)hi j (x) is right divisible by xn − βi j for each pair (i, j),

1 ≤ i ≤ r , 1 ≤ j ≤ s, where xn − βi j = hi j (x) fi j (x) and h∗
i j (x) is the skew-

reciprocal polynomial of hi j (x).
Conversely, suppose for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, the polynomial

h∗
i j (x)hi j (x) is right divisible by xn − βi j . Therefore, by Lemma 5, D⊥E

i j ⊆ Di j .

Consequently,
⊕

i j γi jD⊥E
i j ⊆ ⊕

i j γi jDi j or in other words, C⊥E ⊆ C. ��
Corollary 1 Let C = ⊕

i, j γi jDi j be a skew (�, λ)-constacyclic code of length n over

R. Then, C⊥E ⊆ C if and onlyD⊥E
i j ⊆ Di j for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s.

Let dG be theminimumdistance ofϕ(C) and K = ∑r
i=1

∑s
j=1 ki j be the dimension

ofϕ(C)where ki j denotes the dimension of the codeDi j for each pair (i, j), 1 ≤ i ≤ r ,
1 ≤ j ≤ s. Now, with the help of Lemma 4 and Theorem 4, we present a result to
construct the quantum codes.
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Theorem 5 If C = ⊕
i, j γi jDi j is a skew (�, λ)-constacyclic code of length n over

R such that C⊥E ⊆ C, then there exists a quantum code with parameters [[rsn, 2K −
rsn, dG ]] over Fpe .

Let λ ∈ R∗ and � ∈ Aut(R) such that λ2 = 1 and �(λ) = λ. Let C be a skew
(�, λ)-constacyclic code of length n overR where n is a multiple of o(�). Then, we
use the following algorithms for quantum code construction.

Algorithm 1. Input: (Fpe , n)

• Step 1: Define skew polynomial ring over Fpe ;
• Step 2: Find all k-degree skew polynomials fi j which are right divisors of xn ±1;
• Step 3: Find skew-reciprocal polynomial h∗

i j (x) of hi j (x) where xn ± 1
= hi j (x) fi j (x);

• Step 4: If xn ± 1 is a right divisor of h∗
i j (x)hi j (x), then Print ( fi j (x));

Output: Generator polynomial of all dual containing skew negacyclic (cyclic) codes
of length n and dimension n − k.

Let C = 〈 f (x)〉 be a skew (�, λ)-constacyclic code of length n over R where
λ2 = 1. Then, f (x) = ∑r

i=1
∑s

j=1 γi j fi j (x) where fi j are generator polynomials of
skew cyclic or skew negacyclic codes Di j of length n over Fpe , for each pair (i, j),
1 ≤ i ≤ r , 1 ≤ j ≤ s and can be obtained by Algori thm 1. Then, for construction
of quantum code from C we use the following Algori thm :

Algorithm 2. Input: (Fpe , f (x))

• Step 1: Compute generator matrix M = (
γi j Mi j

)
(i, j) of C, where for each pair

(i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, Mi j is a generator matrix of code Di j = 〈 fi j (x)〉;
• Step 2: Find generator matrix, say, L of ϕ(C);
• Step 3: Compute Minimum Weight d of ϕ(C);
• Step 3: Define Q := QuantumCode(ϕ(C)) and compute Q;

Output: Quantum code with parameters [[rsn, 2K − rsn, d]]pe .
We implement Algorithms 1 and 2 in MAGMA computation software [9] to obtain

quantum codes from skew (�, λ)-constacyclic code of length n over R.

Example 1 Let f (u) = u2 − 1, g(v) = v2 − v and F9 = F3(t), where t2 = t + 1.
Then,R = F9[u, v]/〈u2−1, v2−v, uv−vu〉 and γ11 = 1

2 (v+uv), γ12 = 1
2 (v−uv),

γ21 = 1
2 (1 + u − v − uv) and γ22 = 1

2 (1 − u − v + uv). Let � be an automorphism
over R given by �(r0 + r1u + r2v + r3uv) = r30 + r31u + r32v + r33uv and λ =
1 − v − uv. Let C be a skew (�, λ)-constacyclic code of length 6 over R generated
by f (x) = ∑1

i=1
∑2

j=1 γi j fi j (x) where f11 = x + t is the generator polynomial of

skew negacyclic code D11 and f12 = x + 1, f21 = x + t2, f22 = x2 + t7x + t6 are
generator polynomials of skew cyclic code D12, D21, D22, respectively. Let

M =

⎡
⎢⎢⎣
1 1 1 1
1 2 1 2
1 1 2 2
1 2 2 1

⎤
⎥⎥⎦ ∈ GL4(F32),
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satisfying MMT = I4. Then, the gray image ϕ(C) has parameters [24, 19, 4]. Here,

h11(x) = x5 + t7x4 + 2x3 + t3x2 + x + t7,

h12(x) = x5 + 2x4 + x3 + 2x2 + x + 2,

h21(x) = x5 + t2x4 + x3 + t2x2 + x + t2,

h22(x) = x4 + t3x3 + tx2 + t7x + t6,

and

h∗
11(x) = x5 + t3x4 + 2x3 + t7x2 + x + t3,

h∗
12(x) = x5 + 2x4 + x3 + 2x2 + x + 2,

h∗
21(x) = x5 + t2x4 + x3 + t2x2 + x + t2,

h∗
22(x) = x4 + t7x3 + t3x2 + t3x + t2.

Also,

h∗
11(x)h11(x) = (x4 + t2x3 + t7x2 + t2x + t2)(x6 + 1),

h∗
12(x)h12(x) = (x4 + x3 + 2x + 2)(x6 − 1),

h∗
21(x)h21(x) = (x4 + x2 + 1)(x6 − 1),

h∗
22(x)h22(x) = (x2 + 2)(x6 − 1).

Then, h∗
11(x)h11(x) and h

∗
12(x)h12(x), h

∗
21(x)h21(x), h

∗
22(x)h22(x) are right divisi-

ble by (x6+1) and (x6−1), respectively. Hence, by Theorem4,we haveC⊥E ⊆ C, and
by Theorem 5, there exists a quantum code with parameters [[24, 14, 4]]9.We observe
that our obtained quantum code has a better code rate than the known code [[24, 8, 4]]9
appeared in [45]. They constructed this code over R by using λ-constacyclic code,
whereas we used skew (�, λ)-constacyclic code overR and obtain better parameters.

Example 2 Suppose deg( f (u)) is 1, g(v) = v2 − v and F132 = F13(t), where t2 =
t + 11, then R = F132 [v]/〈v2 − v〉, γ11 = v and γ12 = 1 − v. Let � ∈ Aut(R)

defined by�(r0+r1v) = r130 +r131 v and λ = −1. LetC be a skew (�, λ)-constacyclic
code of length 14 over R generated by f (x) = γ11 f11(x) + γ12 f12(x) where f11 =
x2+ t121x+ t144 and f12 = x+5 are generator polynomials of skew negacyclic codes
D11 and D12, respectively. Here,

h11(x) = x12+t37x11+t115x10+t163x9 + t155x8 + t135x7 + t68x6 + t135x5

+t23x4 + t163x3 + t7x2 + t37x + t24,

h∗
11(x) = x12 + t121x11 + t151x10 + t79x9 + t167x8 + t51x7 + t44x6 + t51x5

+t131x4 + t79x3 + t91x2 + t121x + t144,

h∗
11(x)h11(x) = (x10 + 5x8 + 11x6 + 11x4 + 5x2 + 1)(x14 + 1),
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and

h12(x) = x13 + 8x12 + 12x11 + 5x10 + x9 + 8x8 + 12x7 + 5x6 + x5 + 8x4

+12x3 + 5x2 + x + 8,

h∗
12(x) = x13 + 5x12 + 12x11 + 8x10 + x9 + 5x8 + 12x7 + 8x6 + x5 + 5x4

+12x3 + 8x2 + x + 5,

h∗
12(x)h12(x) = (x12 + 12x10 + x8 + 12x6 + x4 + 12x2 + 1)(x14 + 1).

As both h∗
11(x)h11(x) and h

∗
12(x)h12(x) are right divisible by x

14 +1, by Theorem
4, we have C⊥E ⊆ C. Again, let

M =
[
1 1
1 12

]
∈ GL2(F132),

satisfying MMT = 2I2. Then, the gray image ϕ(C) is also dual containing and
has parameters [28, 25, 4]. Hence, by Theorem 5, there exists a quantum code with
parameters [[28, 22, 4]]132 . Note that constructed quantum code satisfies n + 2 =
k + 2d. Hence, it is a quantum MDS code.

4 Quantum codes fromHermitian dual containing skew
(2,�)-constacyclic code overR

Let q = pe and R := Fq2 [u, v]/ < f (u), g(v), uv − vu > where p is a prime
and e > 0. In this section, we construct quantum codes over Fq from Hermitian
dual containing skew (�, λ)-constacyclic codes over the ring R. We begin with the
following definition.

Definition 4 TheHermitian dualC⊥H of a linear codeC of length n overR is defined as
C⊥H = {a ∈ Rn |< a, d >H= 0 for all d ∈ C}, where < a, d >H= ∑n−1

i=0 ai�(di )
represents the Hermitian inner product of vectors a = (a0, a1, · · · , an−1) and d =
(d0, d1, . . . , dn−1). C is Hermitian self-orthogonal, Hermitian self-dual and Hermitian
dual containing if C ⊆ C⊥H , C = C⊥H and C⊥H ⊆ C, respectively.

Lemma 6 Let C = ⊕
i, j γi jDi j be a skew (�, λ)-constacyclic code of length n over

the ringR. Then C⊥H = ⊕
i, j γi jD⊥H

i j is a skew (�, λ−1)-constacyclic code overR

where for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s,D⊥H
i j is a skew (θ, β−1

i j )-constacyclic

code over Fq . Moreover, for λ2 = 1, C is a skew (�, λ)-constacyclic code over R if
and only if C⊥H is a skew (�, λ)-constacyclic code over R.

Proof Let C = ⊕
i, j γi jDi j be a skew (�, λ)-constacyclic code of length n

over R. Consider two vectors c = (c0, c1, . . . , cn−1) and c′ = (c′0, c′1, . . . , c′n−1)

in C and C⊥H , respectively. Then, 〈c, c′〉H = 0. As c ∈ C, τ n−1
λ,� (c) =
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(λ�n−1(c1), λ�n−1(c2), . . . , λ�n−1(cn−1),�
n−1(c0)) ∈ C and 〈τλ,�(c), c′〉H = 0.

Therefore,

0 = 〈(λ�n−1(c1), . . . , λ�n−1(cn−1),�
n−1(c0)), (c

′
0, c

′
1, . . . , c

′
n−1)〉H

= (λ�n−1(c1)�(c′0) + · · · + λ�n−1(cn−1)�(c′n−2) + �n−1(c0)�(c′n−1)

= λ

(
n−1∑
�=1

�n−1(c�)�(c′�−1) + λ−1�n−1(c0)�(c′n−1)

)
.

Since λ is fixed by � and o(�) | n, by applying � on both sides, we get

0 = λ�

(
n−1∑
�=1

�n−1(c�)�(c′�−1) + λ−1�n−1(c0)�(c′n−1)

)

0 = λ

(
n−1∑
�=1

c�c
′
�−1 + λ−1c0c

′
n−1

)

0 =
n−1∑
�=1

c�c
′
�−1 + λ−1c0c

′
n−1.

On the other hand,

〈c, τ(λ−1,�)(c
′)〉

H
= 〈c, λ−1�(c′n−1),�(c′0), . . . ,�(c′n−2)〉H
= c0�(λ−1�(c′n−1)) + c1�(�(c′0)) + · · · + cn−1�(�(c′n−2))

= λ−1c0c
′
n−1 + c1c

′
0 + · · · + cn−1c

′
n−2

= 0.

Hence, for any element c′ ∈ C⊥H , we have τ(λ−1,�)(c
′) ∈ C⊥H . Thus, C⊥H is a skew

(�, λ−1) constacyclic code over R. ��
Now, we present the result on the generator polynomial for the Hermitian dual of

a skew (θ, βi j )-constacyclic code over Fq given by Boucher et al. [13].

Lemma 7 ([13], Theorem 1) Let β ∈ F
∗
q and θ ∈ Aut(Fq) such that θ(β) = β. Let

C = 〈 f (x)〉 be a skew (θ, λ)-constacyclic code of length n over Fq with o(θ) | n.
Then, there exists a polynomial h(x) ∈ Fq [x; θ ] such that xn − β = h(x) f (x) and
C⊥H is generated by h†(x) where h†(x) is the skew Hermitian reciprocal polynomial
of h(x).

In the below result, we provide the generator polynomial for the Hermitian dual of a
skew (�, λ)-constacyclic code over R by using Lemma 6 and Lemma 7.

Theorem 6 Let C = ⊕
i, j γi jDi j be a skew (�, λ)-constacyclic code of length n

over R. If Di j = 〈 fi j (x)〉 such that (xn − βi j) = hi j (x) fi j (x) for each pair (i, j),

1 ≤ i ≤ r , 1 ≤ j ≤ s, respectively, then C⊥H = 〈∑i
∑

j γi j h
†
i j (x)〉, where h†i j (x) is
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the skew Hermitian reciprocal polynomial of hi j (x) for each pair (i, j), 1 ≤ i ≤ r ,
1 ≤ j ≤ s.

Wefirst recall theHermitian construction (Lemma8) for quantumcode fromHermitian
dual containing linear codes. Then, we establish a necessary and sufficient condition
for skew (�, λ)-constacyclic code of length n overR to contain their Hermitian dual
in Theorem 7.

Lemma 8 [2] Let C be a linear code Fq2 with parameters [n, k, dH ] satisfying C⊥H ⊆
C. Then there exists a quantum code over Fq with parameters [[n, 2k − n,≥ dH ]]q .
Lemma 9 Let β ∈ F

∗
q2

such that β2 = 1. Then, a skew (θ, β)-constacyclic code of
length n over Fq2 with generator polynomial f (x) contains its Hermitian dual if and
only if h†(x)h(x) is right divisible by xn − β, where xn − β = h(x) f (x) and h†(x)
is the skew Hermitian reciprocal polynomial of h(x).

Proof We can get the desired result by following the same line of proof as in Lemma
5 and using the Hermitian inner product. ��
Theorem 7 Let λ ∈ R∗ and C = ⊕

i, j γi jDi j be a skew (�, λ)-constacyclic code of

length n overR such that o(�) | n and λ2 = 1. Then, C⊥H ⊆ C if and only if for each
pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, the polynomial h†i j (x)hi j (x) is right divisible by

xn − βi j , where xn − βi j = hi j (x) fi j (x) and h
†
i j (x) is the skew Hermitian reciprocal

polynomial of hi j (x).

Proof Let C = ⊕
i, j γi jDi j be a skew (�, λ)-constacyclic code of length n over R

such that C⊥H ⊆ C. Then by Lemma 6,
⊕

i, j γi jD⊥H
i j ⊆ ⊕

i, j γi jDi j . Since o(�) | n
and λ2 = 1, for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s and by taking modulo γi j in the

above equation, we haveD⊥H
i j ⊆ Di j . Therefore, by Lemma 9, h†i j hi j is right divisible

by xn −βi j for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s where xn −βi j = hi j (x) fi j (x)

and h†i j (x) is the Hermitian skew-reciprocal polynomial of hi j (x).

Conversely, let xn − βi j be a right divisor of h†i j (x)hi j (x) for each pair (i, j),

1 ≤ i ≤ r , 1 ≤ j ≤ s. Then by Lemma 9, we get D⊥H
i j ⊆ Di j . This implies that⊕

i, j γi jD⊥H
i j ⊆ ⊕

i, j γi jDi j . Thus, C⊥H ⊆ C. ��
Now, using Hermitian construction (Lemma 8) and Theorem 7, we obtain quantum

codes in the next result. Here, we follow the same notations as used in the Theorem 5.

Theorem 8 Let λ ∈ R∗ and C = ⊕
i, j γi jDi j be a skew (�, λ)-constacyclic code of

length n overR such that λ2 = 1. If C⊥H ⊆ C, then there exists a quantum code with
parameters [[rsn, 2K − rsn, dG ]]q .
Remark 3 To find quantum codes from Hermitian dual containing skew (�, λ)-
constacyclic codes over R, we just need to change the finite field Fpe by Fq2 where
q = pe and h∗(x) by h†(x) in Algori thm 1 and 2, respectively.
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Example 3 Let deg( f (u)) = 1, g(v) = v2 − 1 and F112 = F11(t) where t2 =
4t + 9. Then, R = F112 [v]/〈v2 − 1〉, γ11 = 1

2 (1 + v) and γ12 = 1
2 (1 − v). Define

� ∈ Aut(R) by �(r0 + r1v) = r110 + r111 v and λ = −v. Let C be a skew (�, λ)-
constacyclic code of length 12 over R generated by f (x) = γ11 f11(x) + γ12 f12(x)
where f11 = x2 + t2x + 10 and f12 = x + t5 are generator polynomials of a skew
negacyclic code D11 and a skew cyclic code D12, respectively. Here,

h11(x) = x10 + t62x9 + 5x8 + t50x7 + 7x6 + t74x5 + 4x4 + t50x3

+6x2 + t62x + 10,

h†11(x) = x10 + t2x9 + 5x8 + t110x7 + 7x6 + t14x5 + 4x4 + t110x3

+6x2 + t2x + 10,

h†11(x)h11(x) = (x8 + 6x6 + 2x4 + 6x2 + 1)(x12 + 1),

and

h12(x) = x11 + t115x10 + 10x9 + t55x8 + x7 + t115x6 + 10x5 + t55x4

+x3 + t115x2 + 10x + t55,

h†12(x) = x11 + t5x10 + 10x9 + t65x8 + x7 + t5x6 + 10x5 + t65x4 + x3

+t5x2 + 10x + t65,

h†12(x)h12(x) = (x10 + 10x8 + x6 + 10x4 + x2 + 10)(x12 − 1).

Since h†11(x)h11(x) and h†12(x)h12(x) are right divisible by x12 + 1 and x12 − 1,
respectively. Thus, by Theorem 7, we have C⊥H ⊆ C. Also, let

M =
[
1 1
1 10

]
∈ GL2(F112),

satisfying MMT = 2I2. Then, the gray image ϕ(C) is also a dual containing code
with parameters [24, 21, 4]112 . Therefore, by Theorem 8, there exists a quantum code
with parameters [[24, 18, 4]]11. It is noted that our obtained code has a better code
rate and minimum distance than the known code [[24, 16, 3]]11 presented in [23].

5 LCD skew (2,�)-constacyclic code overR and their gray images

In this section, we begin with the definition of LCD codes introduced by Massey [46]
and outline some known results for skew LCD codes. Then, we establish necessary
and sufficient conditions for skew (�, λ)-constacyclic codes over R to be LCD.

Definition 5 Let C be a linear code of length n over R. Suppose C⊥E and C⊥H are
the Euclidean and the Hermitian duals of C, respectively. Then, code C is said to be
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Euclidean LCD code if and only if C ∩ C⊥E = {0} and Hermitian LCD if and only if
C ∩ C⊥H = {0}.

Recently, Boulanouar et al. [6] established some conditions for skew constacyclic
codes over the finite field to be LCD as follows:

Lemma 10 ([6], Theorem 2) Let β ∈ F
∗
pe such that β

2 = 1 and θ ∈ Aut(Fpe ). Let D
be a skew (θ, β)-constacyclic code of length n over Fpe such that the order of θ divides
n. Let f (x) be a generator polynomial ofD satisfies xn −β = h(x) f (x) = f (x)h(x).
Then,

1. D is Euclidean LCD if and only if gcrd( f (x), h∗(x)) = 1.
2. When the order of θ is 2, thenD is Hermitian LCD if and only if gcrd( f (x), h†(x))

= 1.

Theorem 9 Let λ ∈ R∗ and C = ⊕
i, j γi jDi j be a skew (�, λ)-constacyclic code of

length n overR such that n is a multiple of o(�) and λ2 = 1, whereDi j = 〈 fi j (x)〉 is
the skew (θ, βi j )-constacyclic code of length n overFpe for each pair (i, j), 1 ≤ i ≤ r ,
1 ≤ j ≤ s. Then, C is Euclidean LCD if and only if for each pair (i, j), 1 ≤ i ≤ r ,
1 ≤ j ≤ s, gcrd( fi j (x), h∗

i j (x)) = 1, where xn − βi j = hi j (x) fi j (x) and h∗
i j (x) is

the skew-reciprocal polynomial of hi j (x).

Proof Suppose C = ⊕
i, j γi jDi j be a skew (�, λ)-constacyclic code of length n over

R which is Euclidean LCD i.e., C ∩ C⊥E = {0}. Then, by Lemma 3,

⊕
i, j

γi jDi j ∩
⊕
i, j

γi jD⊥E
i j = {0}. (1)

As n is a multiple of o(�) and λ2 = 1, for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s,
under modulo γi j in Eq. 1, we have Di j ∩ D⊥E

i j = {0}. Therefore, by Lemma 10, for
each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, we have gcrd( fi j (x), h∗

i j (x)) = 1, where
xn − βi j = hi j (x) fi j (x) and h∗

i j (x) is the skew-reciprocal polynomial of hi j (x).
Conversely, let gcrd( fi j (x), h∗

i j (x)) = 1 for each pair (i, j), 1 ≤ i ≤ r , 1 ≤
j ≤ s. Then again by Lemma 10, Di j ∩ D⊥E

i j = {0}, which implies
⊕

i, j γi jDi j ∩⊕
i, j γi jD⊥E

i j = {0}. Therefore, C ∩ C⊥E = {0}. ��
The following result gives the necessary and sufficient condition for skew (�, λ)-

constacyclic code overR to be Hermitian LCD. The proof follows the same line as in
Theorem 9 with the Hermitian inner product.

Theorem 10 Let o(�) = 2 and λ ∈ R∗ such that λ2 = 1. Let C = ⊕
i, j γi jDi j

be a skew (�, λ)-constacyclic code of length n over R such that n is a multiple of
o(�), where Di j = 〈 fi j (x)〉 is the skew (θ, βi j )-constacyclic code of length n over
Fpe for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s. Then, C is Hermitian LCD if and

only if for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, gcrd( fi j (x), h
†
i j (x)) = 1 where

xn − βi j = hi j (x) fi j (x) and h†i j (x) is the skew Hermitian reciprocal polynomial of
hi j (x).
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Corollary 2 Let λ ∈ R∗ such that λ2 = 1. Let C = ⊕
i, j γi jDi j be a skew (�, λ)-

constacyclic code of length n over R such that n is a multiple of o(�), where Di j =
〈 fi j (x)〉 is the skew (θ, βi j )-constacyclic code of length n overFpe for each pair (i, j),
1 ≤ i ≤ r , 1 ≤ j ≤ s. Then,

1. C is Euclidean LCD if and only if for each pair (i, j), 1 ≤ i ≤ r , 1 ≤ j ≤ s, code
Di j is Euclidean LCD.

2. If o(�) = 2, thenC is Hermitian LCD if and only if for each pair (i, j), 1 ≤ i ≤ r ,
1 ≤ j ≤ s, code Di j is Hermitian LCD.

Proof It follows from Lemma 10, Theorems 9 and 10. ��
The following Algori thm provides us the generators of Euclidean LCD skew

(�, λ)-constacyclic codes over R :
Algorithm 3. Input: (Fpe , n)

• Step 1: Define skew polynomial ring over Fpe ;
• Step 2: Find all k-degree skew polynomials fi j (x) which are right divisors of

xn ± 1;
• Step 3: Find skew-reciprocal polynomial h∗

i j (x) of hi j (x) where xn ± 1
= hi j (x) fi j (x);

• Step 4: If gcrd( fi j (x), h∗
i j (x)) = 1, then Print( fi j (x));

Output: Generator polynomial of all Euclidean LCD skew negacyclic (cyclic) code
of length n and dimension n − k over Fpe .

Let C = 〈 f (x)〉 be a skew (�, λ)-constacyclic code of length n over R where
λ2 = 1. Then, f (x) = ∑r

i=1
∑s

j=1 γi j fi j (x) where fi j are generator polynomials of
skew cyclic (or skew negacyclic) codes Di j of length n over Fpe , for each pair (i, j),
1 ≤ i ≤ r , 1 ≤ j ≤ s obtained by Algori thm 3. Then, C is Euclidean LCD skew
(�, λ)-constacyclic code over R. Now, by using Algori thm 2, we can obtain the
minimum weight dH of ϕ(C) and hence an LCD code with parameters [rsn, K , dH ]
over Fpe .

Remark 4 Note that for Hermitian LCD codes, we have to fix the order of automor-
phism 2 and h∗

i j (x) by h†i j (x) in Algori thm 3.

Example 4 Let F32 = F3(t), where t2 = t + 1, deg( f (u)) is 1 and g(v) = v2 − 1.
Then, R = F32 [v]/〈v2 − 1〉, γ11 = 1

2 (1 + v) and γ12 = 1
2 (1 − v). Consider � ∈

Aut(R) is defined by �(r0 + r1v) = r30 + r31v and λ = 1. Let C be a skew (�, λ)-
constacyclic code of length 4 over R generated by f (x) = γ11 f11(x) + γ12 f12(x),
where f11 = x2 + t6x + t3 and f12 = x + t are generator polynomials of skew cyclic
codes D11 and D12, respectively. Here, h11(x), h∗

11(x) and h†11(x) are x2 + t2x + t,

x2 + t5x + t7 and x2 + t7x + t5, respectively. Also, h12(x), h∗
12(x) and h†12(x) are

x3 + t7x2 + 2x + t3, x2 + t5x + t7 and x3 + tx2 + 2x + t5, respectively.
Then, gcrd( f11(x), h∗

11(x)) = 1 and gcrd( f12(x), h∗
12(x)) = 1. However,

gcrd( f11(x), h
†
11(x)) = x + t7 and gcrd( f12(x), h

†
12(x)) = x + t. Hence, by

Theorem 10, C is Euclidean LCD but not Hermitian LCD. Again, let

M =
[
1 1
1 2

]
∈ GL2(F32),
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satisfying MMT = 2I2. Then, the gray image ϕ(C) with parameters [8, 5, 4]32 is an
MDS Euclidean LCD skew 2-quasi-cyclic code.

Example 5 Let F172 = F17(t), where t2 = t+ 14, deg( f (u)) is 1 and g(v) = v2 − v.
Then, R = F172 [v]/〈v2 − v〉, γ11 = v and γ12 = 1 − v. We define � ∈ Aut(R)

as �(r0 + r1v) = r170 + r171 v and let λ = 1. Let C be a skew (�, λ)-constacyclic
code of length 18 over R generated by f (x) = γ11 f11(x) + γ12 f12(x), where f11 =
x2 + t28x + t32 and f12 = x + t48 are generator polynomials of skew cyclic codes
D11 and D12, respectively. Here,

h11(x) = x16 + t172x15 + t93x14 + t82x13 + t286x12 + t46x11 + t233x10 + t154x9

+t83x8 + t10x7 + t41x6 + t190x5 + t78x4 + t226x3 + t253x2 + t28x + t112,

h∗
11(x) = x16 + t140x15 + t93x14 + t50x13 + t286x12 + t174x11 + t153x10 + t282x9

+t83x8 + t266x7 + t41x6 + t30x5 + t110x4 + t66x3 + t205x2 + t156x + t112,

h†11(x) = x16 + t76x15 + t141x14 + t274x13 + t254x12 + t78x11 + t9x10 + t186x9

+t259x8 + t202x7 + t121x6 + t222x5 + t142x4 + t258x3+t29x2+t60x+t176;

and

h12(x) = x17 + t96x16 + x15 + t96x14 + x13 + t96x12 + x11 + t96x10 + x9

+t96x8 + x7 + t96x6 + x5 + t96x4 + x3 + t96x2 + x + t96,

h∗
12(x) = x17 + t192x16 + x15 + t192x14 + x13 + t192x12 + t96x11 + t192x10 + x9

+t192x8 + x7 + t192x6 + t96x5 + t192x4 + t96x3 + t192x2 + t96x + t192,

h†11(x) = x17 + t96x16 + x15 + t96x14 + x13 + t96x12 + t192x11 + t96x10 + x9

+t96x8 + x7 + t96x6 + t192x5 + t96x4 + t192x3 + t96x2 + t192x + t96.

Since gcrd( f11(x), h∗
11(x)) = 1 and gcrd( f12(x), h∗

12(x)) = 1 as well as

gcrd( f11(x), h
†
11(x)) = 1 and gcrd( f12(x), h

†
12(x)) = 1. Therefore, by Theorem

10, C is both Euclidean and Hermitian LCD codes. Again, let

M =
[
1 1
1 16

]
∈ GL2(F172),

satisfying MMT = 2I2. Then, the gray image ϕ(C) with parameters [36, 33, 4]172 is
an MDS skew 2-quasi-cyclic code.

6 Computation table

Consider the finite field Fp2 and deg( f (u)) = 1 and g(v) = v2 − 1. Then, R :=
Fp2 [v]/〈v2 − 1〉, γ11 = 1

2 (1 + v) and γ12 = 1
2 (1 − v). Let � ∈ Aut(R) defined by

�(a + bv) = a p + bpv and λ = a + bv ∈ R∗. Then, β11 = a + b and β12 = a − b
are corresponding units in Fp2 . Let C be a skew (�, λ)-constacyclic code of length n
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Table 1 Quantum codes from Euclidean dual containing skew (�, λ)-constacyclic codes over R

pm n λ (β11, β12) f11(x) f12(x) �(C) [[n, k, d]]pm

52 6 −1 (−1,−1) 1t31 2311 [12, 7, 6] [[12, 2, 6]]25
52 8 1 (1, 1) t19t21 t21t51 [16, 12, 4] [[16, 8, 4]]25
52 8 1 (1, 1) t9t1 t51 [16, 13, 3] [[16, 10, 3]]25
52 8 −v (−1, 1) t20t19t19t71 t7t31 [16, 10, 6] [[16, 4, 6]]25
52 10 −v (−1, 1) t2t1901 11 [20, 16, 4] [[20, 12, 4]]25
52 12 −1 (−1,−1) t23t11t81 t1 [24, 20, 4] [[24, 16, 4]]25
52 16 1 (1, 1) 3t21t231 t15t161 [32, 27, 4] [[32, 22, 4]]25
52 30 v (1,−1) t201 t8t171 [60, 57, 3] [[60, 54, 3]]25
72 4 −v (−1, 1) t42t131 t121 [8, 5, 4] [[8, 2, 4]]49
72 6 −v (−1, 1) t30t471 t361 [12, 9, 4] [[12, 6, 4]]49
72 8 −v (−1, 1) t6t271 t361 [16, 13, 4] [[16, 10, 4]]49
72 8 v (1,−1) t12t11t231 t6t31 [16, 11, 6] [[16, 6, 6]]49
72 12 −v (−1, 1) t401 t1 [24, 21, 3] [[24, 18, 3]]49
72 12 −v (−1, 1) tt411 t1 [24, 20, 4] [[24, 16, 4]]49
72 16 1 (1, 1) t12t421 t121 [32, 28, 4] [[32, 24, 4]]49
72 20 −v (−1, 1) t30t7t13t51 t121 [40, 35, 4] [[40, 30, 4]]49
112 4 −v (−1, 1) t110t191 t301 [8, 5, 4] [[8, 2, 4]]121
112 10 v (1,−1) 211 t111 [20, 17, 4] [[20, 14, 4]]121
112 10 v (1,−1) 211 t88t21 [20, 16, 5] [[20, 12, 5]]121
112 10 1 (1, 1) 211 t781t541 [20, 15, 6] [[20, 10, 6]]121
112 24 −v (−1, 1) t501 t301 [48, 45, 3] [[48, 42, 3]]121
112 24 −v (−1, 1) t1511 t3001 [48, 44, 4] [[48, 40, 4]]121
132 8 1 (1, 1) 81 t31 [16, 14, 3] [[16, 12, 3]]169
132 8 −v (−1, 1) t9t391 t991 [16, 13, 4] [[16, 10, 4]]169
132 14 −1 (−1,−1) t144t1211 51 [28, 25, 4] [[28, 22, 4]]169
172 4 −1 (−1,−1) t32t251 t41 [8, 5, 4] [[8, 2, 4]]289

overR generated by f (x) = γ11 f11(x)+ γ12 f12(x), where f11 and f12 are generator
polynomials of skew (θ, β11)-constacyclic code D11 and skew (θ, β12)-constacyclic
code D12, respectively. In order to find out gray image of C, we use the matrix

M =
[
1 1
1 −1

]
∈ GL2(Fp2),

which is satisfying MMT = 2I2. In this way, we obtain many new and better quan-
tum codes presented in Tables 1 and 2 from skew (�, λ)-constacyclic code over R
by applying CSS and Hermitian constructions, respectively. Table 3 contains some
MDS linear codes, which are the gray images of the Euclidean LCD skew (�, λ)-
constacyclic codes over R. Note that, instead of writing the whole polynomial, we
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Table 3 Gray images of LCD skew (�, λ)-constacyclic codes over R

n λ (β11, β12) f11(x) f12(x) �(C) BKLC/MDS

4 1 (1, 1) t3t61 t1 [8, 5, 4]9 MDS

14 v (1, −1) 11 t1 [28, 26, 2]9 BKLC

12 v (1, −1) t51 1t371 [24, 21, 4]121 MDS

8 1 (1, 1) t31 51 [16, 14, 3]169 MDS

12 1 (1, 1) 11 t181 [24, 22, 3]169 MDS

12 1 (1, 1) t61 t3231 [24, 21, 4]169 MDS

14 v (1, −1) t121 t61 [28, 26, 3]169 MDS

8 1 (1, 1) t41 41 [16, 14, 3]289 MDS

12 v (1, −1) t81 t41 [24, 22, 3]289 MDS

12 1 (1, 1) t41 t16t1 [24, 21, 4]289 MDS

14 −v (−1, 1) t81 t161 [28, 26, 3]289 MDS

8 1 (1, 1) t91 (18)1 [16, 14, 3]361 MDS

12 1 (1, 1) t91 t45t1 [24, 21, 4]361 MDS

represent it by the coefficients in ascending order of the powers of the variable. For
example, the polynomial t21 + t5x + x2 is represented by t21t51.

7 Conclusion

In this paper, we have explored the structure of Euclidean and Hermitian duals of skew
(�, λ)-constacyclic codes over the non-chain ringR = Fpe [u, v]/〈 f (u), g(v), uv −
vu〉. We have also established a necessary and sufficient condition for these codes
to contain their duals. As an application, several new quantum codes have been con-
structed by using the CSS construction (Table 1) and Hermitian construction (Table
2). Further, we have derived a necessary and sufficient condition for skew (�, λ)-
constacyclic codes overR to intersect their Euclidean (Hermitian) dual codes trivially.
By applying a gray map on Euclidean LCD skew (�, λ)-constacyclic codes over R,

many linear MDS codes have been obtained (Table 3). Our computational work shows
that skew constacyclic codes over the non-chain ring are more promising to produce
better quantum and linear codes than constacyclic codes. Recently, Aydin et al. [5]
constructed many good classical and quantum codes frommulti-twisted codes. There-
fore, it would be interesting to work to obtain more good quantum and classical codes
over Fpe by considering other classes of linear codes such as skew quasi-twisted codes
or skew multi-twisted codes.
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