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Abstract

Two families of asymmetric quantum codes of length n = ¢

" — 1 over F2 are
constructed in this paper. By a detailed analysis of properties about g2-ary cyclo-
tomic cosets modulo n, Hermitian dual-containing conditions for a family of primitive
narrow-sense BCH codes are presented. Consequently, a series of asymmetric quan-
tum BCH codes are constructed via the CSS-like construction and pairs of nested BCH
codes. The parameters of new asymmetric quantum codes presented here are better
than those available in the literatures before, and the real Z-distance are much larger
than &4 + 1.

Keywords Asymmetric quantum code - BCH code - CSS-like construction

1 Introduction

Asymmetric quantum codes are an efficient coding scheme against the qubit-flip errors
oy, phase-flip errors o, and the combined qubit-phase flip errors o, in quantum com-
munication, which occurs with different probability. In most cases, the phase-flip
errors occur more frequently than qubit-flip errors [1-4]. Therefore, putting asym-
metric quantum codes to use in the asymmetric quantum channels is an issue worth
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considering. In the past 15 years, researchers have focused on the construction of
asymmetric quantum codes, and obtained many codes with good parameters. Aly
[5-7] derived some families of asymmetric quantum codes from imprimitive non-
narrow-sense BCH codes and RS codes over finite fields. Sarvepalli et al. [8] utilized
the construction of asymmetric quantum codes from dual-containing BCH codes and
LDPC codes. L. Wang et al. [9] extend the characterization of nonadditive symmetric
quantum codes to the asymmetric case, established a relationship of asymmetric quan-
tum codes with classical error-correcting codes and obtained an asymptotic bound on
asymmetric quantum codes from algebraic geometry codes. Ezerman et al. [10, 11]
proposed CSS-like constructions and exploited pairs of nested linear codes under one
of the Euclidean, trace Euclidean, Hermitian and trace Hermitian inner products con-
structed good parameters CSS-like asymmetric quantum codes. La Guardia [12—-14]
constructed many good asymmetric quantum codes which derived from Euclidean
(Hermitian) dual-containing BCH codes by CSS construction. Recently, the construc-
tions of asymmetric quantum codes have been studied by many researchers, and some
families of new asymmetric quantum codes are constructed by utilizing constacyclic
codes, negacyclic codes and MDS codes et al. [15-20]. Especially, Grassl [21] present
a new propagation rule for CSS codes, and this construction applies to asymmetric
quantum codes from the CSS construction as well.

In [22], the authors have utilized Euclidean dual-containing BCH code to construct
asymmetric quantum codes of length n = ¢ — 1 over F; where ¢ > 5. Reference
[23] presented a class of special code length asymmetric quantum codes of length

2m
n= "qz:ll over F >. Inspired by the previous work mentioned [22, 23], in this paper,

the construction of ¢-ary asymmetric quantum codes with code length n = ¢>" —
1(¢ > 3) from Hermitian dual-containing primitive narrow-sense BCH codes were
studied. And the lower bound § on Z-distance and X-distance of these codes were
provided here. Furthermore, we exactly calculate the parameters of two families of
asymmetric quantum codes with special Z-distance, where our Z-distance can be
much larger than §,,4, + 1 given in Theorem 2.3 Ref. [24].

This paper is organized as follows. In Sect.2, basic concepts on g>-cyclotomic
cosets, BCH codes and asymmetric quantum codes are reviewed. In Sect. 3, the con-
ditions regarding Hermitian dual-containing BCH codes were discussed. In Sect.4,
a families of asymmetric quantum codes were constructed from Hermitian dual-
containing BCH codes. In Sect. 5, we compared the parameters of the new codes with
the ones available in the literature. Finally, the paper is summarized with a discussion
in Sect. 6.

2 Preliminary

In this section, we will review the basic concepts on g2-cyclotomic cosets of modulo
n and BCH codes. Let ¢ be a prime power, F 2 be the finite field with g elements.
Forn = qz’” — 1 denotes the code length, B+ denotes the Hermitian dual of BCH
code B, and an asymmetric quantum BCH code Q is denoted by [[n, k, d./d,]]. For
more details, refer to [6-9].
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Definition 2.1 If gcd(g, n) = 1, the g>-cyclotomic coset of modulo n containing x is
defined by

C, = {x,xqz,x(qz)z, ...,x(qz)(k_l)} (modn)

where k is the smallest positive integer such that g*x = x(modn).
A cyclic code of length n = ¢g>™ — 1 over F,2 is called a BCH code with designed
distance § if its generator polynomial

g) =[] =& T=CrUCpp1U---UChysa,

zeT

where C, denotes the ¢2-cyclotomic coset of modulo 7 containing x, £ is a primitive
elementof F 2 andm = ord, (¢?) is the multiplicative order of ¢ modulo n. According
to the concept of defining set, such a BCH code can also be defined, see following
Definition 2.2.

Definition 2.2 Let gcd(q,n) = 1. If & is a primitive n-th root of unity in some field
containing qu , T = CpUCpi1U---UCpis—2 = Tip,p+s—2], the cyclic code of length
n with defining set T is called a BCH code of designed distance §. If b = 1, C is called
a narrow-sense BCH code, if n = ¢*" — 1, C is called primitive.

Lemma 2.1 Ifgcd(q,n) = 1, Cisacyclic code over F > with defining set T, cthcc
ifand only if T NT~1 =@, where T™9 = {n — qt(modn) |t € T}.

Let By and Ba be q*>-ary BCH codes of length n, and with defining set Ty and T,
respectively. From above Lemma 3.1, we know Bf‘h C By ifand only if Tl_q N = 0.
Thus, we have

Lemma 2.2 Let By and Ba be q*-ary BCH code with defining set Ty and T», then
Blh’ C By if and only ilelh DD

Accordingto [2, 5, 6, 8], an asymmetric quantum code [[n, k, d, /d\]] can control all
|_d"'2_1J qubit-flip errors and all Ldzz_lj phase-flip errors. At the same time, which can
detect d, — 1 qubit-flip errors and d, — 1 phase-flip errors. Based on CSS construction,
in 2013, Ezerman et al. proposed constructions are called CSS-like construction and
utilized pairs of nested subfield linear codes under Hermitian inner products. The
following Theorem 2.3 is CSS-like construction for asymmetric quantum codes.

Theorem 2.3 (CSS-Like Construction) Fori = 1, 2, let C; be a classical linear code
with parameters [n, k;, d;] PR If CIJ"’ C Cy, then there exists an asymmetric quantum
code with parameters [[n, k(81) + k(82) — n, dz/dx]]qz, where {d,, d;} = {dy, d»}.

3 Construction of Hermitian dual-containing BCH codes

In this section, the construction of asymmetric quantum codes derived from pairs
of nested nonprimitive Hermitian dual-containing BCH codes were discussed as
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follow. If fixed n, denote T = |Ji_; C;, define u = min{x | x € 779} and
v = max {y |y e T’q}, Similar to [22], we have following Lemma 2.2.

Lemma 3.1 If B is a g*-ary narrow-sense BCH code of length n with defining set
T = U_,C; where r < 8yqx, and T+ = Z,\T~4. Then B and B has design
distance §(B) = r + 1 and §(B*") < max {u, n — v — 1}, respectively.

Proof The definingsetof BCHcode Bis T = U._, C; = Tj; ), 50 we have the maximal
design distance of narrow sense BCH code B is r + 1, then we have §(B) = r + 1.

Since Tt = Z,\ (T NH=Z, — n—qx |xeT}={0,1,2,--- ,n—1} —
{w,u+s,---,v—t,v} = {0,1,2,---,u—1,---,v+1,---,n—1}, then T+
contain # or n — v — 1 integer. From Definition 2.2, thus we have S(BJ—h) <
max {u,n —v — 1}.

For constructing asymmetric quantum codes via CSS-Like construction, let ¢ > 3,
the conditions regarding Hermitian dual-containing BCH codes of code length n =
g>™ — 1 were discussed as follow Theorem 3.2. O

Theorem 3.2 Let n = g*" — 1, where g > 3 is prime power and m > 4.
ODIfl<i<qg—-22=<j<gqbFrég=0Gq+]j)-qgq—17585 < <
g@m=D — (i - g + J), then there exist narrow sense BCH codes satisfying
Bl (n,81) C Ba(n, ).
(D) If2<i<qg?>—q. Ford; =q°> —i,81 <& <i-q®" 3 — 1, then there exist
narrow sense BCH codes satisfying Bf"’ (n,81) C By(n, 87).
I If1<j=<g¢*—1
(1) Fors; = j-q* ™ = 1,81 <8 < q*" 271 — j, where 1 <s <[%]1—1, then
there exist narrow sense BCH codes satisfying BIL” (n,81) C Ba(n, 87);
(2) For8; =q>*t —j, 81 <8 < j-q*" 271 — 1, where2 <5 <[] — 1,

then there exist narrow sense BCH codes satisfying Bf‘h (n, 81) C By(n, 8).

Proof Here, we only show item (II) since the other cases are similar.
Letn = qz’"—l,q > 3. Since §; = q3—i where 2 < | < q2—q,then

narrow sense BCH code Bj(n, §;) with defining set 7] = uflz‘llc, = U?i;iilCt.
Let T, ¥ = {n—qx; | x; € T1}, since Bf‘h with defining set Tllh = Z,\T, ! =
{0,1,2,--- ,n—1}—{n—qx; | x; € T1}.

If8; < 8 < min{n—gx;|x; €T} =i-q?"3 — 1, then By(n, §>) with
defining set 7o = Ufzz_llCt. We can assume 7> = C; U Co U --- Cs,—1. If for any
j € T, from Lemma 2.2, we can deduce that j ¢ Tlfq, that is to say qu NT, =0,
then j € Zn\qu, thus one can deduce that 7, C Tllh. From Lemma 2.1, we can

conclude B; (n, 81) € Ba(n, 8) holds.

Theorem 3.2 provides the maximum designed distance of two nested BCH codes
satisfying Hermitian dual-containing conditions. However, it is a well-known hard
problem to calculate the dimensions of asymmetric quantum codes. Therefore, next,
the dimensions of two families of BCH codes with special maximum designed dis-
tances can be computed. The following two cases discussed here because the definition
set of these BCH codes are influenced by the parity of m. O
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Case I. m is even
In this case, let m > 4 be even, n = ¢ — 1. Forg < i < ¢> —1 1<j<iand

1 <jr< qZ’_z,denote the defining set of BCH code is T'(§) = U;_, C; = Ty 5y, if
2_
mG =@ + Yy k+2(g* = 1) +1 5= g%+ 4 ¢
I TG 1=y m@ = (G +1)-g¥ 2+ Y02k + G+ j1 — 1) 6—<z+1) q2’+11
m(s — (i g~ 2+Zk:0k+(l+12—1))) §=i-q"+jp-q*

then there exists a narrow-sense BCH code with parameters [n, n— | T'() |, = 8] 2.

Example 3.1 Takeq = 5,m = 4,son = 390624.If T (§) = 4-(1251—51),4-(1877—
78),4- (2503 — 106), 4 - (3129 — 135),4- (3755 — 165), 4 - (4381 — 196), 4 - (5007 —
228),4-(5633 —261),4-(6259 —295), 4- (15649 —925), 4- (15650 — 926) + 2, then
there exist BCH codes with parameters [n, 385968, d > 1252]5, [n, 383428,d >
1878125, [n,381036,d > 2504]»5,[n,378648,d > 3130]»s, [n, 376264, d
3756155, [n, 373884, d 43821»s, [n,371508,d > 5008]»s, [1n, 369136, d

5634155, [n, 366768, d 6260155, [n, 331728, d z_ 156501»5, [n, 331726, d
15651]»5, respectively.

IV IV IV IV

=
=

Summarizing the analysis above, applying Theorem 3.2 and above the corresponding
conclusion, then Corollary 3.3 follows.

Corollary 3.3 Letm = 2t(t > 2), n = g™ — 1 with q > 3 be a power of a prime. If
51 = qz’_1 —q, By =[n,n—m[(5; —1)(1 — q_z)], > 811, then there exist narrow
sense BCH codes By with parameters

@ [n,n —m@ — (@* + Zk k4 g — 3)), > 8] satisfying B; h(n 81) C
Ba(n, 82), where 8 < 8 < q2t+2 —1.
D [n,n—m@ — (G +1) - g2 2+ Y5k * (i + j — 1)), = 8] satisfying
f‘”(n,Sl) C By(n,8), whereq <i <gq>—1,1<j <iand8 < 8 <
(+1-g* +j.
() [n,n—m(Sy—(i-g*~ 2—}-2 k+(l+]—1))) 82]satisfying3f‘"(n,81) -
By(n, 8), where g < i < g —1 1<j<qg*?andé; <8 <i-q* +j-q°

Case II. m is odd

In this case, let m > 5 be odd, n = ¢*" — 1. For 89 = ¢**2;1 < i; < ¢ — 1,
L<ji<g”?—iandé =ir-¢"2+ @ +j) ¢ 1 < <q>-2
l<jp=g*~1L1<s<q¢¥?andé =ir- ¢+ jo-q* +5-¢%0 <i3 < ¢*-2,
1<j3<(@z+1) -q2 and 63 = (i3 + 1) ~q2’+2 + j3, denote the defining set of BCH
code is T(8) = U2_,C; = Tj1 g, if

m(8 — q*")

m(1 — Gy - ¥ + g2+ Yk (q —2)+ j1)

| TG |= § m( — (in - % + 2“ q>+ j2-q*
Y k- (@? —2)+lz (Ga—1D+5)
m@s — (3 +1) g% + 552 g2 4 (2= 2) X8 k+ )
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then there exists a narrow-sense BCH code with parameters [n, n— | T(§) |, > 81,2

Example3.2 Take ¢ = 4,m = 5, son = 1048575. If T(§) = 5 - (4112 —
272),5 - (4353 — 288),5 - (4609 — 305),5 - (4865 — 322),5 - (5121 — 339),5 -
(5377 — 356),5 - (5633 — 373),5 - (5889 — 390), 5 - (6145 — 407),5 - (9986 —
698), 5 - (10498 — 734), 5 - (11010 — 770), 5 - (11266 — 788), 5 - (11522 — 806, 5 -
(11778 —824), 5- (12336 —906), 5- (61680 — 7230), then there exist BCH codes with
parameters [1, 1029375, d > 4113];6, [n, 1028250, d > 4354116, [n, 1027055, d >
4610116, [n, 1025860,d > 4866116, [n, 1024665,d > 5122116, [n, 1023470, d
5378116, [1, 1022275,d > 5634116, [n, 1021080, d > 589016, [1, 1019885, d
6146]16, [1, 1002135,d > 998716, [, 999755,d > 10499],6, [n, 997375, d
11011116, [n, 996185, d > 1126716, [n,994995,d > 11523116, [n, 993805, d
11779116, [n, 991425, d > 12337116, [n, 776325, d > 61681];6, respectively.

=
=

IV IV IV IV

v

Summarizing the analysis above, applying Theorem 3.2 and above the corresponding
conclusion, then Corollary 3.4 follows.

Corollary 3.4 Letm =2t +1(t > 2), n = ¢*" — 1 with g > 3 be a power of a prime.
If81 =q* ' —q, B =[n,n—m[( — 1)(1 —q~2)], = 811, then there exist narrow
sense BCH codes By with parameters
@D [n,n —m(Sr — q2t), > 8] satisfying BIL" (n, 81) C By(n, 8), where §1 < 8y <
2142
q .
) [n,n—m@ — G- g% + 23 g + bk - (g% = 2) + /), = 8] satisfving
Bf‘h(n,(Sl) C Bo(n,8), where 1 <i <qg*—1,1<j < q*2—iand
81 <8 <i-¢*24+(G+j)-q¢~
. 24 . _ j— [P
(M) [n, n—m (82— (i-q* + >+ j-q* 7+ 24 o k-(q*=2)+i-(j—1)+9)), = 8]
satisfying Bf‘h(n,Sl) C Bo(n, &), where 1 <i <g®>—2,1<j <q*—1,
l<s<qg®%and8; <8 <i-g* >+ j.q*" +5-¢%
. 2 7 [ .
(V) [n,n—m@2 — (G + 1) - ¢* + 5 g%+ (¢> —2) - Yok + ), = 82l
satisfying Bllh (n,81) € Ba(n, 8), where0 <i <g>—2,1<j<(@i+1)-qg°
and 8y < 8 < (i +1)-¢*+? + .

4 Construction of asymmetric quantum codes

In this section, applying CSS-like construction and the main results above section,
some new asymmetric quantum codes can be constructed, and their dimension can be
exactly calculated. In the following Theorem 4.1, our main construction results can
be provided.

Theorem 4.1 Let n = g°™ — 1, where g > 3 is a prime power and m > 4.

M Fordi=G-q+j)-qg—1,8 <8 <q®m VD — (i g+ j), then there exist
asymmetric quantum codes [[n,n— | T(51) | — | T(62) |,d; = 62/dx > 51]]q2,
wherel <i <q—2,2<j<gq.
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(Il) For 81 = ¢°> — i, 81 < & < i-q®m=3 — 1, then there exist asymmetric
quantum codes [[n,n— | TGy | — | T(82) |,d; = 62/dy > 81]] 2, where
2<i<q’—q.

D) If1<j<q*~1.

(1) Fordy =j-q¢>*t' — 1,81 <8 < q?>™ 25~1 — j, then there exist asymmetric

quantum codes [[n,n— | T(51) | — | T(82) |,d; = §2/dx > S1llg2, where
l<s=<[3]-1

(2) Foré, = qzs'H — j, 81 <8 < j-q*>™ 257V _ 1, then there exist asymmetric
quantum codes [[n,n— | T(51) | — | T(62) |,d; = &2/dy > 8]]]qz, where

2<s<[2H]-1

Proof We only prove item (II) since the other constructions are similar.
Let B; be the narrow-sense BCH code over F 2 of length n = g>" — 1. Using

T = U(Sl ! C; to denote the defining set of BCH code, and the cardinality of
T(81)as| T(51) |. Foré; = q —iwhere2 <i < q — g, then there exists a narrow
sense BCH code with parameters [n,n— | T(61) |, q3 — i]. Next, consider another
BCH code B, with parameters [n, n— | T (82) |, 82].

According to Theorem 3.2, we know that if §; < 8, < i - q(z’”_3) — 1, then there
exist narrow-sense BCH codes satisfying Bf‘h (n,81) € Ba(n, 82). Hence, applying
the CSS-Like construction in Theorem 2.3, and use the parameters of Bj(n, §1) and
B>(n, 87), qz—ary asymmetric quantum codes [[n,n— | T(81) | — | T(82) |,d; >
82/dy > 81]]q2 can be constructed. O

Summarizing the above discussion, we can conclude (II) holds.

Remark 1 We presented the lower bound § on Z-distance and X -distance of asymmet-
ric quantum codes of length n = ¢*" — 1 where ¢ > 3. Obviously, our Z-distance
are much larger than X-distance as well as are much larger than §,,,x + 1 in [22].
However, Theorem 4.1 does not give the exact dimensions of these code, owning to
complex to calculate the exact dimensions for all §. So we denote the cardinality of
T(5) as | T(5) |, and the dimension as n— | T(8) |. But, for fixed the special values
of d; and d,, we will calculate the exact parameters of two families of asymmetric
quantum codes in the following Corollary.

Corollary 4.2 Let m = 2t(t > 2), n = q2m — 1 with ¢ > 3 be a power of a prime.
Then there exist asymmetric quantum codes with parameters

M [ —m(@* " =) —g D+ @ =D =D =Y k+1).d, >
q2t+2 _ l/dx > q2t71 _ Q]]q2- '
) [[n, n—m([(@* ' =g)(1 =g )T+ +1)-(¢¥ =g H =it k—i+1),d, >

(+1D-q* +jjde = ¢ —qllp, whereq <i<¢* =1, 1< j<i.

Gm[Mn—mGwml—WU—q2ﬂ+l(f“—”z—lHﬂ @ -1 -
PO k+l)d >i-q¥+j-q*/d; > q*¥~ 1—6]]]zwhereq<z<q -1,
15]5qw‘%

Corollary 4.3 Letm =2t +1(t > 2), n = g™ — 1 with g > 3 be a power of a prime.
Then there exist asymmetric quantum codes with parameters
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Table 1 Sample parameters of asymmetric quantum codes for m = 4

g m " [[n. k. dz /dy]] > p=%

3 4 6560 [[n,1232,d; > 2185/dx > 6]]g ~ 364.16
[([n, 1224, d; > 2184/dy > 10]lo ~218.40
([n, 1212, d; > 2182/dy > 15]lo ~ 145.46
([, 1204, d. > 2181/dy > 19]lo ~ 114.78
([n, 2292, d. > 1457/dy > 22]lo ~ 66.22
[[n, 2900, d. > 1214/dy > 23]l ~52.78
[[n, 3544, d, > 971/dy > 241l ~ 40.45
[[n, 3992, d, > 728/dy > 251l ~29.12
[[n, 4780, d, > 485/dy > 26]l9 ~ 18.65
[[n, 5604, d, > 242/d, > 28]]lg ~ 8.64

M [n.n—mT @G> ' =g)(1 =g D+ (> —¢*)), d. > ¢* 2 /d, > g* ' —
qll,2.

) [0 —m(@* ™ =) =g D1 +i-q¥@ - D)+ G +j— 5 g2 —
@ =2 Yok —).d: = i-q* 2+ i+ j) - q*/de = ¢¥ 7" — qll 2, where
l<i<g’-1L1<j<q¥?2-i

(M) [[n, n—m(T(q¥ " =q)(1—g D1+ -¢¥ +)-¢¥ 2 (g* = D+ (s— ). 42—
(@>=2) Yo k+i-(G—D=s.d. = i-g* 2+ j-q¥ +5-¢%/dx = ¢* ' —q1],2,
wherel <i<g?>—21<j<q¢*—1,1<s<qg* 2

AV) [l n=m([@* " =) A —g )+ G+ 1D g% @> = 1) = 5 g? = (¢* -
) Yook de = (i4+1)-g* 2+ j/dy = ¢~ —qll,0, where 1 <i < g*—2,
1<j<(@+ g%

Example 4.1 Take ¢ = 3,m = 4, so n = 6560. The following Table 1 lists some
asymmetric quantum BCH codes derived from Corollary 4.2.

Example 4.2 Take ¢ = 3,m = 5, so n = 59048. Table 2 lists some asymmetric
quantum BCH codes derived from Corollary 4.3.

Remark 2 Tables 1 and 2 listed some new asymmetric quantum codes which given
in Corollary 4.2 and Corollary 4.4. For ¢ = 3 and m = 4,5, some of the Z-
distances of our asymmetric quantum codes are much larger than X-distances. In
general, researchers use the code rate to characterize the performance of a code. The
so-called code rate is the ratio %, where n is code length, k is the dimension. How-
ever, in order to show the error-correcting ability to the phase-flip errors and qubit-flip
errors, here we use the factor p = ZT given in [5] to compare d, and d,. There-
fore, if d, > d,, then the asymmetric quantum codes has a factor great than one.
Hence, the phase-flip errors affect the quantum system more than qubit-flip errors do.
In this paper, we would like to increase the factor p and dimension k of the codes.
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Table2 Sample parameters of asymmetric quantum codes for m = 5

g m n [[n, k. dz /dy]],2 p=g
3 5 59048 [[n, 7748, d; > 19681/dy > 6]l ~ 3280.16
[[n, 7738, d; > 19680/dy > 10]lg ~ 1968
[[n, 7723, d; > 19678/dy > 15]]9 ~ 1311.86
[[n, 7713, d; > 19677 /dy > 19]]9 ~ 1053.63
[[n, 16708, d; > 13121 /dy > 22]]9 ~ 596.40
[[n,22163,d; > 10934/dy > 23]]9 ~ 475.39
[[n, 28248, d; > 8747/dx > 241lg ~ 364.45
[[n, 32658, d, > 6560/dy > 25]]9 A 262.40
[[n, 40693, d, > 4374 /d, > 26]]g ~ 168.23
[[n, 49448, d, > 2186/dy > 28]]g ~ 78.07
[[n,49333,d, > 2185/dy > 55]]9 A 39.72
[[n, 49218, d, > 2184/dy > 82]]9 ~ 26.63
[[n,49103, d; > 2183 /dy > 109]]g ~20.02
[[n, 48988, d; > 2182/dy > 136]]9 ~ 16.04
[[n, 48873, d; > 2181/dy > 163]]g ~ 13.38
[[n, 48758, d, > 2180/dy > 190]]g ~ 11.47
[[n,48643,d, > 2179/dy > 217]]9 ~ 10.04
-;Eili:;nfezlgfa;gdﬂ;nzal q m d; shown in Theorem 4.1 Smax shown in [24]
3 4 2185 235
5 19681 242
6 177145 2179
4 4 16382 1009
5 262142 1023
6 4194302 16369
5 4 78123 3101
5 1953123 3124
7 3 16805 342
4 823541 16759
8 3 32766 511
4 2097150 32705

For example, for n = 6560, if d, > 6, 10, 15, 19, 22, 23, 24, 25, 26, our Z-distance
can reach d, > 2185/d, > 6,d, > 2184/d, > 10,d, > 2182/d, > 15,d, >
2181/d;y > 19,d, > 1457/d, > 22,d, > 1214/d, > 23,d, > 971/d, > 24,d, >
728/d, > 25,d, > 485/d, > 26. It is obvious that the factor p can reach 364.16,
218.40, 145.46, 114.78, 66.22, 52.78, 40.45, 29.12, 18.65, respectively. That is to say,
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Table 4 Sample parameters of asymmetric quantum codes [[n, k, d; /dx]] 72

q m n

[[n, k, dz/dx”qz

[[n, k', d //dx/]]qz shown in [14]

4 4 65535

4 5

[[n, 65411, d; >
[[n, 65407, d; >

18/dx = 171116
19/dx = 17116

[[n, 65403, d, > 20/dyx > 171116
[[n, 65399, d. > 21/dyx > 171116
[[n, 65395, d; > 22/dy > 171116
[[n, 65391, d; > 23/dy > 17]]16
[[n, 65387, d; > 24/dx > 171116
[[n, 65363, d; > 30/dy > 171116

[[n,20571,d; >

\%

16380/dy > 171116

[[n,65355,d; > 25/dx > 24]]16
[[n, 65351, d; > 26/dy > 241116
[[n, 65347, d; > 27/dx > 241116
[[n, 65343, d; > 28/dx > 241116
[[n, 65339, d; > 29/dx > 24]]16
[[n, 65335, d; > 30/dx > 24]l16

[[n, 20551, d; >
[[n, 20527, d;
[[n, 20483, d;

=
=

16378/dy > 241116
16376/dy > 331116
16372/dy, > 491116

[[n, 50367, d- > 4095/d; > 611116

[[n, 61467, d. >
[[n, 61231, d; >
([, 58175, d; >

1023/dy > 651116
1022/dx > 1297116
1009/dy > 9611116

[[n, 65409, d_s
[[n, 65405, d_s
[[n, 65401, d_s
[[n, 65397, d.s
[[n, 65393, d_s
[[n, 65389, d_s
[In, 65385, d_s
[In, 65361, d.s
[[n, 65353, ds
[[n, 65349, d_s
[[n, 65345, ds
[[n, 65341, ds
[[n, 65337, ds
[[n, 65333, d.s

> 18/d,r > 171116
> 19/d,r > 171116
>20/d > 17116
>21/d, = 171116
>22/d,s > 17116
>23/d, = 17]]16
>24/d, > 1]le
>30/d, > 171116

>25/d, > 241116
>26/d,r > 24]]16
>27/d,r > 24]]16
> 28/d,s = 241116
>29/d,r > 241116
>30/d,r > 241116

1048575

[[n, 1048400, d; > 22/dy > 17116
[[n, 1048395, d; > 23/dy > 17116
[[n, 1048390, d; > 24/dy > 17116

[[n, 1048385, d; > 25/dyx
[[n, 1048380, d; > 26/dy
[[n, 1048375, d; > 27/dx
[[n, 1048370, d; > 28/dx
[[n, 1048365, d; > 29/dy

17116
1716
17h6
1716
1716

IV IV IV IV

v

[[n, 1048360, d; > 30/dy > 17]16

[[n, 248805, d. > 262131/dy > 17116

[[n, 1048398, d_s
[[n, 1048393, d_s
([, 1048388, d_s
[[n, 1048383, d_s
[[n, 1048378, d_s
[[n, 1048373, d_s
([, 1048368, d_s
([, 1048363, d_s
[[n, 1048358, d_s

>22/d > 1716
>23/dy > 1]l
>24/d, > 17116
>25/dy > 17116
> 26/dy > 17116
>27/dy = 17116
> 28/d, = 17116
>29/dy = 176

>30/d, = 17116

the error-correcting ability to the phase-flip errors of our asymmetric quantum BCH
codes can be much better then qubit-flip errors.
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Table 4 continued

g m n [ln, k, dz/dx]] 2 [[n. k" dy/d,1]],2 shown in [14]
[[n, 1048350, d; > 25/dy > 241116 [[n, 1048348, d.s > 25/d,s > 241116
[[n, 1048345, d; > 26/dy > 24]l16 [[n, 1048343, d, > 26/d,s > 241116
([, 1048340, d; > 27/dy > 241116 [[n, 1048338, d.s > 27/d,s = 241116
[[n, 1048335, d; > 28/dy > 241116 [[n, 1048333, d,s > 28/d,s > 241116
[[n, 1048330, d; > 29/dy > 241116 [[n, 1048328, d,s > 29/d,s > 241116
[[n, 1048325, d; > 30/dy > 241116 [[n, 1048323, d, > 30/d,s > 24]116
[[n,248770, d; > 262131/dy > 24]l1s ~ —

[[n, 1048310, d; > 29/dy > 281116 [[n, 1048308, d. > 29/d,s > 281116
[[n, 1048305, d; > 30/dy > 281116 [[n, 1048303, d. > 30/d,s > 281116
[[n, 248730, d; > 262131/dy > 33|16 ~ —
[[n, 972375, d; > 16383/dyx > 651116 —
[[n, 972080, d; > 16382/dy > 1291116 ~ —
[[n,971785,d; > 16381/dx > 193]l1¢  —
[[n, 971490, d; > 16380/dy > 2571116 ~ —
[[n, 982155, d; > 13311/dy > 10111115  —

5 3 15624 [[n, 15477,d; > 27/dy > 26]]25 [[n, 15475, d,s > 27/dr > 26]1p5
[[n, 15474, d; > 28/dy > 26]1p5 [[n, 15472, d,r > 28/d,s > 26]]p5
[[n, 15471, d; > 29/dy > 26]1p5 [[n, 15469, d,s > 29/ds > 26]1p5
[[n, 15468, d; > 30/dy > 26]1p5 [[n, 15466, d,s > 30/d,s > 26]]p5
[[n, 15414, d; > 48/dyx > 26]1p5 [[n, 15412, d,s > 48/d,s > 26]]p5
[[n, 7932, d; > 3120/dy > 26]l25 —

[[n, 15387, d; > 48/dy > 351Ips [[n, 15385, d_s > 48/d,s > 35]1p5
[[n, 7911, d; > 3118/dy > 3511p5 —
[[n, 7899, d; > 3117/dy > 40]1p5 —
[[n, 7887, d; > 3116/dy > 45]1p5 —
[[n, 7875, d; > 3115/dy > 5111p5 —
[[n, 8928, d; > 2451/dy > 106]]25 —
[[n, 9264, d; > 2376/dy > 107]]25 —
[[n, 14190, d; > 376/dy > 123]l25 —
[[n, 14547, d; > 251/dy > 124]1a5 —
5 4 390624 [[n, 390428, d, > 27/dy > 26]as ([, 390426, d_r > 27/d,r > 26]1p5

[[n, 390424, d; > 28/dy > 261125
[[n, 390420, d; > 29/dx > 26125
[[n, 390416, d; > 30/dx > 261125
[[n, 390412, d; > 31/dy > 26]l5
[[n, 390352, d; > 46/dy > 265
[[n, 390348, d; > 47/dy > 26]l25
[[n, 390344, d. > 48/dy > 2625

[[n, 161720, d; > 77353/dx > 351105

[[n,
[[n,
[[n,
[[n,
[[n,
[[n,
[[n,

390422, d,s > 28/d,s > 26]15
390418, d,s > 29/d,s > 26]15
390414, d,s > 30/dy > 26]15
390410, d,s > 31/dy > 26]15
390350, d.r > 46/d,s > 26]15
390346, d,s > 47/d,r > 26]15
390342, d,s > 48/d,s > 26]15
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Table 4 continued

q m n [[n, k, dz/dx]]qz [[n, K, dz//dx/]]qz shown in [14]
[[n, 390316, d; > 41/dyx > 40125 [[n,390314,d.s > 41/d,s > 40]]»5
[[n, 390288, d, > 48/dy > 40125 [[n, 390286, d.s > 48/d,s > 40]]»5
[[n, 161760, d; > 77353 /dy > 26]l5 —
[[n, 390276, d; > 46/d; > 45]]»5 [[n,390274,d, > 46/d, > 45]]r5
[[n, 390272, d, > 47/dx > 45]]»5 [[n,390270,d, > 47/d,s > 45]]>5
[[n, 390268, d, > 48/dx > 45]]»5 [[n, 390266, d,, > 48/d,s > 45]]>5

[[n, 161680, d;, > 77353/d, > 45]1rs —
[[n, 331264, d. > 15624/d, > 121]]as -
[[n, 342840, d. > 12499/d, > 122]]»s -
[[n, 354516, d, > 9374/d, > 123]1rs —
[[n, 366292, d. > 6249/d > 1241155 —
[[n, 378168, d; > 3124/d, > 1265 —
[[n, 375788, d; > 3119/d, > 751115 —

[[n, 367244, d. > 3101/dy > 300115 —

5 Parameters analysis

In this section, we compare the parameters of the new asymmetric quantum codes and
the ones available in the literature. In the following tables, the parameters of the asym-
metric quantum codes shown in [14](Theorem 4.7) are denoted by [[n, k', d,/ /d,/]] g%
and the new code parameters are denoted by [[n, k, d;/d\]] g2 Furthermore, our Z-
distances are denoted by d, §,,,4, are the maximal designed distance of dual containing
narrow-sense BCH code in [24].

Remark 3 Table 3 has showed some Z-distances which given in Theorem 4.1. For
example, forg =3, m = 4,5, 6, if §,,,c = 235, 242, 2179, our Z-distance can reach
2185, 19681 and 177145, respectively, it is obviously larger than 8,4, . In a word, we
use Table 4 to present evidences of the real Z-distance of our asymmetric quantum
codes, which are much larger than 6,4, + 1.

Remark 4 Table 4 listed some new asymmetric quantum codes which given in Corol-
lary 4.2 and Corollary 4.3. For m = 3,4,5 and g = 4, 5, some of the parameters of
our asymmetric quantum codes are better than those available in [14]. For example,
letg = 5,m = 4,n = 390624, for d, > 26 and d, > 27, 28, 29, 30, 31, 46, 47,
48, the dimensions of our asymmetric quantum codes are larger than those available
in [14]. What is more, some of the asymmetric quantum codes are new ones and are
not included in the literature. For example, if dy > 26, our Z-distance can reach
77353, which are new and are much greater than the results in the literature. Hence,
the error-correcting ability to the phase-flip errors can be further improved. Further-
more, in order to calculate the dimensions, we restrict d; > 77353/d, > 35 and
d, > 77353/d, > 45, then one can easily construct two asymmetric quantum codes

[[n,161720,d, > 77353/d; > 35]l»5s and [[n, 161680, d, > 77353/d, > 45]]»s.

\
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However, if the value of d, > 35, 45, then our Z-distance can reach 78118, 78116,
respectively.

6 Conclusion

Using the CSS-like construction, we have constructed several families of g-ary asym-
metric quantum codes of length n = ¢>" — 1 derived from Hermitian dual-containing
primitive narrow-sense BCH codes. Some of these codes have parameters better than
the ones available in the literature. Furthermore, the real Z-distance are much larger
than X-distance and §,,, + 1. And others are not included in the literature, which are
new ones. Unfortunately, for fixed values of the length n, we only give partial results,
the discussions of asymmetric quantum codes constructed from pairs of nested BCH
codes for all § may be a little complex. It would be interesting to construct good
asymmetric quantum codes from cyclic codes of other lengths.
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