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Abstract
At SAC 2021, Frixons et al. proposed quantum boomerang attacks that can effectively
recover the keys of block ciphers in the quantum setting. Based on their work, we
further consider how to quantize the generic boomerang attacks proposed by Biham et
al. at FSE 2002, so as to obtain more generic quantum boomerang attacks. Similar to
Frixons et al.’s work, we only consider quantum key recovery attacks in the single-key
setting. With the help of some famous quantum algorithms, this paper presents two
methods to convert the attacks of Biham et al. into some new quantum key recovery
attacks. In order to proof our methods, we apply our new ideas to attack Serpent-256
and ARIA-196. To sum up, for Serpent-256, we give valid 9-round and 10-round
quantum key recovery attacks respectively. The quantum time complexity of 9-round
and 10-round of Serpent-256 is 2115.43 and 2126.6 respectively. Furthermore, we show
a valid quantum key attack on 6-roundARIA-196which has a time complexity of 289.8

with negligible memory. The time complexity of the above quantum attacks are better
than the corresponding classical attacks and quantum generic key recovery attack via
Grover’s algorithm.

Keywords Block cipher · Boomerang attack · Key recovery attack · Quantum
search · Quantum algorithm

1 Introduction

With the development of quantum technology, research in the field of quantum
cryptography has received extensive attention. The research in the field of quantum
cryptography mainly includes quantum communication, quantum computation, etc.
Among them, quantumcommunicationmainly studies a technology of communication
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based on the information transmission function of quantum medium, while quantum
computation mainly studies quantum computers and quantum algorithms suitable for
quantum computers. In the field of quantum communication, quantum key distribution
is the most studied direction. However, there are still many problems and challenges.
Especially in the implementation process, there are still many works to be done in
transmission distance, anti-noise, anti-equipment defects, and other aspects. For the
above problems, researchers have done a lot of work in recent years, such as [1–
3]. In addition, there are also many results in other research branches of quantum
communication. For example, Yin et al. [4] proposed an efficient quantum digital
signature protocol and built an integrated quantum security network; Zhou et al. [5]
proved experimentally for the first time that quantum technology can provide quantum
advantages for machine learning, and designed a quantum version of the blind box
game. In this paper, we focus on the quantum security analysis of ciphers.

As we know, the security analysis of symmetric primitives has always been a hot
topic in cryptography research. In the classical setting, there are many efficient crypt-
analysis techniques, among which differential cryptanalysis [6] is one of the powerful
tools to evaluate the security of primitives. Differential cryptanalysis mainly studies
the propagation of differences through an encryption process. Adversaries usually
use the differential path with high probability to distinguish a cipher from a random
permutation.

In 1999, Wanger et al. [7] proposed a variant of differential analysis, which was
called the boomerang attack. The boomerang attack uses two high probability short
differentials instead of one long differential with low probability. Obviously, it is easier
for an adversary to find short differentials with a high probability than a long one with
a high enough probability. Later, the boomerang attack was further developed into
the amplified boomerang attack [8] and the rectangle attack [9]. As one of the most
famous families of attacks, the boomerang attack has been applied to many kinds of
ciphers in the single-key and related-key settings [10–12].

In recent years, the research in the field of quantum cryptography has attracted
many people’s interest. With the help of Grover [13], Simon [14] and other efficient
quantum algorithms, many well-known symmetric-key schemes can be broken in the
quantum setting [15–17]. On the other hand, some studies have shown that some
efficient classical cryptanalysis techniques can also be used in the quantum setting. At
Eurocrypt 2020, Hosoyamada and Sasaki [18] considered the application of rebound
attack [19, 20] in the quantum setting. By combiningGrover’s algorithmwith quantum
collision finding algorithms, they revealed that quantum rebound attacks could use
some differentials whose probabilities are too low to be useful in the classical setting.
In 2021, Hosoyamada and Sasaki [21] showed how to convert the classical semi-free-
start collision attacks on reduced SHA-2 into quantum collision attacks. In addition,
there are some earlier efforts about quantizing classical attacks [22–24].

It is well known that the generic quantum key recovery attack against block ciphers
is to use Grover’s algorithm to search for the key exhaustively. However, much less
is known about how to further accelerate the key recovery process of block ciphers
in the quantum setting. At SAC 2021, Frixons et al. [25] proposed a valid quantum
boomerang key recovery attack, and applied it to SAFER++. Their idea can be applied
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to the 5-round key recovery attack against SAFER++, which is faster than the quantum
generic key search.

Based on Frixons et al.’s work [25], this paper proposes some new quantum
boomerang attack in the single-key setting. In [25], Frixons et al. considered how to
construct a quantum key recovery attack by appending some rounds before or after the
boomerang distinguisher. However, they didn’t consider the case of appending some
rounds before and after the distinguisher at the same time. In addition, we find that
their techinque is not generic, which can’t convert some specific classical boomerang
attacks into the corresponding quantum boomerang attacks.

Our Contributions. In order to solve the above problems, we present some new
techniques to convert Biham et al.’s generic boomerang attacks [10] into valid quantum
attacks. Generally, the boomerang attack needs to deal with a large number of possible
candidate quartets, which may cause a huge time and memory complexity. At FSE
2002, Biham et al. introduced generic boomerang attacks which could reduce the
number of tested possible quartets. Biham et al.’s idea might help us to reduce the
complexity of attacks in the classical or quantum settings.

Inspired by Frixons et al.’s idea in [25], we propose two methods to quantize the
generic boomerang attacks of [10]. The first method is based on quantum search and
quantum collision-finding algorithm, which can verify the correctness of the subkey
guess by exhausting the remaining key bits. Another method utilizes the fact that
adversaries can obtain two or more right boomerang pairs in a boomerang attack.
Since the good key guess will appear more often among all key candidates, we can
find these good key by solving the element distinctness problem. Therefore, our second
idea combines Ambainis’s quantum element distinctness algorithm [26] and quantum
search to construct quantum key recovery attacks, which may be faster than the quan-
tum generic key search attack. Different from the first method, the second method can
determine some partial good subkeys by solving the element distinctness problem in
the first place. Then we can perform a quantum search on the remaining key bits so as
to recover the complete key.

Compared with Frixons et al.’s work, our new techniques are more generic,
which can convert more classical boomerang attacks into the corresponding quantum
boomerang attacks. In addition, our new quantum attacks can also retrieve subkeys on
both sides of the boomerang distinguisher, which further improve Frixons et al.’s work.
Based on our new methods, we can construct some new quantum key recovery attacks
against 9-round and 10-round Serpent-256 and 6-round ARIA-196 respectively. The
above attack results are better than the previous quantum generic key recovery attacks
and classical attacks. In detail, for 9-round Serpent-256, we construct a quantum key
recovery attack with a time complexity of 2115.43, which is less than the quantum
generic key recovery attack by a factor of 212.57. When compared with the best classi-
cal boomerang attack, the time complexity is reduced by a factor of 28.17. For 10-round
Serpent-256, we construct a quantum key recovery attack with a time complexity of
2126.6, which is less than the best classical boomerang attack by a factor of 251.7. Com-
paredwith the quantum generic key recovery attack, our time complexity is reduced by
a factor of 21.4. For ARIA-196, we construct a 6-round quantum key recovery attack
with a time complexity of 289.8, which is less than the quantum generic key recovery
attack by a factor of 28.2. Compared with the best classical boomerang attack, the time
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Table 1 Classical and quantum boomerang attacks on Serpent-256 and ARIA-196 in the single-key setting

Target Rounds Setting Time Memory Source

Serpent-256 9 Classic 2123.6 221.5 [10]

Quantum 2128 Negligible Grover search

Quantum 2115.43 255.68(QRAQM) Sect. 5

10 Classic 2178.3 296 [10]

Quantum 2128 Negligible Grover search

Quantum 2126.6 Negligible Sect. 5

ARIA-196 6 Classic 2108 256 [27]

Quantum 298 Negligible Grover search

Quantum 289.8 Negligible Sect. 6

complexity is reduced by a factor of 218.2 without incurring any memory cost. We
summarize our new results in Table 1.

The paper is organized as follows. In Sect. 2, we briefly describe the boomerang
attack and some quantum tools used in this paper. In Sect. 3, we recall some previous
related works. In Sect. 4, we introduce two methods to show how to convert generic
boomerang attacks into valid quantum attacks. We apply these techniques to Serpent-
256 in Sect. 5. In Sect. 6, we give a valid quantum key recovery attack on 6-round
ARIA. We conclude this paper in Sect. 7.

2 Preliminaries

In this section, we give a brief introduction to the boomerang attack and some quantum
tools used in this paper.

2.1 The boomerang attack

The boomerang attack [7] is a differential cryptanalysis technique proposed byWagner
in 1999. The main idea behind the boomerang attack is to use two short differentials
with high probability (as shown in Fig. 1).

Let E be a block cipher that can be described as E = E1 ◦ E0. The block size of
E is n bits and the key size is k bits. Assume that E0 has a differential α → β with
probability p and E1 has a differential γ → δ with probability q. Given oracles of O
andO−1, whereO is either E or a random permutation, the boomerang attack can be
described as follows:

1. Choose a plaintext P1 at random. Then, compute P2 = P1 ⊕ α and ask for the
ciphertexts C1 = O(P1) and C2 = O(P2).

2. Compute C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the plaintexts P3 = O−1(C3)

and P4 = O−1(C4).
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Fig. 1 The boomerang attack

3. Check whether P3 ⊕ P4 = α.

If O is a random permutation, the probability of P3 ⊕ P4 = α is 2−n . When O
is the target block cipher E , the probability of P3 ⊕ P4 = α is p2q2. Note that the
attack can be constructed for all possible β’s and γ ’s simultaneously. In other words,
the probability can be improved to ( p̂q̂)2, where

p̂ =
√
√
√
√

∑

α
β→β

Pr2[α → β], q̂ =
√
√
√
√

∑

γ
γ→ δ

Pr2[γ → δ]

For detailed descriptions and analysis of the boomerang attack and its variants, please
refer to [7–9].

2.2 Quantum tools

Weassume that the quantum algorithms studied in this paper arewritten in the quantum
circuit model. For detailed definitions of qubits, quantum gates, etc., readers can refer
to [28].

2.2.1 Quantum complexities

In the standard quantum circuit model, the time complexity of a quantum algorithm is
the number of gates or the depth of the circuit. The memory complexity is the number
of qubits used in the circuit.

In this paper, we try to construct the key recovery attacks of some block ciphers.
For the convenience of analysis, we assume the unit of time to be the time required
to run for one encryption in our attack on a block cipher. By using Grover search,
given a block cipher with a k-bit key, the time complexity of the generic quantum key
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recovery attack is O(2k/2). If the time complexity of a quantum key recovery attack
is lower than O(2k/2), we regard it as a valid quantum attack.

2.2.2 Quantum random access memory

In classical cryptanalysis, many algorithms need to access memory cells dynamically
when they are running. This operation is assumed to be performed in time O(1) in the
standard random access memory (RAM) model. In the quantum setting, the quantum
random access memory (qRAM) model is used in many quantum attacks, which can
be regarded as the quantum counterpart of classical random access memory. We use a
generic random access gate that only costs O(1) to abstract out memory access:

|i〉
︸︷︷︸

index

|m0, ...,ms−1〉
︸ ︷︷ ︸

data

|b〉
︸︷︷︸

result

→ |i〉 |m0, ...,ms−1〉 |b ⊕ mi 〉

According to the terms in [29]: (a) If i and m j are classical, this is the classical RAM;
(b) If i is in superposition and m j is classical, this is the quantum random access
classical memory (QRACM); (c) If i and m j are in superposition, this is the quantum
random access quantum memory (QRAQM).

So far, QRACM and QRAQM are still theoretical quantum memory models and
the availability of them is controversial. Although it is not known how to build large
qRAMs at present, many research works are still based on the assumption that large
qRAMs are available in order to deal with various possibilities in the future. Of course,
when we construct quantum algorithms, it is quite meaningful for us to try to avoid
the use of qRAM.

2.2.3 Quantum search

It is well known that Grover’s algorithm [13] can speed up exhaustive search proce-
dures by a quadratic factor. Further, Brassard et al. [30] proposed the Amplitude
Amplification technique to generalize Grover’s algorithm. In this paper, we use
quantum search to refer to the Amplitude Amplification technique. The Amplitude
Amplification technique can be explained as follows.

Theorem 1 [ [30], Theorem2and 4] LetA be any quantumalgorithm that performs no
measurements, and let B : X → {0, 1} be a boolean function that classifies the output
ofA as "good" or "bad". Let pa be the success probability ofA. Let θ = arcsin

√
pa.

Assume that TA and TB are the time complexity of A and B respectively, then there
exists a quantum algorithm Amplify(A,B) that can run in time �π/4θ� (2TA + TB).
By measuring the output of Amplify(A,B), we obtain a "good" output of A with
probabilitymax(1− pa, pa). If pa is known exactly, then we can obtain a good result
with probability 1.

In order to explain our new algorithms, we need to show the relationship between the
classical procedure and the quantum procedure. It is pointed out in [31] that there is a

123



New results on quantum... Page 7 of 27 171

recursive correspondence relationship between a classical search procedure composed
of multiple Repeat loops and a quantum procedure with nested quantum searches.
Therefore, for many quantum attacks, we can describe them classically in the first
place.

Generally, the quantum procedure Amplify(A,B) corresponds to a classical
exhaustive search process with approximately (�π/4θ�)2 iterations. The classical
exhaustive search process contains a Repeat loop that callsA and a test block (i.e., an
If procedure block) that tests the output ofA. Similar to the work of Frixons et al. [25],
in the first place we adopt multiple Repeat loops and If procedure blocks to describe
our algorithms in a classical way. In the second place, by using Theorem 1, we turn our
classical algorithm into a quantum procedure Amplify(A,B) whose output is either
a superposition of possible solutions or none. According to Theorem 1, if a solution
exists and the number of iterations of each Repeat loop is exact, we can obtain the
solution by measuring the output of Amplify(A,B) with probability 1.

2.2.4 Quantum collision-finding and element l-distinctness algorithms

This paper involves the following two problems:
Problem 1 (collision-finding) Given a function F : {0, 1}m → {0, 1}n , where m ≥
n/2. The goal is to find a pair (x, y) such that F(x) = F(y).

In the quantum setting, we can use Grover’s algorithm to find a collision in time
O(2n/2), with negligible memory. A more efficient quantum collision-finding algo-
rithm (or called BHT algorithm) is proposed by Brassard, Høyer, and Tapp [32].
In detail, they utilized Grover’s algorithm as a subroutine to construct a quantum
collision-finding algorithm for a 2-to-1 function, which only required O(2n/3) quan-
tum queries and O(2n/3) quantum memory in the QRACMmodel. In the case that the
domain and codomain of F are the same size, i.e. m = n, Yuen [33] proved that the
BHT algorithm could produce a collision for random functions after O(2n/3) quantum
queries. Therefore, when m ≥ n, we can use the BHT algorithm to solve Problem 1.
The idea of the BHT algorithm can be described as follows. Firstly, we construct a list
L with 2n/3 elements (x, F(x)) by querying F about O(2n/3) times. The elements in
L are stored in quantum memory, and we can access these elements with the quantum
superpositions in the QRACMmodel. After the above operations, there are 2n/3 solu-
tions in the search space of size 2n . Secondly, we use Grover search to find a collision

in time O(

√
2n
2n/3 ) = O(

√
22n/3) = O(2n/3).

Problem 2 (element l-distinctness)Given N elements x1, ..., xN ∈ [M], check if there
are l distinct indices i1, ..., il ∈ [N ] such that xi1 = ... = xil .

We call such l indices i1, ..., il an l-collision. Under the QRAQMmodel, Ambainis
[26] gave a quantum algorithm to solve Problem 2. Ambainis’s algorithm is based
on the quantum walk algorithm, and it requires O(Nl/l+1) queries and O(Nl/l+1)

quantum memory.
Ambainis’s algorithm can also be used to solve Problem 1, which can work in the

worst case m = n/2 (where only a single collision exists on expectation). According
to the precise analysis in [34], after (π/2)2 · 2n/3 queries, we can find a collision
with overwhelming probability by using Ambainis’s algorithm. Note that Ambainis’s
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Fig. 2 Outline of boomerang key recovery attack on E

algorithm requires a quantum memory of O(2n/3) in the QRAQM model, while the
BHT algorithm needs a quantum memory of O(2n/3) in the QRACM model.

3 Related works

In this section, we will briefly review some works related to this paper, including two
generic boomerang attacks proposed by Biham et al. [10] and the quantum boomerang
attack proposed by Frixons et al. [25].

3.1 Biham et al.’s generic boomerang attacks

At FSE 2002, Biham et al. [10] proposed some generic boomerang attacks on the
block cipher E , where the target block cipher is described as E = E f ◦ E1 ◦ E0 ◦ Eb.
Here, E1 ◦ E0 is the boomerang distinguisher, while Eb and E f are the additional
rounds appended before and after the distinguisher respectively. The block cipher size
of E is assumed to be n bits, while the key size is k bits. The outline of boomerang
key recovery attack on the target block cipher E is shown in Fig. 2.

The notations in Fig. 2 can be explained as follows. Let Xb be the set of all plaintext
differences that may cause a difference α after Eb, while Vb be the space spanned by
the values in Xb. Assume that tb = log2|Xb| and rb = log2|Vb|. Note that tb ≤ rb and
n − rb bits are inactive for all the values in Vb. Let Kb be the partial key involved in
Eb, which can determine the difference of the plaintexts by decrypting pairs with the
difference α after Eb. We denote the size of Kb as mb. Similarly, let X f be the set of
all ciphertexts differences which can lead to a difference δ before E f , while V f be the
space spanned by the values in X f . Assume that t f = log2|X f | and r f = log2|V f |,
where t f ≤ r f . Let K f be the partial key involved in E f , which can determine the
ciphertext difference when encrypting a pair with difference δ. The size of K f is
denoted as m f .
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3.1.1 Generic boomerang attack on E = E1 ◦ E0 ◦ Eb

In the first place, we give a brief introduction of Biham et al.’s generic boomerang key
recovery attack on E = E1 ◦ E0 ◦ Eb in Algorithm 1. For simplification, we assume
that the attack needs y structures.

Algorithm 1 Generic Boomerang Attack on E = E1 ◦ E0 ◦ Eb (adapted from [10],
Sect. 4)

Input: oracle access to E = E1 ◦ E0 ◦ Eb
Output: the key Kb

1: Prepare y structures of 2rb plaintexts Pi . Each structure S takes all the possible values of the rb active
bits with the other n − rb bits as some constant

2: Initialize two empty lists: T1 ← φ, T2 ← φ

3: For each structure S, perform steps 4-16:
4: For all Pi ∈ S, compute P ′

i = E−1(E(Pi ) ⊕ δ), sort S by values of P ′
i

5: for each (P ′
i , P

′
j ) such that P ′

i ⊕ P ′
j ∈ Vb do

6: if P ′
i ⊕ P ′

j ∈ Xb and Pi ⊕ Pj ∈ Xb then

7: T1 ← T1 ∪ {(Pi , Pj , P
′
i , P

′
j )}

8: end if
9: end for
10: for each pair (Pi , Pj , P

′
i , P

′
j ) ∈ T1 do

11: for each possible value of Kb do
12: if Eb,Kb (Pi ) ⊕ Eb,Kb (Pj ) = α = Eb,Kb (P ′

i ) ⊕ Eb,Kb (P ′
j ) then

13: T2 ← T2 ∪ {(Pi , Pj , P
′
i , P

′
j , Kb)}

14: end if
15: end for
16: end for
17: return a guess of Kb which is suggested 4 times in T2

Abrief analysis of Algorithm 1.We restrict our attention to the number of candidate
quartets and keys generated in Algorithm 1. For each structure, we do the following
analysis. In step 5, we need to find some pairs (P ′

i , P
′
j ) satisfying P ′

i ⊕ P ′
j ∈ Vb.

Each structure has about (2rb )2

2 = 22rb−1 plaintext pairs, which can produce about
22rb−1

2n−rb
= 23rb−n−1 collisions of (n − rb) bits. For two plaintext pairs in a candidate

quartet (Pi , Pj , P ′
i , P

′
j ), the probability that both conditions P

′
i ⊕ P ′

j ∈ Xb and Pi ⊕
Pj ∈ Xb are satisfied is (2tb−rb )2. Therefore, for each structure, steps 5-9 generate
23rb−n−1 · 22tb−2rb = 22tb+rb−n−1 candidate quartets (Pi , Pj , P ′

i , P
′
j ). Given a right

quartet, both pairs must agree on Kb. Since |Xb| = 2tb and |Kb| = 2mb , we expect that
2mb−tb subkeys would transform one of the input differences in Xb to the difference
α. It means that each pair suggests 2mb−tb subkeys and a candidate quartet can suggest
(2mb−tb )

2

2·2mb = 2mb−2tb−1 subkeys on average. Therefore, we will obtain 22tb+rb−n−1 ·
2mb−2tb−1 = 2rb+mb−n−2 candidate subkeys for each structure.

SinceAlgorithm 1 requires y structures, the data complexity is y ·2rb+1.When it is a
valid classical boomerang attack, we have y ·2rb+1 ≤ 2n . In addition, the total number
of subkey candidates of Kb is expected to be y ·2rb+mb−n−2, which are distributed over
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2mb subkeys. Thus, the expected number of hits for each subkey is y · 2rb−n−2 ≤ 2−3.
It means that the expected number of hits for a wrong subkey is less than 1/8 while the
right subkey is expected to appear 4 times. After obtaining the right subkey Kb, we
search for the remaining (k − mb)-bit subkeys exhaustively to recover the complete
key K .

In this paper, the time and memory complexity analysis of the generic boomerang
attack is not essential, so we omit it here. Interested readers can refer to [10] for more
details.

Remark 1 Note that if we consider the generic boomerang attack on E = E f ◦E1◦E0,
it is only necessary to replace all the sub-scripts b by f in the above equations and
consider E−1.

3.1.2 Enhancing the boomerang attack

Biham et al. also proposed a method to use the boomerang distinguisher with both Eb

and E f . Their generic boomerang key recovery attack on E = E f ◦ E1 ◦ E0 ◦ Eb

is described as Algorithm 2. Similarly, we assume that the enhancing attack needs y
structures.

Algorithm 2 Generic Boomerang Attack on E = E f ◦ E1 ◦ E0 ◦ Eb (adapted from
[10], Sect. 5)

Input: oracle access to E = E f ◦ E1 ◦ E0 ◦ Eb
Output: the keys Kb and K f

1: Prepare y structures of 2rb plaintexts Pi . Each structure S takes all the possible values of the rb active
bits with the other n − rb bits as some constant

2: Initialize two empty lists: T1 ← φ, T2 ← φ

3: For each structure S, perform steps 4-17:
4: For all Pi ∈ S and ε ∈ X f , compute P ′

i = E−1(E(Pi ) ⊕ ε). Define a set G as G = {P ′
i =

E−1(E(Pi ) ⊕ ε)|Pi ∈ S, ε ∈ X f }, sort G by values of P ′
i

5: for each (P ′
i , P

′
j ) such that P ′

i ⊕ P ′
j ∈ Vb do

6: if P ′
i ⊕ P ′

j ∈ Xb and Pi ⊕ Pj ∈ Xb then

7: T1 ← T1 ∪ {(Pi , Pj , P
′
i , P

′
j )}

8: end if
9: end for
10: for each pair (Pi , Pj , P

′
i , P

′
j ) ∈ T1 do

11: Encrypt (Pi , Pj , P
′
i , P

′
j ) to obtain (Ci ,C j ,C

′
i ,C

′
j )

12: for each possible value of (Kb, K f ) do

13: if Eb,Kb (Pi ) ⊕ Eb,Kb (Pj ) = α = Eb,Kb (P ′
i ) ⊕ Eb,Kb (P ′

j ) and E−1
f ,K f

(Ci ) ⊕ E−1
f ,K f

(C ′
i ) =

δ = E−1
f ,K f

(C j ) ⊕ E−1
f ,K f

(C ′
j ) then

14: T2 ← T2 ∪ {(Pi , Pj , P
′
i , P

′
j , Kb, K f )}

15: end if
16: end for
17: end for
18: return a guess of (Kb, K f ) which is suggested 4 times in T2

123



New results on quantum... Page 11 of 27 171

A brief analysis of Algorithm 2. For the convenience of constructing our new
algorithms in this paper, we still restrict our attention to the number of candidate
quartets and keys generated in Algorithm 2. For each structure S, we perform the fol-
lowing analysis. In step 4 of Algorithm 2, we obtain a set G of size 2rb+t f , where
G = {P ′

i = E−1(E(Pi ) ⊕ ε)|Pi ∈ S, ε ∈ X f }. Then, we need to find pairs

(P ′
i , P

′
j ) such that P ′

i ⊕ P ′
j ∈ Vb. Each structure G has (2rb+t f )

2

2 = 22rb+2t f −1

plaintext pairs, which can produce about 22rb+2t f −1

2n−rb
= 23rb+2t f −n−1 collisions of

(n − rb) bits. For two pairs in a candidate quartet (Pi , Pj , P ′
i , P

′
j ), the probability

that their differences both belong to Xb is (2tb−rb )2. Therefore, for each structure,
steps 5-9 generate 23rb+2t f −n−1 · 22tb−2rb = 22tb+2t f +rb−n−1 candidate quartets. For
each candidate plaintext quartet, we can not only obtain the corresponding cipher-
text quartets (Ci ,C j ,C ′

i ,C
′
j ), but also find the corresponding candidate subkeys

both in Eb and E f . As pointed out in Sect. 3.1.1, given a right plaintext quartet
(Pi , Pj , P ′

i , P
′
j ), both pairs (Pi , Pj ) and (P ′

i , P
′
j ) must agree on Kb. Since |Xb| = 2tb

and |Kb| = 2mb , 2mb−tb subkeys on average will transform one of the input differ-
ences in Xb to difference α. It means that each pair suggests 2mb−tb subkeys and

a plaintext candidate quartet can suggest (2mb−tb )
2

2·2mb = 2mb−2tb−1 subkeys on aver-
age. Repeating the analysis for E f , we expect to have 2m f −2t f −1 subkeys suggestions
from each ciphertext quartet (Ci ,C j ,C ′

i ,C
′
j ). Thus, there are about 2

mb+m f −2tb−2t f −2

possible candidate subkeys for each quartet in T1. After step 17, we can obtain
22tb+2t f +rb−n−1 · 2mb+m f −2tb−2t f −2 = 2rb+mb+m f −n−3 candidate subkeys for each
structure.After analyzing y structures,we canobtain a listT2 of size y·2rb+mb+m f −n−3,
which stores the tuples (Pi , Pj , P ′

i , P
′
j , Kb, K f ). Thus, we can expect that the good

subkey guess (Kb, K f ) is in these tuples. In addition, the probability that each
candidate quartet suggests a subkey guess is 2mb+m f −2tb−2t f −2.

Since the total number of subkey candidates of (Kb, K f ) is about y ·
2rb+mb+m f −n−3, we can get y·2rb+mb+m f −n−3

2mb+m f
= y · 2rb−n−3 subkey hits in total. Recall

that the size of each structureG is atmost 2n+t f and the data complexity ofAlgorithm2
is y ·2rb+t f . When it is a valid classical boomerang attack, we have y ·2rb+t f ≤ 2n+t f .
Thus, the expected number of hits for each subkey is y · 2rb−n−3 ≤ 2−3. It means that
the expected number of hits for a wrong subkey is less than 1/8 while the right subkey
is expected to appear 4 times (or more). After obtaining the right guesses of Kb and
K f , we search for the remaining (k − mb − m f )-bit subkeys exhaustively to recover
the complete key K .

We also omit the analysis of the time and memory complexity of Algorithm 2 here.
For interested reader, please refer to [10] for more details.

3.2 The quantum boomerang attack proposed by Frixons et al.

At SAC 2021, Frixons et al. [25] proposed the quantum boomerang attack to recover
the keys of some block ciphers. In order to construct an effective quantum boomerang
attack, they first analyzed a classical key recovery attack, which was based on the
boomerang distinguisher.
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Fig. 3 The boomerang key
recovery attack on
E = R ◦ E1 ◦ E0

Their classical boomerang key recovery attack can be explained as follows. Adver-
saries append some additional rounds R to the target cipher. According to the position
of R, their key recovery attacks can be divided into two cases: (1) R is appended after
the boomerang distinguisher. (2) R is appended before the boomerang distinguisher.

In the following, we consider the first case (see Fig. 3). Assume the target block
cipher E can be described as E = R ◦ E1 ◦ E0, where E1 ◦ E0 is the boomerang
distinguisher satisfying the properties presented in Sect. 2.1. Let D denote the set of
differences that can be obtained from δ after the R-round. For the convenience of
analysis, we assume that the size of D is 2d . Let pout be the probability that we get
δ back from an element in D by computing the R-round backwards. Frixons et al.
also assumed that 1/(

√
pout pq) < 2d , in which case the key recovery attack only

needs a single structure. Denote the partial key needed to be guessed in the R-round
as Kout , and its size is kout . Their key recovery attack is described in Algorithm 3. If
the R-round is appended before the distinguisher, we shall consider E−1. Their attack
on this case is similar to Algorithm 3.

A brief analysis of Algorithm 3. In steps 4-6, finding such pair (C ′
i ,C

′
j ) is an

(n−d)-bit collision search problem. Since a structure S is sorted in step 3, these pairs
satisfying C ′

i ⊕ C ′
j ∈ D can be computed efficiently. According to Algorithm 3, the

structure S contains approximately 1
pout (pq)2

ciphertext pairs. The probability of each

pair satisfying the constraint C ′
i ⊕ C ′

j ∈ D is |D|
2n = 2d−n . Therefore, we can easily

obtain a list T1 of size 2d−n

pout (pq)2
. In steps 7-13, we need to exhaust all possible key

guesses for each of the candidate quartets (Ci ,C j ,C ′
i ,C

′
j ) in T1. By definition, Kout

has 2kout possible values, while pout is the probability of obtaining δ back from an
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Algorithm 3 The Classical Key Recovery Attack Considered by Frixons et al.
Input: oracle access to E = R ◦ E1 ◦ E0
Output: guesses of Kout

1: Prepare a structure S ⊆ {X ⊕ 
, 
 ∈ D}, which contains 1
/

(
√
pout pq) ciphertexts

2: Initialize two empty lists: T1 ← φ, T2 ← φ

3: For all C ∈ S, compute C ′ = E(E−1(C) ⊕ α), sort S by values of C ′
4: for each (C ′

i ,C
′
j ) such that C ′

i ⊕ C ′
j ∈ D do

5: T1 ← T1 ∪ {(Ci ,C j ,C
′
i ,C

′
j )}

6: end for
7: for each (Ci ,C j ,C

′
i ,C

′
j ) ∈ T1 do

8: for each possible value of Kout do
9: if R−1

Kout
(Ci ) ⊕ R−1

Kout
(C j ) = δ = R−1

Kout
(C ′

i ) ⊕ R−1
Kout

(C ′
j ) then

10: T2 ← T2 ∪ {(Ci ,C j ,C
′
i ,C

′
j , Kout )}

11: end if
12: end for
13: end for
14: return all guesses of Kout in T2

element in D by computing the R rounds backwards. Thus, each of the quartets in T1
can suggest 2kout · p2out candidate keys Kout on average. As a result, the size of T2 is

2d−n

pout (pq)2
· 2kout · p2out = 2d+kout−n ·pout

(pq)2
. After the above process, the good key guess

of Kout is expected to be in T2. After recovering Kout , we can perform an exhaustive
search on the remaining (k−kout ) bits to obtain the full key K . For a detailed analysis
of Algorithm 3, readers can refer to [25].

Based on the above classical key recovery attack, Frixons et al. proposed a quantum
boomerang key recovery attack in Algorithm 4.

Algorithm 4 The Quantum Boomerang Attack Shown in [25]

Input: superposition oracle access to E and E−1

Output: the full key K

1: Repeat 2d+kout−n ·pout
(pq)2

times

2: Perform the following steps to sample a guess of Kout :
3: Repeat max(1, 1

2kout ·p2out
) times

4: Find a valid pair (C1,C2,C
′
1,C

′
2) � Use Grover’s or quantum collision-finding algorithms

5: Repeat 2kout times � Exhaust kout -bit key Kout

6: If R−1
Kout

(C1) ⊕ R−1
Kout

(C2) = δ = R−1
Kout

(C ′
1) ⊕R−1

Kout
(C ′

2) then Kout is “good”
7: EndRepeat
8: If a valid Kout is obtained then (C1,C2,C

′
1,C

′
2) is “good”

9: EndRepeat
10: For the key Kout obtained above, we do
11: Repeat 2(k−kout ) times
12: Guess the remaining (k − kout ) bits of key, check if the full K matches
13: EndRepeat
14: If a valid K is obtained then Kout is “good”
15: EndRepeat
16: Measure Kout , recompute K and return it
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Recall that the classical key recovery attack (Algorithm 3) can be divided into
two phases. Firstly, we can test Kout by using the property of the boomerang pairs.
Secondly, we need to compute the remaining (k − kout ) bits with brute-force search
algorithm. According to the analysis of Algorithm 3, we can check the number of
iterations in the loops of Algorithm 4 as follows. As shown in Algorithm 3, we finally

obtained a list T2 of 2d+kout−n ·pout
(pq)2

tuples (Ci ,C j ,C ′
i ,C

′
j , Kout ), in which one of the

key guesses is correct. In other words, the probability that the correct subkey Kout

obtained through the procedure in the loop is (pq)2

2d+kout−n ·pout . Therefore, the number of

iterations of step 1 is 2d+kout−n ·pout
(pq)2

. The probability that a candidate quartet suggests a

key candidate is 2kout · p2out , so there are max(1, 1
2kout ·p2out ) iterations in step 3. Given a

valid pair in step 5, we need to repeat step 6 2kout times so as to verify the correctness
of a guess of Kout . Finally, the remaining (k − kout ) bits are searched exhaustively in
step 12.

Remark 2 Algorithm 4 is described in a classical way. Therefore, when analyzing the
quantum complexity of the attack, we need to change the Repeat loops into nested
quantum searches. We omit the analysis of quantum attack complexity here. For more
analysis of Algorithm 4, please refer to [25].

4 Our NewQuantum Boomerang Attacks

Inspired by the work of Frixons et al. [25], this section proposes two methods to
convert Biham et al.’s generic boomerang attacks into quantum boomerang attacks.

4.1 First method

Similar to Algorithm 4, our first method is a quantized version of Algorithm 1, which
combines quantum search or quantum collision-finding algorithmwith the boomerang
distinguisher (see Algorithm 5).

According to the analysis of Algorithm 1, we shall not only check the number of
iterations in the loops of Algorithm 5 but also need to explain some simplified steps
in Algorithm 5.

Step 1: the number of iterations depends on the probability of obtaining the good
subkey guess Kb through the procedure. Classically, we obtain a list of y ·2mb+rb−n−2

tuples (P1, P2, P ′
1, P

′
2, Kb) in Algorithm 1. Since the good guess of Kb appears 4

times in these tuples, we shall perform steps 2-18 y · 2mb+rb−n−2 times to obtain all
possible solutions. According to Theorem 1, we shall adopt the quantum procedure
Amplify(A,B) to implement from the step 1 to step 19 in Algorithm 5, which requires
about

√

y · 2mb+rb−n−2 iterations. After the above iteration operations, we can otain
a superposition of possible solutions.
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Algorithm 5 Our Quantum Boomerang Attack on E = E1 ◦ E0 ◦ Eb

Input: superposition oracle access to E and E−1

Output: the full key K
1: Repeat y · 2mb+rb−n−2 times
2: Perform the following steps to sample a guess of Kb:
3: Repeat 22tb−mb+1 times
4: Repeat 22rb−2tb times
5: Find a valid quartet (P1, P2, P

′
1, P

′
2)� Use Grover’s or quantum collision-finding algorithms

6: If P ′
1 ⊕ P ′

2 ∈ Xb and P1 ⊕ P2 ∈ Xb then (P1, P2, P
′
1, P

′
2) is “good”

7: EndRepeat
8: For the valid boomerang quartet (P1, P2, P

′
1, P

′
2) obtained above:

9: Repeat 2mb times
� Exhaust mb-bit key Kb to obtain the corresponding key guess

10: If Eb,Kb (P1) ⊕ Eb,Kb (P2) = α = Eb,Kb (P ′
1) ⊕ Eb,Kb (P ′

2) then Kb is “good”
11: EndRepeat
12: If a valid Kb is obtained then (P1, P2, P

′
1, P

′
2) is “good”

13: EndRepeat
14: For the key guess Kb obtained above, we check its correctness:
15: Repeat 2(k−mb) times
16: Guess the remaining (k − mb) bits of key, check if the full K matches
17: EndRepeat
18: If a valid K is obtained then Kb is “good”
19: EndRepeat
20: Measure Kb , recompute K and return it

Step 3: we need to find a key candidate for each possible quartet (P1, P2, P ′
1, P

′
2).

According to Algorithm 1, the probability that a candidate quartet yields a key can-
didate is 2mb−2tb−1. As a result, there are max(1, 22tb−mb+1) iterations in step 3.
Generally, we have 22tb−mb+1 ≥ 1.

Steps 4, 5 and 6: in order to find a candidate value of the subkey Kb, we first need to
find a valid pair (P1, P2) in step 5. The pair satisfies the conditions P1 ⊕ P2 ∈ Vb and
P ′
1 ⊕ P ′

2 ∈ Vb, where P ′
1 = E−1(E(P1) ⊕ δ) and P ′

2 = E−1(E(P2) ⊕ δ). Obviously,
finding such a valid pair (P1, P2) is a collision search problem. In the quantum setting,
we can use the Grover’s algorithm or quantum collision-finding algorithm to solve the
problem. In order to reduce the number of candidate quartets,we need to checkwhether
the differences of two pairs both belong to Xb in step 6. This is the main difference
between our algorithm and Frixons et al.’s algorithm. According to the analysis in
Algorithm 1, the probability that both conditions P ′

1 ⊕ P ′
2 ∈ Xb and P1 ⊕ P2 ∈ Xb are

satisfied is (2tb−rb )2. Therefore, we need to perform steps 5-6 22rb−2tb times to find a
valid quartet (P1, P2, P ′

1, P
′
2). That is, the number of iterations of step 4 is 22rb−2tb .

Step 9: we need to find the key candidate (in the quantum setting, actually the
superposition of all possible candidates) for a given quartet. A simple method is to
enumerate all possible values of Kb.

Step 15:we search for the remaining (k−mb) bits exhaustively. After running exact
Amplitude Amplification with about 2(k−mb)/2 iterations, we can find the solution or
prove that there is no solution with probability 1.

Note that the number of iterations in the loops of Algorithm 5 is written in a
classical way. By changing theRepeat loops into nested quantum searches, we obtain
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an approximate quantum time complexity of Algorithm 5 as follows:

√

y · 2mb+rb−n−2 ·
(√

22tb−mb+1·
⎛

⎝
√
22rb−2tb · 2(n−rb)/3

︸ ︷︷ ︸

Step 5

+2mb/2

⎞

⎠ + 2(k−mb)/2

⎞

⎠ .
(1)

The above complexity corresponds to the case that we adopt the quantum collision-
finding algorithm in step 5. (If there are many solutions in step 5, we use the BHT
algorithm; Otherwise, we use Ambainis’s algorithm.) Therefore, it also requires about
2(n−rb)/3 quantum memory to find a valid quartet in the qRAM model. According to
Theorem 1, assuming that the above numbers of iterations are exact, we can obtain a
more exact complexity ofAlgorithm5by considering the additional factors of quantum
search (see Eq.2).

2
⌊

π
4

√

y · 2mb+rb−n−2
⌋ (

2
⌊

π
4

√
22tb−mb+1

⌋

·
(

2
⌊

π
4 · √

22rb−2tb
⌋

· 4 · 2(n−rb)/3 +2
⌊

π
4 2

mb/2
⌋
)

+ 4
⌊

π
4 2

(k−mb)/2
⌋
) (2)

If we use Grover search instead of quantum collision-finding algorithm in step
5, the factor 2(n−rb)/3 in Eqs. 1 and 2 will be replaced by 2(n−rb)/2. Meanwhile, the
attack only uses a negligible quantum memory. Therefore, when large qRAMs are
not available, we shall adopt Grover’s algorithm instead of quantum collision-finding
algorithm to find a valid quartet in step 5.

Similarly, we can rewrite Algorithm 2 into the quantized version Algorithm 6,
which is composed of multiple Repeat loops and If blocks in the same way. Since the
analysis of Algorithm 6 is similar to Algorithm 5, we omit it here. By changing the
Repeat loops of Algorithm 6 into nested quantum searches, we obtain an approximate
quantum time complexity of Algorithm 6 as follows:

√

y · 2mb+rb+m f −n−3 ·
(√

22tb+2t f −mb−m f +2·
(√

22rb−2tb · 2(n−rb)/2 + 2(mb+m f )/2
)

+ 2(k−mb−m f )/2
)

.
(3)

According to Theorem 1, assuming that the numbers of iterations in Algorithm 6
are exact, we can obtain a more exact quantum time complexity of Algorithm 6 (see
Eq. 4).

2
⌊

π
4

√

y · 2mb+rb+m f −n−3
⌋ (

2
⌊

π
4

√
22tb+2t f −mb−m f +2

⌋

·
(

2
⌊

π
4

√
22rb−2tb

⌋

· 4 · 2(n−rb)/2+2
⌊

π
4 2

(mb+m f )/2
⌋
)

+4
⌊

π
4 2

(k−mb−m f )/2
⌋
) (4)
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Algorithm 6 Our Quantum Boomerang Attack on E = E f ◦ E1 ◦ E0 ◦ Eb

Input: superposition oracle access to E and E−1

Output: the full key K

1: Repeat y · 2mb+rb+m f −n−3 times
2: Use the following steps to sample a guess of (Kb, K f ):

3: Repeat 22tb+2t f −mb−m f +2 times
4: Repeat 22rb−2tb times
5: Find a valid quartet (P1, P2, P

′
1, P

′
2) � Use Grover’s algorithm generally

6: If P ′
1 ⊕ P ′

2 ∈ Xb and P1 ⊕ P2 ∈ Xb then (P1, P2, P
′
1, P

′
2) is “good”

7: EndRepeat
8: For the valid boomerang quartet (P1, P2, P

′
1, P

′
2) obtained above:

9: Ask for the corresponding ciphertexts (C1,C2,C
′
1,C

′
2)

10: Repeat 2mb+m f times
� Exhaust key (Kb, K f ) to obtain the corresponding key guess

11: If Eb,Kb (P1) ⊕ Eb,Kb (P2) = α = Eb,Kb (P ′
1) ⊕ Eb,Kb (P ′

2) and E−1
f ,K f

(C1) ⊕
E−1
f ,K f

(C ′
1) = δ = E−1

f ,K f
(C2) ⊕ E−1

f ,K f
(C ′

2) then (Kb, K f ) is “good”

12: EndRepeat
13: If a valid (Kb, K f ) is obtained then (P1, P2, P

′
1, P

′
2) is “good”

14: EndRepeat
15: For the key guess (Kb, K f ) obtained above, we check its correctness:

16: Repeat 2(k−mb−m f ) times
17: Guess the remaining (k − mb − m f ) bits of key, check if the full K matches
18: EndRepeat
19: If a valid K is obtained then (Kb, K f ) is “good”
20: EndRepeat
21: Measure (Kb, K f ), recompute K and return it

Remark 3 For the boomerang attack on E = E f ◦E1◦E0 ◦Eb, there are usually many
remaining key bits in the classical analysis. This means that the factor 2(k−mb−m f )

will dominate the calculation of time complexity. Therefore, we can directly adopt
Grover search to find a valid quartet in Algorithm 6without affecting the overall attack
complexity, whch is different from Algorithm 5. The advantage is that the attack does
not require the use of qRAMs. If the remaining key bits that need to be guessed are
few, we adopt the quantum collision-finding algorithm at step 5 of Algorithm 6.

4.2 Secondmethod

Our secondmethod is based on quantum search andAmbainis’s algorithm [26]. Recall
that a good subkey guess is suggested 4 times in Biham et al.’s generic boomerang
attacks. Thus, similar to the quantum related-key boomerang attack on AES-256 in
[25], we can adopt Ambainis’s element 4-distinctness algorithm to find these tar-
get, which requires O(24n/5) query complexity and O(24n/5) memory complexity
in the QRAQM model. In the following, we show how to quantize Algorithm 1 in
Algorithm 7.

Analysis of Algorithm 7. From Sect. 3.1.1, we know that the good key guess will
be suggested 4 times among y · 2rb+mb−n−2 key candidates. In order to find the good
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Algorithm 7 Another Quantum Boomerang Attack on E = E1 ◦ E0 ◦ Eb in the
QRAQM model

Input: superposition oracle access to E and E−1

Output: a guess of Kb
1: function FuncA(i) � i is a log2(y · 2mb+rb−n−2)-bit value
2: Depending on i , choose a set of plaintext P1 with 22tb−mb+1 subsets, and each subset has 2(n−rb)/3

plaintexts
3: Repeat 22tb−mb+1 times
4: Choose one of the 22tb−mb+1 subsets for P1
5: Repeat 22rb−2tb times
6: /* Use the idea of BHT algorithm to find a valid quartet (P1, P2, P

′
1, P

′
2) */

7: Create the list of 2(n−rb)/3 plaintexts P1
8: Ask for the plaintext set S : {E−1(E(P1) ⊕ δ)}
9: Repeat 22(n−rb)/3 times
10: Choose plaintext P2 so that P1 ⊕ P2 ∈ Vb
11: Compute P ′

2 = E−1(E(P2) ⊕ δ)

12: Check if there is P ′
1 ∈ S such that P ′

1 ⊕ P ′
2 ∈ Vb

13: If there is, return (P1, P2, P
′
1, P

′
2)

14: EndRepeat
15: If P ′

1 ⊕ P ′
2 ∈ Xb and P1 ⊕ P2 ∈ Xb

16: then return (P1, P2, P
′
1, P

′
2)

17: EndRepeat � A valid boomerang quartet (P1, P2, P
′
1, P

′
2) is obtained

18: /* Exhaust mb-bit key Kb to obtain the corresponding key guess */
19: Repeat 2mb times
20: If Eb,Kb (P1) ⊕ Eb,Kb (P2) = α = Eb,Kb (P ′

1) ⊕ Eb,Kb (P ′
2) then return Kb

21: EndRepeat
22: EndRepeat
23: At this point, we have a (single) quartet and a key guess
24: end function
25: Apply Ambainis’s 4-distinctness algorithm to FuncA
26: Measure and return the single 4-collision among the key outputs of FuncA

guess of key, we define a function FuncA that can deterministically produce a valid
quartet and an mb-bit key guess Kb in Algorithm 7. Roughly speaking, FuncA starts
from a set of plaintext values. By using the idea of BHT algorithm, we perform a
search of valid quartets on the space of this plaintext set. Next, we use the property
of boomerang pairs to sieve them to obtain a single expected quartet. Then, we check
whether it can yield a key guess, which can produce y ·2rb+mb−n−2 key guesses of Kb.
Finally, we use Ambainis’s element 4-distinctness algorithm to find the good guess of
key.

The time complexity of Algorithm 7 can be computed as follows. Firstly, the
probability that a quartet yields a key candidate is 2mb−2tb−1. Thus, there are
max(1, 2−(mb−2tb−1)) iterations in step 3. Secondly, we use the idea of BHT to find
a candidate quartet satisfying (n − rb)-bit collision in steps 7-14. We check whether
the candidate quartet generates a key guess by repeating 2mb times in step 19. Let
a = log2(y ·2mb+rb−n−2). According to Ambainis’s element 4-distinctness algorithm
[26], we need to perform 24a/5 calls to the function FuncA to obtain the good key
guess. In addition, the Repeat loops inside the function can be regarded as nested
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quantum searches, so the quantum time complexity of Algorithm 7 is about:

24a/5
(

2(2tb−mb+1)/2
(

2rb−tb
(

2 × 2(n−rb)/3 + 2(n−rb)/3
)

+ 2mb/2
))

. (5)

Since thememory complexity of Ambainis’s 4-distinctness algorithm is the same as
its query complexity, the attack requires 24a/5 quantummemory in theQRAQMmodel.
On the other hand, we also require 2(n−rb)/3 quantummemory to find a candidate quar-
tet. As a result, the attackworks in the qRAMmodel and requiresmax(24a/5, 2(n−rb)/3)

quantum memory. According to Theorem 1, assuming that the numbers of iterations
in FuncA are exact, we can obtain a more exact complexity (see Eq. (6)). Since the
function FuncA can be seen as a subroutine (steps 3-13 of Algorithm 5) in Algo-
rithm 5, we can also use Grover search instead of BHT to find a pair (P ′

1, P
′
2) such

that P ′
1 ⊕ P ′

2 ∈ Vb.

2 · 24a/5 · (

2
⌊

π
4 · 2(2tb−mb+1)/2

⌋ · (

2
⌊

π
4 · 2rb−tb

⌋ ·
(

2 · 2(n−rb)/3 + 4
⌊

π
4 2

(n−rb)/3
⌋) + 2

⌊
π
4 2

mb/2
⌋)) (6)

Similarly, we can construct a new quantum version for Algorithm 2, as shown in
Algorithm 8. The main idea is to construct a function FuncB that can deterministi-
cally produce a valid quartet and an (mb + m f )-bit key guess (Kb, K f ). The function
FuncB is equivalent to the steps 3-14 of Algorithm 6.

Since the analysis of Algorithm 8 is similar to Algorithm 7, we omit it here. Let
c = log2(y · 2mb+rb+m f −n−3). By changing the loops in FuncB into nested quantum
searches, the approximate quantum time complexity of Algorithm 8 is computed as
follows:

24c/5
(

2(2tb+2t f −mb−m f +2)/2
(

2rb−tb
(

2(n−rb)/2 + 2 · 2t f
)

+ 2(mb+m f )/2
))

. (7)

A more exact quantum time complexity is shown in Eq. (8). The attack also works in
the QRAQM model and requires about 24c/5 quantum memory.

2 · 24c/5 · (

2
⌊

π
4 · 2(2tb+2t f −mb−m f +2)/2

⌋ · (

2
⌊

π
4 · 2rb−tb

⌋ ·
(

2 · 2(n−rb)/2 + 2 · 2t f ) + 2
⌊

π
4 2

(mb+m f )/2
⌋)) (8)

Remark 4 It is worth noting that another common situation in classical boomerang
attacks is when l(l > 4) boomerang pairs occur within the trials. In this case,
we use Ambainis’s l-distinctness algorithm instead of 4-distinctness algorithm in
Algorithms 7 and 8.

4.3 Comparison between the twomethods

In this section, we propose two methods to convert the classical boomerang attacks of
Biham et al. into some valid quantum attacks. We follow the parameters and symbol
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Algorithm 8 Another Quantum Boomerang Attack on E = E f ◦ E1 ◦ E0 ◦ Eb in the
QRAQM model

Input: superposition oracle access to E and E−1

Output: a guess of (Kb, K f )

1: function FuncB(i) � i is a log2(y · 2mb+rb+m f −n−3
)-bit value

2: Depending on i , choose a set of plaintext P ′
2 with 22tb+2t f −mb−m f +2 subsets, and each subset

has 2(n−rb) plaintexts
3: Repeat 22tb+2t f −mb−m f +2 times
4: Choose one of the 22tb+2t f −mb−m f +2 subsets for P ′

2
5: Repeat 22rb−2tb times
6: /* Use the idea of Grover’s algorithm to find a valid quartet (P1, P2, P

′
1, P

′
2) */

7: Choose a plaintext P ′
1 at random

8: In the search space of 2(n−rb), use Grover search to find a pair (P ′
1, P

′
2) such that P

′
1⊕P ′

2 ∈
Vb

9: If P ′
1 ⊕ P ′

2 ∈ Xb , then compute P1 : = E−1(E(P ′
1) ⊕ ε) and P2 : = E−1(E(P ′

2) ⊕ ε)

10: Check if there is (P1, P2) such that P1 ⊕ P2 ∈ Xb
11: If there is, then return (P1, P2, P

′
1, P

′
2)

12: EndRepeat � A valid boomerang quartet (P1, P2, P
′
1, P

′
2) is obtained

13: Ask for the corresponding ciphertexts (C1,C2,C
′
1,C

′
2)

14: /* Exhaust (mb + m f )-bit key (Kb, K f ) to obtain the corresponding key guess */

15: Repeat 2mb+m f times
16: If Eb,Kb (P1) ⊕ Eb,Kb (P2) = α = Eb,Kb (P ′

1) ⊕ Eb,Kb (P ′
2) and E−1

f ,K f
(C1) ⊕

E−1
f ,K f

(C ′
1) = δ = E−1

f ,K f
(C2) ⊕ E−1

f ,K f
(C ′

2) then return (Kb, K f )

17: EndRepeat
18: EndRepeat
19: At this point, we have a (single) quartet and a key guess
20: end function
21: Apply Ambainis’s 4-distinctness algorithm to FuncB
22: Measure and return the single 4-collision among the key outputs of FuncB

assumptions set by Biham et al., and give a detailed complexity analysis in Sect. 4.1
and 4.2. The complexity of each new algorithm we proposed is actually related to
these parameters (i.e. mb, rb,m f , r f , tb, t f , n, k), which are given according to the
differential paths proposed by the original author. The specific parameters and differ-
ential paths can refer to [10] and [27]. Therefore, we do not know which algorithm
is better in our quantum boomerang attacks at the beginning. We need to substitute
the parameters of the corresponding classical boomerang attack into the complexity
formula for calculation and comparison to determine which algorithm is better.

Moreover, we will explain the intrinsic difference between the two methods here.
In short, the difference between the two methods is that the idea of verifying the
correctness of the subkey guess is different. The classical generic boomerang attack
is divided into two steps: first, we recover partial subkey bits with the help of the right
boomerang quartets; then, we exhaust the remaining key bits to recover the complete
key. Our first method is to combine the above two steps of the classical attack directly,
which is also an idea of Frixons et al [25]. In the quantum setting, it is a good strategy
to discriminate the right key guess by checking exhaustively the remaining bits of key,
as we did in step 15 of Algorithm 5 and step 16 of Algorithm 6. Therefore, in the
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first method, we use the method of exhausting the remaining key bits to determine the
correctness of the subkey guess, thus completing the key recovery attack.

Unlike the first method, our second method only corresponds to the first step of
the classical boomerang attack, which can only recover the partial key first. In the
classical generic boomerang attack, there are usually multiple valid boomerang quar-
tets, and then multiple key guesses are generated. Here, we need to look for a key
guess that appears at least 4 times among all the key guesses generated by the quar-
tets. This is an element 4-distinctness problem. Classically, the time complexity of
solving this problem is N . In the quantum setting, we can use Ambainis’s algorithm
to accelerate the solution of this problem, and the solution obtained corresponds to the
correct subkey guess that appears 4 times. This is the idea of Algorithm 7 and Algo-
rithm 8. Therefore, the second method is to obtain the correct subkey by solving the
element distinctness problem, while the first method is to obtain the correct subkey by
exhausting the remaining key bits, which is the difference between the two methods.
In addition, Algorithm 7 and Algorithm 8 can only recover the partial key. In order to
recover the complete key, we need to exhaust the remaining key bits.

5 Application to Serpent-256

5.1 Brief description of Serpent

Serpent [35] is one of the candidates for the Advanced Encryption Standard. The block
size of Serpent is 128 bits, and the key length can be chosen between 1 to 256 bits. In
this paper, we focus on Serpent with an initial key of 256 bits.

Serpent has a 32-round SP-network operation on four 32-bit words
(X0, X1, X2, X3). Each round consists of three steps: key mixing, S boxes and linear
transformation. Following the notations used in [35], we denote each intermediate
value of the round i as B̂i and the round function as Ri , where i = 0, 1, ..., 31. Each
B̂i consists of four 32-bit words (X0, X1, X2, X3). In addition, Serpent has 8 different
4 × 4 S boxes, marked as Si (i = 0, ..., 7).

Let Ŝi be the application of the S-box Si mod 8 32 times in parallel, and L be the
linear transformation. The encryption algorithm of Serpent is described as follows:

B̂0 := P
B̂i+1 := Ri (B̂i )

C := B̂32

where

Ri (X) = L(Ŝi (X ⊕ K̂i )) i = 0, ..., 30
Ri (X) = Ŝi (X ⊕ K̂i ) ⊕ K̂32 i = 31
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The linear transformation L outputs X0, X1, X2, X3:

X0 := X0 <<< 13, X2 := X2 <<< 3,
X1 := X1 ⊕ X0 ⊕ X2, X3 := X3 ⊕ X2 ⊕ (X0 << 3)
X1 := X1 <<< 1, X3 := X3 <<< 7,
X0 := X0 ⊕ X1 ⊕ X3, X2 := X2 ⊕ X3 ⊕ (X1 << 7)
X0 := X0 <<< 5, X2 := X2 <<< 22

where <<< denotes bit rotation to the left, and << denotes bit shift to the left.

5.2 Quantum boomerang attack on 9-round Serpent-256

In [9], Biham et al. gave an 8-round rectangle distinguisher against Serpent-256.
Assuming that Serpent-256 starts from the round 0, the distinguisher part (E1 ◦ E0)

covers from round 1 to round 8 of Serpent, where E0 contains rounds 1-4 and E1
covers rounds 5-8. The differential characteristics used by E0 and E1 are shown in
[9], and their probabilities are represented as follows:

∑

α
β→ β

Pr2(α → β) = 2−50.8,
∑

γ
γ→ δ

Pr2(γ → δ) = 2−69.8.

That is, we have p̂ = 2−25.4, q̂ = 2−34.9. Since the boomerang and rectangle distin-
guishers share the same α and δ, we can also use the same characteristics to obtain
an 8-round boomerang distinguisher. The 8-round boomerang distinguisher requires
about 4( p̂q̂)−2 = 4 · (2−25.4 · 2−34.9)−2 = 2122.6 adaptive chosen plaintexts and
ciphertexts. As shown in [10], the best time complexity of the classical boomerang
attack on 9-round Serpent-256 is 2123.6 in the single-key setting.

In this paper,weuseAlgorithm5 to construct a 9-roundquantumkey recovery attack
on Serpent-256, which can be decomposed as follows: Eb is round 0, E0 contains
rounds 1-4 and E1 covers rounds 5-8. According to [9, 10], we have mb = rb =
76, tb = 48.85, n = 128, k = 256 in this case. To obtain 4 right quartets, we need
y = 4·2122.6

276+1 = 247.6 structures.
According to Algorithm 5 and Eq. 2, the approximate quantum time complexity

of our quantum boomerang attack on 9-round Serpent-256 is shown in Eq.9. From
Eq.9, the time complexity of the 9-round quantum attack constructed by Algorithm 5
is 2124.8, which is lower than that of the generic quantum search but higher than that of
the classical attack 2123.6. Therefore, using Algorithm 5 to attack 9-round Serpent-256
is not efficient. In order to solve this problem, we adopt Algorithm 7 to attack 9-round
Serpent-256. According to Algorithm 7 and Eq.5, we can obtain a new quantum time
complexity, which is shown in Eq.10. At this point, compared with the classical attack
and quantum generic key search, our quantum attack has lower time complexity.
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2
(47.6+76+76−128−2)

2

(

2
(2×48.85−76+1)

2

(

2(76−48.85) · 2 (128−76)
3 + 2

76
2

)

+ 2
(256−76)

2

)

≈ 234.8
(

211.35
(

227.15 · 217.3 + 238
) + 290

) ≈ 2124.8 < 2128
(9)

2
(47.6+76+76−128−2)×4

5

(

2
(2×48.85−76+1)

2

(

2(76−48.85)
(

2 · 2 (128−76)
3 + 2

(128−76)
3

)

+ 2
76
2

))

≈ 255.68
(

211.35
(

227.15
(

218.3 + 217.3
) + 238

)) ≈ 2112.48
(10)

According to Eq.6, when the numbers of iterations in Algorithm 7 are exact, we can
further obtain a more accurate quantum time complexity (see Eq.11 for details). At
this time, the quantum time complexity of recovering the 76-bit subkey is 2115.43. After
obtaining the 76-bit subkey, the remaining (256−76)-bit key can be recovered in time
290 by using Grover’s algorithm. Thus, the total quantum time complexity is 2115.43 +
290 ≈ 2115.43, which is still better than the generic quantum search algorithm (2128)
and classical attack (2123.6). Therefore, we can construct an effective quantum key
recovery attack on 9-round Serpent-256 by using Algorithm 7. Note that Algorithm 7
uses Ambainis’s 4-distinctness quantum algorithm which requires quantum memory
with the same query complexity. Since we need to call the function 255.68 times to
attack 9-round Serpent-256 by using Algorithm 7, we also require 255.68 quantum
memory in the QRAQM model.

2 · 255.68 · (

2
⌊

π
4 2

11.35
⌋ · (

2
⌊

π
4 2

27.15
⌋ · (

2 · 217.3 + 4
⌊

π
4 2

17.3
⌋) + 2

⌊
π
4 2

38
⌋))

≈ 256.68
(

212
(

227.8
(

218.3 + 218.95
) + 238.65

)) ≈ 2115.43
(11)

5.3 Quantum boomerang attack on 10-round Serpent-256

The 10-round boomerang attack on Serpent-256 uses the same 8-round distinguisher
in Sect. 5.2. At this time, Eb is round 0, E1 ◦ E0 covers rounds 1-8, and E f is round
9. According to [9, 10], we have mb = rb = 76,m f = r f = 20, tb = 48.85, t f =
13.6, n = 128, k = 256. Since the 8-round boomerang distinguisher used is the same
as the 9-round key recovery attack, the 10-round key recovery attack also requires
y = 247.6 structures. As shown in [10], the best time complexity of the classical
boomerang attack on 10-round Serpent-256 is 2173.8 in the single-key setting.

We can construct a quantum key recovery attack on 10-round Serpent-256 by using
Algorithm 6. As shown in Eq.12, the approximate time complexity of our 10-round
quantum attack is 2124.3. According to Eq. 4, when the numbers of iterations in Algo-
rithm 6 are exact, we obtain a more accurate time complexity by putting the additional
factors of quantum search (see Eq.13 for details). The time complexity of our attack
obtained by Algorithm 6 is 2126.6, which is better than the generic quantum key
search (2128) and classical attack (2173.8). Therefore, we can obtain a valid quan-
tum key recovery attack on 10-round Serpent-256 by using Algorithm 6. It is noted
that Grover’s algorithm is used to find valid quartets in Algorithm 6 instead of quantum
collision-finding algorithm, so the quantum memory required for our quantum attack
is negligible.
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2
(47.6+76+76+20−128−3)

2

(

2
(2×48.85+2×13.6−76−20+2)

2

(

2(76−48.85) · 2 52
2 + 2

96
2

)

+ 2
(256−96)

2

)

≈ 244.3
(

215.45
(

227.15 · 226 + 248
) + 280

) ≈ 2124.3 < 2128
(12)

2
⌊

π
4 2

44.3
⌋ · (

2
⌊

π
4 2

15.45
⌋ · (

2
⌊

π
4 2

27.15
⌋ · 2 ⌊

π
4 2

26
⌋ + 2

⌊
π
4 2

48
⌋) + 4

⌊
π
4 2

80
⌋)

≈ 244.95
(

216.1
(

254.45 + 248.65
) + 281.65

) ≈ 2126.6 < 2128
(13)

After our attempt, we find that using the second method in this paper can not
convert the classical 10-round boomerang attack into a valid quantum boomerang
attack. Therefore, we do not describe it in detail here.

6 Application to ARIA-196

Kwon et al. [36] proposed an AES-like block cipher named ARIA at ICISC’03. ARIA
has a 128-bit block size and a key length of 128, 192 or 256 bits. The overall structure
of ARIA is a substitution and permutation network. The round function of ARIA is
composedof the following three operations: (1)RoundKeyAddition: the 128-bit round
key generated by the key schedule is XORed to the intermediate state. (2) Substitution
Layer: ARIA uses two different S-boxes to construct two types of substitution layers
for odd and even rounds. (3) Diffusion Layer: it is an involutional linear transformation
P : GF(28)16 → GF(28)16. Formore details about ARIA cipher, please refer to [36].

In this section, we apply our methods to the version of ARIA with a 196-bit key.
Fleischmann et al. [27] constructed a classical key recovery attack on 6-round ARIA-
196 based on a 5-round boomerang distinguisher. According to [27], the probability of
the 5-round distinguisher is 2−105 and adversaries need y = 253 structures to mount a
6-round attack. In addition, we have mb = rb = 0,m f = r f = 56, t f = 38.08, n =
128, k = 196 in this case. As shown in [27], the best time complexity of the classical
boomerang attack on 6-round ARIA-196 is 2108 in the single-key setting.

We can construct a valid quantum boomerang attack on 6-round ARIA by using
Algorithm 5. The quantum time complexity is about 287.5, as shown in Eq. 14. We can
see that the time complexity is below the complexity of the Grover search (298) and
the complexity of the classical attack (2108). Assuming that the numbers of iterations
are exact in Algorithm 5, we obtain a more accurate quantum time complexity (see
Eq. 15 for details).

2
(53+56+56−128−2)

2

(

2
(2×38.08−56+1)

2

(

2(56−38.08) · 2 (128−56)
2 + 2

56
2

)

+ 2
(196−56)

2

)

≈ 217.5
(

210.58
(

217.92 · 236 + 228
) + 270

) ≈ 287.5 < 298
(14)

2
⌊

π
4 2

17.5
⌋ · (

2
⌊

π
4 2

10.58
⌋ · (

2
⌊

π
4 2

17.92
⌋ · 4 · 236 + 2

⌊
π
4 2

28
⌋) + 4

⌊
π
4 2

70
⌋)

≈ 218.15
(

211.23
(

218.57 · 238 + 228.65
) + 271.65

) ≈ 289.8
(15)

The final time complexity is still better than the classical attack and quantumgeneric
key recovery attack. Therefore, we can use Algorithm 5 to obtain a valid quantum key
recovery attack on 6-round ARIA-196. Note that we use Grover search instead of
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quantum collision-finding algorithm to find a valid pair in step 5 of Algorithm 5 here,
so the quantum memory required for our 6-round quantum attack is negligible. In
addition, we find that using Algorithm 7 to attack 6-round ARIA-196 is not more
effective than using Algorithm 5, so we omit it here.

7 Conclusion

Based on the works of Frixons et al. and Biham et al., this paper proposes two more
generic quantum boomerang attacks and applies them to Serpent-256 and ARIA-
196. For Serpent-256, we construct valid 9 and 10 rounds of quantum key recovery
attacks respectively. For ARIA-196, we construct a valid 6-round quantum key recov-
ery attack. Compared with the quantum generic key recovery attack, our attack can
reduce the time complexity by a factor of 212.57 at most. Therefore, the attacks pro-
posed in this paper are meaningful. Our results show that some classical cryptanalysis
methods still can offer the valuable reference in the quantum setting. In addition, our
attacks are based on the differential paths of the existing boomerang attacks, which
seems to limit the improvement effect of our attacks. Therefore, this is also a prob-
lem that needs to be solved in the future work, that is, whether we can find new and
more suitable differential paths for the target block ciphers to further improve the
time complexity of our attacks, and even increase the number of rounds that can be
attacked.Moreover, whether there are other classical cryptanalysis techniques that can
be converted into valid quantum attacks is an interesting open question.

On the other hand, in this paper we only consider quantum boomerang attacks in
the single-key setting. But in fact, many classical boomerang or rectangle attacks work
in the related-key setting. Whether we can construct effective quantum boomerang or
rectangle attacks in the related-key setting deserves further study.
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