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Abstract
With the rapid development of quantum computers, several applications are being
proposed for them. Quantum simulations, simulation of chemical reactions, solution
of optimization problems and quantum neural networks (QNNs) are some examples.
However, problems such as noise, limited number of qubits and circuit depth, and
gradient vanishing must be resolved before we can use them to their full potential. In
the field of quantummachine learning, several models have been proposed. In general,
in order to train these different models, we use the gradient of a cost function with
respect to the model parameters. In order to obtain this gradient, we must compute
the derivative of this function with respect to the model parameters. One of the most
used methods in the literature to perform this task is the parameter-shift rule method.
This method consists of evaluating the cost function twice for each parameter of the
QNN. A problem with this method is that the number of evaluations grows linearly
with the number of parameters. In this work, we study an alternative method, called
evolution strategies (ES), which are a family of black box optimization algorithms
which iteratively update the parameters using a search gradient. An advantage of the
ES method is that in using it, one can control the number of times the cost function
will be evaluated. We apply the ES method to the binary classification task, showing
that this method is a viable alternative for training QNNs. However, we observe that its
performance will be strongly dependent on the hyperparameters used. Furthermore,
we also observe that this method, alike the parameter shift rule method, suffers from
the problem of gradient vanishing.
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1 Introduction

Many developments in science and technology in the last years were obtained with
the aid of artificial intelligence. Its applications extend to the most varied areas of
knowledge, such as for example computer vision [1–3], natural language processing [4,
5], drug discovery [6], analysis of astronomical images [7], and chemistry simulations
[8]. With the development of quantum computers, several studies are being conducted
with the aim of taking artificial intelligence to the quantum domain [9–16]. It is hoped
that by utilizing phenomena such as entanglement and superposition, we will be able
to create models more powerful than their classical counterparts.

Models such as quantummultilayer perceptron [17], quantum convolutional neural
networks [18], quantum kernel method [19], and quantum-classical hybrid neu-
ral networks (HQCNN) [20–23] are some candidate models. In the era of noisy
intermediate-scale quantum devices (NISQ), hybridmodels are themost used. This era
is characterized by the limited number of qubits we have access to and the presence of
noise. Hybridmodels are built using sequential classical and quantum layers.With this,
we are able to create models with fewer qubits. For training these models, the gradient
descent method or its variants has been used in the literature. The gradient descent
method consists of using the gradient of a cost function to update the parameters of the
neural network. To obtain the gradient of the quantum layers, one can use the method
called parameter-shift rule (PSR), which consists of evaluating the cost function for
each parameter of the quantum layers [24, 28]. In the NISQ era, where the number of
qubits that we have access to is limited and the depth of the parameterizations is also
limited by noise and decoherence, the use of the PSR method is the most indicated
because with it we are able to obtain the derivatives of the cost function analytically.
However, as quantum computers develop, increasing depth and qubit numbers make
this method impractical. Therefore, it is necessary to find alternative ways for the task
of training.

Evolution strategies (ES) [25–27] are a family of black box optimization algo-
rithms. These algorithms have already been applied to a variety of classical problems.
For example, ES has been shown to be an alternative to reinforcement learning [29].
However, application in the quantum domain is still understudied, with only a few
works [30–32] using these methods. Such a strategy is promising, because the num-
ber of evaluations of the cost function does not scale with the number of parameters.
Furthermore, as the cost function evaluations are independent, this method can be par-
allelized. However, its parallelized application in quantum computing is still limited in
the NISQ era. Finally, we should note that this method will also be strongly influenced
by the number of times the cost function will be evaluated, that is, the value of λ used,
because the lower this value, the lower the accuracy of this method.

This article is organized as follows. In Sect. 2, we review the HQCNN models,
where a parallel is made with the classical deep neural network models. After that
in Sect. 2.1, we briefly discuss how classical layers work. In Sect. 2.2, we describe
how a quantum layer works, and in Sect. 2.2.1, we discuss different ways of mapping
classical data into quantum states. In the sequence, in Sect. 2.2.2, we discuss how the
parameterization of a quantum layer is done. Finally, in Sect. 2.2.3, we describe how
measurements can be made on HQCNN. In Sect. 3, we present a review of the ES
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method, showing how to estimate the gradient of a given function. In Sect. 4, we start
by describing the two HQCNNmodels that we use in this study. In Sect. 4.2, we show
how a HQCNN model is trained, and we present our training proposal using ES. In
Sect. 5, we briefly describe how the simulations are done, and, in Sect. 6, we present
the results we obtained. Finally, in Sect. 7, we give our conclusions.

2 Quantum-classical hybrid neural networks

Classical deep neural network models are in great extent responsible for the success
of artificial intelligence in the last few decades. These networks are characterized by
the use of several concatenated classical layers. That is to say, for a model with depth
d, we have

C = Lnd−1→nd ◦ Lnd−2→nd−1 ◦ · · · ◦ Ln1→n2 ◦ Ln0→n1, (1)

where each L represents a classical layer and the first and second indices represent the
input size and the output size, respectively. HQCNNmodels are also characterized by
the use of several concatenated layers, that is,

Q = Lnd−1→nd ◦ Lnd−2→nd−1 ◦ · · ·Ln1→n2 ◦ Ln0→n1, (2)

where each L represents a classical or quantum layer. We can see that the difference
between classical deep neural network models and hybrid quantum-classical models
is due to the addition of quantum layers to the classical model. It is expected that by
using quantum layers together with classical layers, we will be able to build models
with greater power and accuracy than models using only classical layers.

2.1 Classical layer

The structures known as layers are one of the main building blocks of all modern
classical deep neural network models. Such structures map an input of dimension
n0 to an output of dimension n1. A typical example of these structures is a linear
transformation followed by a nonlinear activation function, defined by

Ln0→n1 = φ(WWWxxx + bbb), (3)

where xxx is an input vector with dimension n0,WWW is a matrix with dimensions n1 × n0
and bbb is a vector with dimension n1. The elements of WWW are real values that are
updated throughout training. One of the key pieces of deep neural network models is
the nonlinearity implemented by the φ function. There are several functions that we
can use to apply nonlinearity, such as the hyperbolic tangent, the Sigmoid or the ReLu.

Furthermore, we can mention the neural network architecture with convolutional
layers, which are mainly applied to problems involving computer vision, and the long
short-term memory (LSTM), which are used when dealing with problems related to
time series, among many others.
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2.2 Quantum layer

2.2.1 Encoder

Thefirst taskwhen building a quantum layer is to encode the data of interest in quantum
states. For this, we can use different strategies, such as the wave function encoder

|xxx〉 := 1

‖xxx‖22

2N∑

i=1

xi |i〉, (4)

the dense angle coding

|xxx〉 =
N/2⊗

i=1

cos(πx2i−1)|0〉 + e2π i x2i sin(πx2i−1)|1〉, (5)

or the qubit encoding

|xxx〉 =
N⊗

i=1

cos(xi )|0〉 + sin(xi )|1〉. (6)

The performance of quantum layers is influenced by this choice [33–35]. For example,
it is shown, in Ref. [34], that if we reload the data between the different layers of
the parameterization, we will be able to create a model with greater classification
capability.

For the purposes of this work, we use two alternative forms of data encoding, Figs. 2
and4. Furthermore, in subsections model 1 and model 2, Figs. 1 and 6 show which
parameterization is used for each case.

2.2.2 Parameterization

After mapping the data of interest to a quantum state, the next step is to apply a
parameterization. We write our parameterization as

U (θθθ) =
L∏

i=1

UiWi , (7)

with

Ui =
N⊗

j=1

R j,i
σ (θ j,i ), (8)

where Ri, j
σ (θ j,i ) = e−iθ j,iσ/2 with σ ∈ {σx , σy, σz, } being one of the Pauli matrices

and Wi are unparameterized gates.
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There are several ways to build the parameterization, and different parameteriza-
tions have different expressiveness. Expressiveness is defined as the ability of a given
parameterization to explore the Hilbert space. However, the relationship between this
choice and the performance of the model is not direct.

2.2.3 Measurements

Aftermapping the data of interest to a quantum state and applying the parameterization
U (θθθ), Eq. (7), the next step is to perform the measurements. The measurements can be
done globally, where all qubits are measured, or locally, where only a few qubits are
measured individually or in pairs. As a result of these measurements, we can estimate
the mean value

fi = Tr [Aiρ
out
x ], (9)

where Ai is a Hermitian operator and ρout
x is the density matrix at the end of the

quantum circuit. That is, given an input |xxx〉 and a parameterization U (θθθ), Eq. (7), we
have that ρout

x = U (θθθ)|xxx〉〈xxx |U (θθθ)†.
A particular case is

Ai = |i〉〈i |. (10)

In this case, the outputs will be the respective probabilities of our circuit being in
a state of the computational basis. This is a definition of what we can call a global
measurement, where all qubits contribute to the value of fi .

Another case is when we define

Ai = Iī ⊗ |0〉〈0|i . (11)

Here, the index ī indicates that the identity operator will be applied to all qubits with
exception to the qubit with index i . The index i indicates that |0〉〈0| will be applied
only to the qubit of index i . This is a definition for what we call local measurements,
where only the qubit with index i contributes to the value of fi . In this specific case,
where |0〉〈0| is used, we will get the probability for the qubit i to be in the state |0〉.

3 Evolution strategies

Given a function f (zzz),with zzz ∈ R
d , in the evolution strategy (ES), we reparameterize

this function as follows:

J (θ) = Eθ [ f (zzz)] =
∫

f (zzz)π(zzz|θ)dzzz. (12)
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By differentiating Eq. (12) with respect to θ , we get

∇θ J (θ) = ∇θ

∫
f (zzz)π(zzz|θ)dzzz

=
∫

[ f (zzz)∇θ logπ(zzz|θ)]π(zzz|θ)dzzz = Eθ [ f (zzz)∇θ logπ(zzz|θ)].
(13)

For more details about the derivation given in Eq. (13), see Ref. [27].
Thus, we can estimate the gradient using

∇θ J (θ) ≈ 1

λ

λ∑

k=1

f (zzzk)∇θ logπ(zzzk |θ), (14)

where λ is the number of random samples in the parameter space. For the case of a
Gaussian distribution, we have

π(zzz|θ) = 1√
(2π)d det���

exp
(

− 1

2
(zzz − μμμ)T���−1(zzz − μμμ)

)
, (15)

whereμμμ is a mean vector and��� is the covariance matrix. So the parameter θ is defined
as θ := {μμμ,���}. Therefore, we have that ∇θ logπ(zzz|θ) will be given by

∇μμμ logπ(zzz|θ) = ���−1(zzz − μμμ) (16)

and

∇��� logπ(zzz|θ) = 1

2
���−1(zzz − μμμ)(zzz − μμμ)T���−1 − 1

2
���−1. (17)

The main ES methods use both Eqs. (16) and (17) to obtain an estimate of Eq. (14).
In this study, we will use��� = σ 2 I , with σ being a constant. So we have

∇θ J (θ) ≈ 1

λσ 2

λ∑

k=1

(zzzk − μ) · f (zzzk), (18)

with zzzk ∼ N (μμμ, σ 2 I ). The algorithm that implements Eq. (18) is shown.
Input: f (z), θi , σ
Output: ∇θ J (θ)

for k = 1...λ do
zk ∼ N (μ, σ 2 I )
f (zk) / * Evaluates function f in zk */
∇θ J (θ) = (zk − μ) / * Calculates the derivative */

end
∇θ J (θ) = 1

λσ 2

∑λ
k=1(zk − μ) · f (zk) / * Estimates the gradient*/

Algorithm 1: Gradient estimation using Eq. (18).
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4 Method

4.1 Models

For this study, we will use two HQCNN models. The first model will be built using
two quantum layers. The second model will be built using two classical layers and a
quantum layer. In this work, we define the cost function as

C(	) := 1

N

N∑

j=1

(y j
i − ȳ j

i )2, (19)

where yi is the vector obtained at the end of the network given the input xi and ȳi
is the respective desired output. Here, 	 := {WWW , θθθ} is defined as the set of network
parameters.

4.1.1 Model 1

The first layer will be built using five qubits, as illustrated in Fig. 1. Data will be
mapped using real amplitudes as illustrated in Fig. 2. This is a parameterization used
for machine learning and quantum chemistry problems. The parameterization will be
given by U (θθθ), Eq. (7). Figure3 shows how the parameterization is done for each Ui .
For measurements, we will use Eq. (9) with the Hermitian operator defined in Eq. (11)
for the last three qubits.

For the second layer, three qubits are used. The function that will map our data into
a quantum state is represented in Fig. 4. The parameterization used will also be given
by U (θθθ), Eq. 7. For the measurements, we use Eq. (9) with Hi defined in Eq. (11). In
this case, the last two qubits will be used.

Fig. 1 Model 1: quantum-classical hybrid neural network

Fig. 2 I N PUT1 for the case of three qubits
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Fig. 3 Parameterization of
unitary operators Ui . See Fig. 1

Fig. 4 I N PUT2 for the case of
three qubits

4.1.2 Model 2

The second model will be built using three layers. The first and third being classical
layers, with a quantum second layer. In Eq. (3), we defined the classical layer that we
will use. This consists of an operation that takes an input xxx of size n into an output
yyy of size m, as illustrated in Fig. 5. In this study, as we will work with data from the
dataset MNIST, which consists of images of dimension 28 × 28, the input of the first
layer has size n = 784. The output data are encoded in the quantum layer using the
parameterization model presented in Fig. 4, that is, for each qubit, a value is encoded.
Then, the output of the first layer is equal in size to the number of qubits used in the
quantum layer. For nonlinearity, the hyperbolic tangent function will be used.

The second layer, which is a quantum layer, is represented in Fig. 6. In this layer,
we use four qubits. Its parameterization will be given by U (θθθ), Eq. (7), with each Ui

represented in Fig. 3. For measurements, we use Eq. (9) with the Hermitian operator
defined in Eq. (11), with all qubits measured individually. The output of this quantum
layer is used as input to a third layer, which is a classical layer, just like the first layer,
with the difference being its size. The input of this third layer have dimension equal
to the number of qubits used in the quantum layer and output m = 2.

4.2 Training

Given D := {xi , ȳi }ni=1, a dataset, and defined the HQCNN model that shall be used,
the training consists of an iterative method where, given an input xi to the model, it
returns an output yi . Comparing this output to the desired output ȳi , we can compute
the performance of our model using the cost function of Eq. (19). This process is
performed iteratively for all data in the set D, several times, or, as it is commonly
called, for several epochs. During this process, we aim to minimize the cost function,
that is to say, we want to obtain
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Fig. 5 Linear layer

Fig. 6 Quantum layer

	opt = argmin	C(	), (20)

where 	opt is the set of optimal parameters. To obtain 	opt, at each iteration, the 	

parameters are updated generally using the gradient descentmethodor its variants. This
method updates the parameters using the gradient of the cost function of Eq. (19). For
this, we must use the chain rule. For example, let us consider the first model. Given an
input xi = (x1i , x

2
i , . . . , x

n
i ) and its respective desired output ȳi = (ȳ1i , ȳ

2
i , . . . , ȳ

N
i ),

the cost function is given by

C(θθθ1, θθθ2) = 1

N

N∑

j=1

(L2(L1(xi , θθθ1), θθθ2)
j − ȳ j

i )2, (21)

where L1 is the first layer with input xi and parameters θθθ1 and L2 are the second layer
with input given by the output of the first layer and with parameters θθθ2. Thus, the
gradient of Eq. (19) in relation to the parameters θθθ1 and θθθ2 will be
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∇θθθ2C(θθθ1, θθθ2) = 2

N

N∑

j

(L2(L1(xi , θθθ1), θθθ2)
j − ȳ j

i )∇θθθ2L2(L1(xi , θθθ1), θθθ2)
j , (22)

∇θθθ1C(θθθ1, θθθ2) = 2

N

N∑

j

(L2(L1(xi , θθθ1), θθθ2)
j − ȳ j

i )∇L1L2(L1(xi , θθθ1), θθθ2)
j

∇θθθ1L1(xi , θθθ1), (23)

where in Eq. (23), the term ∇L1 indicates that we must obtain the derivatives with
respect to the input of the second layer. Using gradient descent as an example, from
Eqs. (22) and (23), we have that the new parameters will be

θθθ t+1
1 = θθθ t1 − η∇θθθ1C(θθθ1, θθθ2) (24)

and

θθθ t+1
2 = θθθ t2 − η∇θθθ2C(θθθ1, θθθ2) (25)

where t represents the epoch and η the learning rate.
Let us consider the term∇θθθ1L1(xi , θθθ1) in Eq. (23). Once this is a black box function,

we can define J (θθθ1) := L1(xi , θθθ1). Here, we can see that up to an index,we can rewrite
our quantum layer using Eq. (12). So, we can use Eq. (18) to estimate the gradient.

In Eq. (23), we see that we must also obtain the gradient with respect to the input
data of the second layer. Again, we can consider the quantum layer to be a black box
function with parameters given by L2(L1(xi , θθθ1), θθθ2). Therefore, we can again use
Eq. (12) to describe this layer. Then, the gradient can be estimated using Eq. (18).

4.3 Barren plateaus

The optimization of quantum circuits is done, in general, using the gradient in relation
to its parameters. However, a current problem with this procedure is the phenomenon
known as gradient vanishing, or barren plateaus. Given a function

C = Tr [OU (θθθ)|xxx〉〈xxx |U (θθθ)†], (26)

if U (θθθ) is a 2-design, then we have that

〈∂kC〉 = 0 and Var [〈∂kC〉] ≈ 2−n, (27)

where n is the number of qubits. From the Chebyshev inequality,

Pr(|∂kC | ≥ δ) ≤ Var [〈∂kC〉]
δ2

, (28)

we have that the probability that ∂kC deviates from its mean, 〈∂kC〉 = 0, by a value δ

will tend to zero as the number of qubits increase.
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Fig. 7 In this figure, n is the number of qubits used. For the input data, xxx = (π/4, π/4, π/4, . . . , π/4) was
used. We can see that as the number of qubits increases, the variance tends to decrease. Furthermore, we
can also see that the variance decreases as the number of layers of the parameterization increases. Thus, we
see that the phenomenon of gradient disappearance is also present in the evolution strategy method

Furthermore, results from the literature show that other factors also influence this
phenomenon such as the choice of cost function [36], expressiveness of parameter-
ization [37], noise [38], and entanglement [39, 40]. It is also shown that gradient
vanishing is present in gradient-free optimization methods [41]. Currently, a large
number of methods to mitigate this problem are being proposed [42–46].

In Fig. 7, we showed experimentally that this phenomenon is also observed when
using the ES method. To obtain these results, we use the cost function

C = 1

n

n∑

i=1

Tr [HiU (θθθ)ρU (θθθ)†], (29)

with U (θθθ) defined in Eq. (7) and Hi is defined in Eq. (11). To encode the input data,
we use the parameterization shown in Fig. 4.

5 Experiments/simulations

For this work, we will use Qiskit [47] and Pytorch [48] to build our models, with
the Qiskit package integrated into Pytorch. With this, some steps such as the applica-
tion of the chain rule to obtain the derivatives in Eqs. (22) and (23) and parameters
optimization are done automatically by Pytorch. For training, 2000 training images
are used, half referring to zero digit images and half to the one digit images. For
validation, 200 images are used, again half of each type. We also vary the value of
the learning rate to see how the cost function behaves. Also, we perform the same
experiment N times for obtaining the statistics. So, we can see how the ES method
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behaves for different initializations. Also, for this study, we used σ = π
24 for all cases.

As σ is a hyperparameter that must be defined when starting the training, as well as the
number of epochs, learning rate and λ, your choice is free, so we use only one value
for σ , since our objective is to analyze whether this method is capable of performing
the optimization of the parameters and not which is the best set of hyperparameters.
However, we must emphasize that there is no restriction on this choice. For the first
experiments, we used

λ = 4 + 3 log(p), (30)

where p is the number of parameters of the respective quantum layer. For the layers
where we should get the gradient for the input data, we use the highest value of λ.
That is, given the value of λ for the layer’s input data and parameters, we will use the
largest of them.

Search gradients give us freedom to select the number of function evaluations. The
second experiment explores this by using the same values for η used in experiment
one, but now with differing evaluation numbers, λ = 2, λ = 4, and λ = 6. Both
experiments use HQCNN models applied to part of the MNIST dataset.

6 Results

The first experiment fed a subset of theMNIST dataset into models 1 and 2. Optimiza-
tion was performed using Adam with a variable learning rate, η. For all experiments,
100 epochs were used for training. For each learning rate value, the same experi-
ment was repeated four times. At each new training, the parameters were randomly
initialized. With this, we can see how the ES method behaves at each startup.

In Fig. 8, we can see that for η = 0.01, the neural network becomes stuck in a local
minima. For η = 0.001, we see that the neural network can learn as the epochs go
by. For η = 0.0001, we see that for this number of epochs used, the neural network
performedworse than in the other cases. But we can see that even as the epochs passed,
the network was able to learn without getting stuck in a local minimum, as was the
case for η = 0.01.

Results shown in Fig. 9 use Model 2, whereas results in Fig. 8 use Model 1. Both
models used the same training and validation sets. Again, we use the Adam optimizer
with variable learning rate. Unlike the previous model, we see that for both η = 0.01
and η = 0.001, the neural network was stuck in a local minimum, being unable to
learn. The neural network was only able to learn when we used η = 0.0001, where
we can see that it quickly converged to the desired minimum.

In the next graphs, in Figs. 10 and 11, Models 1 and 2 were used, respectively,
with the data set defined as in the previous experiments, and with a variable learning
rate. In these two cases, the difference lies in the number of times the cost function is
evaluated, that is to say, the value of λ that is used to estimate the gradient, Eq. (18). In
the case of two quantum layers, Fig. 10, we see that using η = 0.01 the neural network
was not able to learn for any value of λ. For η = 0.001, its behavior was similar for
all values of λ. As for η = 0.0001, its behavior was not better than using η = 0.001,
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Fig. 8 Result for Model 1. In darker colors, the means for N = 4 experiments are shown. The lighter colors
represent values between the minimum and maximum values. To obtain the gradient estimate, Algorithm
1 is used. In order to be able to update the parameters of the first layer, we must get the gradient from the
input data of the second layer. For this, we can also use Algorithm 1, with θθθ being the input data in this case

Fig. 9 Results for Model 2. The means for N = 4 experiments are shown in darker colors, while the lighter
colors represent values between the minimum and maximum values. Algorithm 1 was used to obtain the
gradient estimate. To update the parameters of the first layer, we must get the gradient from the input data
of the second layer. For this, we can also use Algorithm 1, with θθθ being the input data in this case
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Fig. 10 Results for Model 1 with variable λ and learning rate η. In darker colors, the averages for N = 4
experiments are shown. The lighter colors represent values between the minimum and maximum values

Fig. 11 Results for Model 2 with variable λ and learning rate η. In darker colors, the averages for N = 4
experiments are shown. The lighter colors represent values between the minimum and maximum values

but we can see that the neural network was able to learn over the epochs for all values
of λ.

For the second model, we see that performance was only satisfactory for η =
0.0001. For η = 0.01 and η = 0.001, networks became trapped in local minima
for all values of λ that we explored. With this, we can see experimentally that the
performance of the ES method applied in hybrid quantum-classical models, where
both classical and quantum layers are used, Model 2 has greater dependence on its
hyperparameters.
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7 Conclusions

In this article, we introduced the use of themethod called evolution strategy in the opti-
mization of classical-quantum hybrid neural networks. We showed that this method
is strongly influenced by the hyperparameters η and λ. However, this is a promis-
ing method for optimizing hybrid models, once the appropriate hyperparameters are
provided. Therefore, for future work, it would be interesting to study methods for
selecting hyperparameters, e.g., through standard hyperparameter optimization tech-
niques such as Bayesian optimization. In addition, another possible topic for research
is the use of natural gradients, in what is known as a natural evolution strategy. In this
case, it would be interesting to evaluate if the performance of the model will be better
in relation to the method studied in this work. Finally, as we observed, although the
method applied in this article does not directly use the derivatives in relation to the
parameters of the quantum circuit to optimize them, it still suffers from the problem
of vanishing gradients. So, in the future, one can investigate the use of methods such
as the one introduced in Ref. [46], where the optimization of the parameters is done
layer by layer to mitigate this problem, and also to see if by performing the training
layer by layer the performance will be better than the performance obtained in this
article.
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