
Quantum Information Processing (2023) 22:60
https://doi.org/10.1007/s11128-022-03808-y

QuantumMarkov chains on the line: matrix orthogonal
polynomials, spectral measures and their statistics

Manuel D. de la Iglesia1 · Carlos F. Lardizabal2 · Newton Loebens2

Received: 7 September 2022 / Accepted: 23 December 2022 / Published online: 18 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Inspired by the classical spectral analysis of birth-death chains using orthogonal poly-
nomials, we study an analogous set of constructions in the context of open quantum
dynamics and related walks. In such setting, block tridiagonal matrices and matrix-
valued orthogonal polynomials are the natural objects to be considered. We recall the
problems of the existence of a matrix of measures or weight matrix together with
concrete calculations of basic statistics of the walk, such as site recurrence and first
passage time probabilities, with these notions being defined in terms of a quantum tra-
jectories formalism. The discussion concentrates on the models of quantum Markov
chains, due to S. Gudder, and on the particular class of open quantum walks, due to S.
Attal et al. The folding trick for birth-death chains on the integers is revisited in this
setting together with applications of the matrix-valued Stieltjes transform associated
with the measures, thus extending recent results on the subject. We also consider the
case of non-symmetric weight matrices and explore some examples.
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1 Introduction

The study of quantum versions of classical random walks [18, 29] is a central topic
of interest in quantum information theory. The so-called quantum walks [32] can be
defined in several ways: such objects illustrate natural instances of a) closed quantum
dynamics, this case being described by unitary operators acting on some Hilbert space
[30], and also of b) open (dissipative) quantum dynamics [6, 14], with these given, for
instance, by positive or completely positive operators acting on some trace-class space
[1, 2, 4]. In both cases we begin with a basic structure: a graph with a countable (finite
or infinite) number of vertices on which a particle is located, together with transition
operators that dictate how a particlemoves fromone place to another. As randomwalks
and, more generally, birth-death chains (for which transition probabilities depend on
the position), are objects carrying a statistical character, these transition operators
should allow us to obtain the probabilities associated with the time evolution of the
walk.

Regarding random walks and birth-death chains, we have natural questions: What
is the probability of finding the particle at some chosen vertex and time? Will a given
particle ever return to its starting vertex? What is the mean time for a particle to move
from one place to another? In a quantum context, one in principle has to reformulate
such questions so that the postulates of quantum mechanics are taken in consideration
[28]. For instance, the process of verifying whether a particle can be found at some
vertex may be done in terms of a physical measurement of the system, and perhaps
several copies of the walk need to be considered. In a similar vein, one is able to
consider a monitoring procedure, for which orthogonal projections onto a subspace
of interest are employed [20, 21]. In any case, the calculation of probabilities has to
follow the typical mathematical formalism for extracting statistical information, given
some initial state (e.g. in terms of Born’s rule).

Regarding the probabilistic and statistical notions associated with quantum walks,
the classical settings of birth-death and Markov chains are a natural inspiration,
although the corresponding quantum formulations are not immediately obtained in
general (if they in fact exist), and quite often the search of useful notions leads us
to several possibilities. In terms of analytical methods, progress has been made in
terms of orthogonal polynomials, so that concrete answers for quantum walks can be
described explicitly [8, 9]. In particular, such polynomials allow us to obtain proba-
bilities of the walk via calculations in terms of associated probability measures. Most
of the mathematical developments made in this direction regards the class of unitary
quantum walks, for which orthogonal polynomials on the unit circle arise [8]. How-
ever, up to our knowledge, much less has been done in the open quantum context. This
last remark leads us to the purpose of the present work.
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2 Quantum versions of Markov chains, orthogonal polynomials and
structure of the work

In the classical theory of Markov chains, discrete-time birth-death chains on Z≥0 are
described by a transition probability matrix of the form

P =

⎡
⎢⎢⎢⎣

r0 p0 0 0 · · ·
q1 r1 p1 0 · · ·
0 q2 r2 p2 · · ·
...

...
...

. . .
. . .

⎤
⎥⎥⎥⎦ , r0 + p0 ≤ 1, pn + rn + qn = 1, n ≥ 1.

Let {Qn(x)}n≥0 be the sequence of polynomials defined by the three-term recurrence
relation

Q0(x) = 1, Q−1(x) = 0,

xQn(x) = pnQn+1(x)+ rnQn(x)+ qnQn−1(x), n ≥ 0,

that is, xQ(x) = PQ(x),where Q(x) = (Q0(x), Q1(x), . . .)T .Thenwehave xnQ =
PnQ, i.e.

xnQi (x) =
∞∑
k=0

Pn
ik Qk(x), i ≥ 0. (1)

For a birth-death chain with transition probabilities pn, rn, qn+1, n ≥ 0, Favard’s
Theorem [13, 26] assures the existenceof a probabilitymeasureψ supportedon [−1, 1]
such that the polynomials {Qn(x)}n≥0 are orthogonal with respect to ψ . Multiplying
both sides of Eq. (1) by Q j (x) and integrating with respect toψ,we obtain the Karlin–
McGregor formula [26], which gives the probability of reaching vertex j in n steps,
given that the process started at vertex i . This formula is given by

Pn
i j =

∫ 1

−1
xnQi (x)Q j (x)dψ(x)

∫ 1

−1
Q2

j (x)dψ(x)

.

Many probabilistic properties of the process such as recurrence, absorbing times, first
return times or limit theorems can be analyzed by using spectral methods (see the
recent monograph [16]).

From a theoretical point of view, it is interesting to ask whether such classical
constructions can be adapted so that one can also study quantum systems as well. This
has been done in the case of unitary quantum walks, where the relevant orthogonal
polynomials are described in terms of the theory of CMV matrices [7, 8]. Regarding
the setting of open quantum dynamics [4, 6, 14], the problem of obtaining orthogonal
polynomials and associated measures is an interesting one as well, although we would
have to consider operators which are no longer unitary.
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The main purpose of this paper is to explore the basic theory of matrix-valued
orthogonal polynomials applied to an open quantum setting by providing results
on weight matrices and describing several examples, hopefully encouraging the
communities of quantum dynamics and orthogonal polynomials to attempt further
developments on this line of research. A first step in this direction has been discussed
in [25], where a procedure for obtainingweightmatrices associatedwith open quantum
walks (OQWs) [2] on the half-line was described, this being in terms of a well-known
result due to Durán [17].

The setting we will consider in this paper concerns the class of quantum Markov
chains (QMCs) on the line, as defined by Gudder [22]. This model is revised in detail
in Sect. 3. The main difference with OQWs is that the transition maps are not only
given by conjugations of the form X �→ V XV ∗, but, instead, the effect transitions can
be chosen to be any completely positive map. This larger class of examples expands
the potential applicability of the theory and also makes it easier to find evolutions
which are distinct from classical dynamics.

With an improved understanding of weight matrices, one is now able to present
basic results on recurrence and positive recurrence of QMCs, as we will see in Sects. 4
and 5. The use of the Stieltjes transform allows us to further extend recent results on
homogeneous OQWs on the line regarding criteria for site-recurrence [24]. Sections 6
and 7 illustrate the theory with examples on finite segments and on the half-line, while
Sect. 8 explains how to consider QMCs acting on the integer line, further extending
the applicability of the theory. Finally, by a proper variation of the Karlin–McGregor
formula for weight matrices, we are able to discuss weight matrices which are not
necessarily symmetric. This has been examined by Zygmunt [33, 34], and such theory
leads to interesting examples of QMCs, as we will see in Sect. 9.

3 Preliminaries

LetH be a separable Hilbert space with inner product 〈 · | · 〉, whose closed subspaces
will be referred to as subspaces for short. The superscript ∗ will denote the adjoint
operator. TheBanach algebraB(H) of bounded linear operators onH is the topological
dual of its ideal I(H) of trace-class operators with trace norm

‖ρ‖1 = Tr(|ρ|), |ρ| = √ρ∗ρ,

through the duality [1, Lec. 6]

〈ρ, X〉 = Tr(ρX), ρ ∈ I(H), X ∈ B(H). (2)

If dimH = k < ∞, then B(H) = I(H) is identified with the set of square matrices
of order k, denoted by Mk(C). The duality (2) yields a useful characterization of the
positivity of an operator ρ ∈ I(H):

ρ ∈ I(H) : ρ ≥ 0 ⇔ Tr(ρX) ≥ 0, ∀X ∈ B(H), X ≥ 0,
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and similarly for the positivity of X ∈ B(H).
In this paper, we assume that we have a quantum particle acting either on the integer

line, the integer half-line, or on a finite segment, that is, we have that the set of vertices
V is labeled by Z, Z≥0 or a finite set {0, 1, . . . , N }, respectively. In this work, vertices
are also called sites. The state of the system is described by a column vector

ρ =

⎡
⎢⎢⎢⎣

ρ0
ρ1
ρ2
...

⎤
⎥⎥⎥⎦ , ρi ∈ I(H), ρi ≥ 0,

∑
i∈V

Tr(ρi ) = 1. (3)

After one time step, the system evolves to the state �(ρ) given by �(ρ)i =∑
j∈V �i j (ρ j ), where

� =

⎡
⎢⎢⎣

�00 �01 �02 . . .

�10 �11 �12 . . .

�20 �21 �22 . . .

. . . . . . . . . . . .

⎤
⎥⎥⎦ ,

is called aQuantumMarkov Chain (QMC) [22]: thismeans that the�i j are completely
positive (CP)maps on I(H) and the column sums

∑
i∈V �i j are trace-preserving (TP)

(the summations are assumed to converge in the strong operator topology), see Fig. 1.
A density ρ of the form (3) will be called a QMC density. The set of density operators
acting on a subspace K of H will be denoted by D(K).

An important particular class of CP maps is given by the ones of the form

�i j (ρ) = Bi jρB
∗
i j , Bi j ∈ B(H),

∑
k∈V

B∗k j Bk j = I , ∀ i, j ∈ V . (4)

The summation above must be understood in the strong sense, and the corresponding
identity is the trace- preserving condition for the columns of the QMC �. We will say
that Bi j is the effect matrix of transitioning from vertex j to vertex i . QMCs for which
�i j can be written in the form (4) are called Open Quantum Random Walks (OQWs),
following the terminology established by Attal et al. [2]. Explicitly, OQWs are QMCs
of the form

�(ρ) =
∑
i∈V

⎛
⎝∑

j∈V
Bi jρ j B

∗
i j

⎞
⎠⊗ |i〉〈i |, (5)

and, as any QMC, they may be alternatively seen as CP-TP maps on I(H⊗ V ).
The vector representation vec(A) of A ∈ Mk(C), given by stacking together its

rows, will be a useful tool. For instance,

A =
[
a11 a12
a21 a22

]
⇒ vec(A) :=

⎡
⎢⎢⎣
a11
a12
a21
a22

⎤
⎥⎥⎦ .
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Fig. 1 Schematic illustration of QMCs. The walk is realized on a graph with a set of vertices denoted
by i, j, k, l, . . . and each operator �i j is a completely positive map describing a transformation in the
internal degree of freedom of the particle during the transition from vertex j to vertex i . For simplicity of
illustration some edges are not labeled. In the particular case that all maps are conjugations, i.e., for every
i, j , �i j = Bi j · B∗i j for certain matrices Bi j the QMC is called an open quantum walk. In this work, the
graphs considered will be either a line segment, the half-line, or the integer line

The vecmapping satisfies vec(AXBT ) = (A⊗ B) vec(X) [23] for any square matri-
ces A, B, X , with ⊗ denoting the Kronecker product. In particular, vec(BXB∗) =
vec(BXB

T
) = (B⊗ B) vec(X), from which we can obtain the matrix representation

�̂ for a CPmap
∑

i Bi ·B∗i when the underlying Hilbert spaceH is finite-dimensional:

�̂ =
∑
i

�Bi�, �B� := B ⊗ B.

Here the operators Bi are identified with some matrix representation. We have that
�B�∗ = �B∗�, where B∗ denotes the Hermitian transpose of a matrix B. Then, the
vector and matrix representation of states and CP maps may be easily adapted to
QMCs. In fact, since any element of IV (H) is block diagonal, when dimH < ∞,
it may be represented by combining the vector representations of the finite diagonal
blocks,

ρ =
∑
i∈V

ρi ⊗ |i〉〈i | ⇒ −→ρ :=
⎡
⎢⎣

vec(ρ1)
vec(ρ2)

...

⎤
⎥⎦ .

Then, the OQW (5) admits the block matrix representation
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−−→
�(ρ) = �̂−→ρ , �̂ =

⎡
⎢⎣
�B00� �B01� · · ·
�B10� �B11� · · ·

...
...

⎤
⎥⎦ ,

and analogously for QMCs. We will often identify�with its block matrix representa-
tion and omit the hat, as the usage of such object will be clear from the context. Also,
we will sometimes write X instead of �X� in contexts where no confusion arises.

Although the above definitions concern QMCs on general graphs, we remark that
in this paper we will deal exclusively with the one-dimensional situation, more specif-
ically, with the nearest neighbor QMC or quantum birth-death chain, e.g.,

� =

⎡
⎢⎢⎢⎣

B0 C1
A0 B1 C2

A1 B2 C3
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , (6)

for certain operators Ai , Bi ,Ci , and the remaining ones being equal to zero.

3.1 The calculation of probabilities for QMCs

By letting ρ⊗|i〉〈i | be an initial densitymatrix concentrated at site |i〉, we can describe
n iterations of the QMC (6). By setting ρ(0) = ρ⊗|i〉〈i |, Tr(ρ) = 1, we write (assume
C0 = 0)

�n(ρ ⊗ |i〉〈i |) =
∑
k≥0

ρ
(n)
k ⊗ |k〉〈k|,

ρ
(n)
k = Ckρ

(n−1)
k+1 C∗k + Bkρ

(n−1)
k B∗k + Akρ

(n−1)
k−1 A∗k , n = 1, 2, . . .

Then, the probability of reaching site | j〉 at the n-th step, given that we started at site
|i〉 with initial density ρ concentrated at i is given by

p ji;ρ(n) = pn(ρ ⊗ |i〉 → | j〉) := Tr(ρ(n)
j ) = Tr

(
vec−1

[
(�̂n) j ivec(ρ)

])
,

where (�̂n) j i is the ( j, i)-th block of the block matrix �̂n , the n-th power of the block
representation �̂.

Following [3, 12], we say that vertex i is recurrent with respect to ρ, or simply
ρ-recurrent, if

∞∑
n=0

pii;ρ(n) = ∞.

Otherwise, we say that vertex i is transient with respect to ρ, or ρ-transient. We say
that, with respect to a fixed QMC, vertex i is recurrent if it is ρ-recurrent with respect
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to every density ρ concentrated in i , and transient if it is ρ-transient with respect to
every density in i . Finally, we say that a QMC � is recurrent if every site is recurrent,
and we define transient QMCs analogously.

Remark 3.1 We note that in the setting of QMCs, one can also consider the notion
of monitored recurrence, see e.g. [3, 21, 24]. For simplicity, we will not consider
such definition in this work, and we refer the reader to the references for a detailed
discussion on such matter.

Finally, we will be able to discuss expected return times to sites of QMCs in terms
of the following notion. Let T denote a positive map (that is, such that if X ≥ 0 then
T (X) ≥ 0) acting on the space I(H) of trace-class operators of a Hilbert spaceH. We
say that T is irreducible if the only orthogonal projections P such that T (PI(H)P) ⊂
PI(H)P , are P = 0 and P = I , see [10, 11] for more on this. Then, we say that a
QMC� is positive recurrent if it is irreducible and if it admits an invariant distribution.
We note that by Bardet et al. [3, Theorems 4.3 and 4.5] for positive recurrent OQWs,
we have finite expected return times for every density and site, and the same reasoning
provides the analogous result in the case of QMCs.

3.2 Auxiliary notation: compact form

In some of the examples we study in this paper we will use the following algebraic
simplification.We know that thematrix representation of the conjugationmap induced
by an order 2 matrix M = (mi j ) is given by

�M� = M ⊗ M =

⎡
⎢⎢⎣
|m11|2 m11m12 m11m12 |m12|2
m11m21 m11m22 m12m21 m12m22
m11m21 m12m21 m11m22 m12m22

|m21|2 m21m22 m21m22 |m22|2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
a b b c
d e f g
d f e g
h j j k

⎤
⎥⎥⎦ , mi j ∈ C.

Let us consider the setting for which all of the above coefficients are real, and acting
on positive semidefinite matrices with real entries. Then

�M�vec(ρ) =

⎡
⎢⎢⎣
a b b c
d e f g
d f e g
h j j k

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x
y
y
z

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ax + 2by + cz
dx + (e + f )y + gz
dx + (e + f )y + gz

hx + 2 j y + kz

⎤
⎥⎥⎦ , ρ =

[
x y
y z

]
.

In this particular setting we note that the above computation can be codified in a more
economic way, namely, via the correspondence

�M�vec(ρ) ↔ M̌ ρ̌ :=
⎡
⎣
a 2b c
d e + f g
h 2 j k

⎤
⎦
⎡
⎣
x
y
z

⎤
⎦ =

⎡
⎣

a + 2by + cz
dx + (e + f )y + gz

hx + 2 j y + kz

⎤
⎦ . (7)

We call the map M̌ the compact form of the conjugation induced by M , or simply
the compact form of M . It is clear that many calculations coming from quantum
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mechanical models can be written in terms of real numbers only and, even though the
real coefficient assumption often precludes us from complete generality, we are still
able to learn useful information about 1-qubit quantum channels.

The following properties of the compact form are proven by a routine calculation:

(1) (̌MR) = M̌ Ř for any matrices, resembling the matrix representation property
�MR� = �M��R�.

(2) The compact form preserves the computation of product of conjugations acting on
positive definite matrices. That is, if M and R are matrices then �M��R�vec(ρ)

corresponds to M̌ Řρ̌.

4 Weight matrices

Let W be a weight matrix, i.e. a N × N matrix of measures supported in the real line
such that dW (y) − dW (x) ≥ 0 (positive semidefinite) for x < y. We also allow the
case of discrete measures, those appearing naturally in the case of walks acting on a
finite number of vertices. Define the matrix-valued inner product given by

(P, Q) :=
∫
R

P∗(x)dW (x)Q(x). (8)

Also regarding positive semidefiniteness, we recall that (P, P) ≥ 0, (P, P) > 0
whenever det(P) �≡ 0 and (P, P) = 0 if and only if P ≡ 0. Let {Qn(x)}n≥0 denote a
sequence of matrix-valued orthogonal polynomials with respect to such product, with
nonsingular leading coefficients. Then

∫
R

Q∗n(x)dW (x)Qm(x) = ‖Qn‖2δnm .

The set of polynomials will be called orthonormal if ‖Qn‖2 = (Qn, Qn) = I , n ≥ 0.
It is well-known that any family of matrix-valued orthogonal polynomials satisfies a
three-term recurrence relation of the form

xQn(x) = Qn+1(x)An + Qn(x)Bn + Qn−1(x)Cn, n ≥ 0,

Q0(x) = I , Q−1(x) = 0, (9)

for certain An, Bn,Cn+1, n ≥ 0, square matrices. This gives rise to a block tridiagonal
Jacobi matrix of the form

P =

⎡
⎢⎢⎢⎣

B0 C1 0
A0 B1 C2

A1 B2 C3

0
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , (10)

so that (9) can be written as xQ(x) = Q(x)P , where Q(x) = (Q0(x), Q1(x), . . . ).
Let us now see the inverse problem, i.e. under what conditions we can guarantee the
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existence of a weight matrix given a block tridiagonal matrix of the form (10). As
discussed previously, namely, whenever the weight matrix exists, the (i, j)-th block
of the block matrix Pn can be written as

(Pn)i j = (Qi (x), Qi (x))
−1
(∫

R

xnQ∗i (x)dW (x)Q j (x)

)
.

However, unlike the one-dimensional case, a system of matrix-valued polynomials
{Qn(x)}n≥0 satisfying such recurrence relation is not necessarily orthogonal with
respect to an inner product induced by a weight matrix. In view of this, Dette et al.
describe an existence criterion:

Theorem 4.1 [15, Theorem2.1]Assume that thematrices An,Cn+1, n ≥ 0, in the one-
step block tridiagonal transition matrix (10) are nonsingular. There exists a weight
matrix W supported on the real line such that the polynomials defined by (9) are
orthogonal with respect to the measure dW (x) if and only if there exists a sequence
of nonsingular matrices {Rn}n≥0 such that

(1) RnBn R−1n is Hermitian, ∀ n = 0, 1, 2, . . . .

(2) R∗n Rn =
(
A∗0 · · · A∗n−1

)−1
(R∗0 R0)C1 · · ·Cn, ∀ n = 1, 2, . . . .

In the case of a QMC with block tridiagonal matrix of the form

�̂ =

⎡
⎢⎢⎢⎣

�B0� �C1� 0
�A0� �B1� �C2�

�A1� �B2� �C3�
0

. . .
. . .

. . .

⎤
⎥⎥⎥⎦ , (11)

then, in order to find the corresponding weight matrix, we need to find nonsingular
matrices {Rn}n≥0 such that

�n := R∗n Rn = (�A0�∗ · · · �An−1�∗)−1�0�C1� · · · �Cn� and

�n�Bn� = �Bn�∗�n, n = 1, 2, . . .

Finally, we note that we have a version of the Karlin–McGregor formula for QMCs,
in close analogy with the result seen in [25, Theorem 2.1]:

Theorem 4.2 (Karlin–McGregor formula for QMCs) Let �̂ in (11) be the matrix rep-
resentation of a QMC �. Assume that there exists a weight matrix W associated with
�̂. Then we have

p ji;ρ(n) = Tr

(
vec−1

[
(Q j (x), Q j (x))

−1
(∫

R

xnQ∗j (x)dW (x)Qi (x)

)
vec(ρ)

])
,

where ρ = ρi ⊗ |i〉〈i | is a density matrix concentrated on vertex i and {Qn(x)}n≥0
are the matrix-valued orthogonal polynomials defined by (9).
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Remark 4.3 The inner product introduced in (8) is different from the one used in many
papers on this subject (see for instance [15, 17, 19, 25, 33, 34] and references therein).
The standard inner product used is called left inner product

(P, Q)L :=
∫
R

P(x)dW (x)Q∗(x),

which is different from the one defined by (8), which sometimes is called right inner
product (see [31]). We obviously have (P, Q) = (P∗, Q∗)L .

5 Recurrence and first passage time probabilities

Consider the Stieltjes transform of a weight matrix W with support on the real line
given by

B(z;W ) :=
∫
R

dW (x)

z − x
, z ∈ C\R. (12)

Let N ∈ {1, 2, . . .} and � be a QMC described by

� =

⎡
⎢⎢⎢⎣

B0 C1
A0 B1 C2

A1 B2 C3
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , (13)

where An, Bn,Cn+1 ∈ MN2(C), n ≥ 0. Assume there exists a weight matrixW such
that

�
(n)
i j = �i

(∫
R

xnQ∗i (x)dW (x)Q j (x)

)
, (14)

where �i =
(∫

R
Q∗i (x)dW (x)Qi (x)

)−1. Now let us define a generating function
associated with hitting probabilities from j to i with respect to the QMC �, i.e.

�i j (s) :=
∞∑
n=0

�
(n)
i j s

n, �
(n)
i j = Pi�

n
P j , (15)

where Pk is the projection map onto the space generated by the state |k〉 on Z≥0. We
will start with the following result concerning ρ-recurrence.

Theorem 5.1 Let ρ be some density. A vertex i ∈ V is ρ-recurrent if and only if

lim
s↑1 Tr

[
vec−1

(
�i

∫
R

1

1− sx
Q∗i (x)dW (x)Qi (x)vec(ρ)

)]
= ∞.
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As a consequence, vertex |0〉 is ρ-recurrent if and only if

lim
z↓1 Tr

[
vec−1 (B(z;W )vec(ρ))

]
= ∞, (16)

where B(z;W ) is defined by (12).

Proof By Fubini’s Theorem and for |sx | <∞ we have

� j i (s) =
∞∑
n=0

sn�(n)
j i =

∞∑
n=0

� j

∫
R

(sx)nQ∗j (x)dW (x)Qi (x)

= � j

∫
R

∞∑
n=0

(sx)nQ∗j (x)dW (x)Qi (x)

= � j

∫
R

1

1− sx
Q∗j (x)dW (x)Qi (x). (17)

Then

lim
s↑1 Tr

(
vec−1

(
� j i (s)vec(ρ)

))

= lim
s↑1

∞∑
n=0

Tr
(
vec−1

(
sn�(n)

j i vec(ρ)
))

=
∞∑
n=0

p ji;ρ(n).

By taking s = 1/z, we obtain (16). ��
In a similar way we can prove that an irreducible QMC � with associated weight

matrix W is recurrent with respect to some density ρ if and only if

lim
s↑1 Tr

(∫
dW (x)

1− xs
ρ

)
= ∞.

Regarding positive recurrence in terms of the spectral matrix W , we have the fol-
lowing:

Proposition 5.2 For an irreducible QMC � (13) admitting a weight matrix W, the
walk is positive recurrent if and only if the weight matrix W has a finite jump at x = 1.

Proof An irreducible, positive recurrent QMC always admits a faithful (strictly pos-
itive), invariant distribution by Lardizabal and Souza [27, Theorem 5.8]. Therefore,
we conclude, by Carbone and Pautrat [11, Corollary 5.4], that

lim
n→∞Tr(P0�

2n
P0ρ) > 0.
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Since x2n → 0 monotonically in x ∈ (−1, 1), from Theorem 4.2 we see that the limit
is positive if the spectral measure has positive jumps at x = 1 or at x = −1. However,
there cannot be a jump at x = −1 since, otherwise, the size of the jump would be

− lim
n→∞Tr

(
vec−1

[∫ 1

−1
x2n+1dW (x)vec(ρ)

])
= − lim

n→∞Tr(P0�
2n+1

P0ρ) ≤ 0.

But this quantity must be positive, so there is no jump at x = −1, for any choice of
density ρ. Therefore, the QMC is positive recurrent if and only if there is a jump at
x = 1. ��

Let us now derive an expression for first passage probabilities of QMCs in terms of
matrix-valued polynomials only. The following discussion is inspired by the classical
reasoning presented in [16], with the main result being formula (24) presented below,
which allows us to obtain first visit probabilities in terms of matrix polynomials in a
simple manner. For k ≥ 0, consider the QMC � with matrix representation

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 C1
A0 B1 C2

. . .
. . .

. . .

Ak−1 Bk Ck+1
Ak Bk+1 Ck+2

Ak+1 Bk+2 Ck+3
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Bn, An,Cn+1 ∈ MN (C), n ≥ 0. As usual, we recursively define the following
matrix-valued polynomials,

Q0(x) = IN , Q−1(x) = 0

xQn(x) = Qn+1(x)An + Qn(x)Bn + Qn−1(x)Cn, (18)

that is, xQ(x) = Q(x)�, where Q(x) = (Q0(x), Q1(x), . . .). Suppose that � satis-
fies the conditions of Theorem 4.1, so the polynomials defined by (18) are orthogonal
with respect to aweightmatrixW and�� = �∗�, where� = diag(�0,�1, . . .) and
� j = R∗j R j , j ≥ 0. Analogously to the classical case, we define the k-th associated
polynomials

xQ(k)
n (x) = δnk + Q(k)

n+1(x)An + Q(k)
n (x)Bn + Q(k)

n−1(x)Cn .

Note that Q(k)
n (x) = 0 if 0 ≤ n ≤ k and deg(Q(k)

n (x)) = n− k− 1 if n > k. Consider
the generating function�(s) associated with� defined by (15). Assuming ‖s�‖ < 1,
� j i (s) converges for every i, j, thus

∞∑
n=0

(s�)n(I − s�) = I ⇒ �(s)−�(s)(s�) = I .
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Therefore, we have the equation

�(s) = I +�(s)(s�),

which can be rewritten by blocks as

� j0(s) = δ j0 +� j0(s)B0 +� j1(s)A0, j ≥ 0

� j i (s) = δ j i +� j,i−1(s)Ci +� j,i (s)Bi +� j,i+1(s)Ai , i ≥ 1, j ≥ 0. (19)

A particular solution of (19) is given by

� j i (s) = s−1Q( j)
i (s−1).

On the other hand, the general solution of �(s) = �(s)(s�), which is

� j i (s) = g j (s)Qi (s
−1)

gives

� j i (s) = � j,i−1(s)Ci +� j,i (s)Bi +� j,i+1(s)Ai ,

and consequently, the general solution of (19) is

� j i (s) = s−1Q( j)
i (s−1)+ g j (s)Qi (s

−1).

Since Q( j)
0 = 0 and Q0 = 1, one has � j0(s) = g j (s)Q0(s−1) = g j (s). Moreover,

since �
(n)
j i = �−1

j �
(n)∗
i j �i , we have

� j0(s) =
∞∑
n=0

sn�−1
j �

(n)∗
0 j �0 = �−1

j �0 j (s)
∗�0,

so we obtain the general solution for g j (s) :

g j (s) = � j0(s) = �−1
j � j0(s)

∗�0

= �−1
j

(
s−1Q(0)

j (s−1)+ g0(s)Q j (s
−1)
)∗

�0

= �−1
j

(
s−1Q(0)

j (s−1)+�00(s)Q j (s
−1)
)∗

�0.

Therefore the general solution for �i j (s) is given by

� j i (s) = s−1Q( j)
i (s−1)+�−1

j

(
s−1Q(0)

j (s−1)+�00(s)Q j (s
−1)
)∗

�0Qi (s
−1).
(20)
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If we assume i < j, then Q( j)
i = 0 and (20) becomes

� j i (s) = �−1
j

(
s−1Q(0)

j (s−1)+�00(s)Q j (s
−1)
)∗

�0Qi (s
−1). (21)

Now consider the first passage time operator F(s) satisfying

F(s) = [Fji (s)] j,i=0,1,2,...
Fji (s) = � j j (s)

−1(� j i (s)− δ j i I ), (22)

that is, with definition given by

F(z) = zP�(I − zQ�)−1, (23)

where P and Q = I − P are bounded projections fromH onto supplementary closed
subspaces ofH. Further, we denote by Pk the projection map onto the space generated
by the state |k〉 on Z≥0 and Qk := I − Pk . In this way, we are able to calculate
the probability of every reaching vertex j , given that we have started at vertex i and
density ρ, by writing

p(ρ ⊗ |i〉 → | j〉) = lim
z↑1 Tr

(
Fji (z)ρ

) = lim
z↑1 Tr

(
zP j�(I − zQ j�)−1ρ

)
.

By Grünbaum and Velázquez [20], F(s) defined as above indeed satisfies Eq. (22).
So, let i < j and ρ ∈ MN (C), then by Eq. (21)

Fji (s) = � j j (s)
−1� j i (s)

= Q j (s
−1)−1�−1

0

[(
s−1Q(0)

j (s−1)+�00(s)Q j (s
−1)
)∗]−1

� j

×�−1
j

(
s−1Q(0)

j (s−1)+�00(s)Q j (s
−1)
)∗

�0Qi (s
−1)

= Q j (s
−1)−1Qi (s

−1).

Therefore, by (22), we obtain

Fji (s) = Q j (s
−1)−1Qi (s

−1), i < j . (24)

In particular, the condition Q0 = I gives

F10(s) = Q1(s
−1)−1 =

[(
1

s
I − B0

)
A−10

]−1
= s A0(I − sB0)

−1. (25)
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Example 5.3 Let � be the representation matrix of an OQW on V = {0, 1, 2} of the
form

� =
⎡
⎣

0 �C�
�A� 0 �C�

�A� 0

⎤
⎦ , A = 1

2

[−1 0
1
√
2

]
, C = 1

2

[
1 −√2
−1 0

]
.

Since A∗A < I , the walk has an absorbing barrier in the frontier. Also, we have

(I − sQ1�) =
⎡
⎣
I4 X 0
0 I4 0
0 Y I4

⎤
⎦ , X = s

4

⎡
⎢⎢⎣
−1 √

2
√
2 −2

1 0 −√2 0
1 −√2 0 0
−1 0 0 0

⎤
⎥⎥⎦ ,

Y = s

4

⎡
⎢⎢⎣

−1 0 0 0
1

√
2 0 0

1 0
√
2 0

−1 −√2 −√2 −2

⎤
⎥⎥⎦ .

and

F10(s) = sP1�(I − sQ1�)−1P0 = s

4

⎡
⎢⎢⎣

1 0 0 0
−1 −√2 0 0
−1 0 −√2 0
1

√
2

√
2 2

⎤
⎥⎥⎦ .

The first two associated polynomials are given by

Q0(x) = I4, Q1(x) := 2x

⎡
⎢⎢⎣

2 0 0 0
−√2 −√2 0 0
−√2 0 −√2 0
1 1 1 1

⎤
⎥⎥⎦ ,

from which we can calculate the product Q1(s−1)−1Q0(s−1), which equals F10(s) as

expected. Then, for ρ =
[
a b
b∗ 1− a

]
, we obtain

p(ρ ⊗ |0〉 → |1〉) = lim
s↑1 Tr(F10(s)ρ) = 1+√2Re(b)

2
∈
[
2−√2

4
,
2+√2

4

]
,

since Re(b) ∈ [−1/2, 1/2]. ��
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Example 5.4 Let γ ∈ R and kγ = 2 + 2γ 2 and � be the representation matrix of an
OQW of the form

� =

⎡
⎢⎢⎢⎣

�B0� �C1�
�A0� �B1� �C2�

�A1� �B2� �C3�
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , B0 = 1√

kγ

[−1 √2γ
0 1

]
,

A0 = 1√
kγ

[√
2γ 1
1 0

]
.

We notice that F10(s) does not depend on the blocks Ak, Bk,Ck for k = 1, 2, 3, . . . ,
thus such blocks can be chosen arbitrarily so that A∗k Ak + B∗k Bk + C∗k Ck = I for
k ≥ 1. Then, Eq. (23) gives

F10(s) = s

2+ 2γ 2 − s

⎡
⎢⎢⎢⎢⎢⎣

2γ 2
√
2γ (2γ 2s+2−2γ 2−s)

2+s+2γ 2

√
2γ (2γ 2s+2−2γ 2−s)

2+s+2γ 2
s+4γ 2s+4γ 4s+2+2γ 2

2+s+2γ 2√
2γ − 2γ 2s

2+s+2γ 2
2γ 2+2−2γ 2s−s

2+s+2γ 2

√
2γ (1+2γ 2)

2+s+2γ 2√
2γ 2γ 2+2−2γ 2s−s

2+s+2γ 2 − 2γ 2s
2+s+2γ 2

√
2γ (1+2γ 2)

2+s+2γ 2

1 −
√
2γ s

2+s+2γ 2 −
√
2γ s

2+s+2γ 2
2γ 2s

2+s+2γ 2

⎤
⎥⎥⎥⎥⎥⎦

,

and, as expected, this is the same matrix obtained by formula (25). For ρ =[
a b
b∗ 1− a

]
, we obtain, for every ρ, that

p(ρ ⊗ |0〉 → |1〉)
= lim

s↑1 Tr (F10(s)ρ)

= lim
s↑1

4γ 4(as − a − s)+ 4γ
√
2(s − 1)Re(b)(γ 2 + 1)+ 2γ 2(2as − 3s − 2a − 1)− 2− s

(2+ s + 2γ 2)(−2+ s − 2γ 2)

= 1.

We note that, in principle, we are able to obtain probabilities regarding vertices which
are arbitrarily distant from one another but, as the distance between them increases,
the task of performing explicit calculations may become unpractical. In such cases, it
may be preferable to use the generating function (23). ��
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6 An example of a QMC on a finite number of vertices

Let us first consider a walk induced by the block matrix on the N + 1 nodes indexed
as {0, 1, . . . , N },

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B r I
t I B r I

t I B r I
. . .

. . .
. . .

t I B r I
t I B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, 0 < r , t < 1,

where if B = ��B�, �B = V ∗1 · V1 + V ∗2 · V2, with

V1 = √s

[
a b
b −a

]
, V2 =

√
s(1− a2 − b2)I2.

We can write

B = s

⎡
⎢⎢⎣
1− b2 ab ab b2

ab 1− 2a2 − b2 b2 −ab
ab b2 1− 2a2 − b2 −ab
b2 −ab −ab 1− b2

⎤
⎥⎥⎦ .

For simplicity we assume 0 < a, b, s < 1, a2 + b2 < 1. In this way we have that
Tr(�(X)) = sTr(X), so we suppose that r + s + t = 1 in order to have that � is
trace-preserving, with the exception of the first and last nodes (we remark that another
restriction on r , s, t will be needed, see below).

By the classical symmetrization

R = diag(R0, R1, . . . , RN ), Ri =
(√

r

t

)i−1
I4, i = 1, . . . , N , R0 = I4,

we obtain

J = R�R−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B k I
k I B k I

k I B k I
. . .

. . .
. . .

k I B k I
k I B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, k = √r t .

The matrix-valued polynomials {Qn}n≥0 defined by
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Q0(x) = 1, Q−1(x) = 0,

xQ0(x) = Q0(x)B + kQ1(x),

xQi (x) = kQi−1(x)+ Qi (x)B + kQi+1(x), i = 1, . . . , N − 1,

can be identified with the Chebyshev polynomials of the second kind {Un}n≥0. Indeed,
it is possible to see that Qn(x) = Un ((x − B)/2k) , n ≥ 0. Now, if we define

RN+1(x) := QN (x)(x − B)− kQN−1(x),

wehave that the zeros of det(RN+1(x)) coincidewith the eigenvalues of J = R�R−1.
A simple calculation shows that

RN+1(x) = kUN+1
(
x − B

2k

)
.

We would like to solve the equation det(RN+1(x)) = 0. Recalling the representation

Un

( z
2

)
=

n∏
j=1

(
z − 2 cos

(
jπ

n + 1

))
,

we obtain, for the matrix-valued case at hand,

det(RN+1(x)) = k4det

(
UN+1

(
x − B

2k

))

= k4det

⎡
⎣

N+1∏
j=1

(
x I4 − B

k
− 2 cos

(
jπ

N + 2

)
I4

)⎤
⎦

= k4
N+1∏
j=1

det

[(
x I4 − B

k
− 2 cos

(
jπ

N + 2

)
I4

)]
.

Noting that the eigenvalues of B are s and s(1 − 2a2 − 2b2) (both with multiplicity
2) we have

det

[(
x I4 − B

k
− 2 cos

(
jπ

N + 2

)
I4

)]

= det

⎡
⎢⎢⎢⎢⎢⎣

x−s
k − 2 cos

(
jπ

N+2
)

0 x−s
k − 2 cos

(
jπ

N+2
)

x−s(1−2a2−2b2)
k − 2 cos

(
jπ

N+2
)

x−s(1−2a2−2b2)
k − 2 cos

(
jπ

N+2
)

⎤
⎥⎥⎥⎥⎥⎦

=
[
x − s

k
− 2 cos

(
jπ

N + 2

)]2 [ x − s(1− 2a2 − 2b2)

k
− 2 cos

(
jπ

N + 2

)]2
.
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Hence,

det(RN+1(x)) = k4
N+1∏
j=1

[
x − s

k
− 2 cos

(
jπ

N + 2

)]2

[
x − s(1− 2a2 − 2b2)

k
− 2 cos

(
jπ

N + 2

)]2
, k = √r t,

which is a polynomial of degree 4(N + 1) having 2(N + 1) distinct roots (all of
multiplicity 2). Therefore, the roots are of the form

x j = s + 2k cos

(
π

j + 1

N + 2

)
, j = 0, . . . , N ,

y j = s(1− 2a2 − 2b2)+ 2k cos

(
π

j + 1

N + 2

)
, j = 0, . . . , N ,

all being of multiplicity 2, except in the case where the collection of zeros xN and
yN overlap, so the multiplicity changes accordingly (see the example below). The
expressions on the roots also make clear that we must have further restrictions on the
values of r , s and t (recall k = √r t) so that x j , y j ∈ [−1, 1], for all j = 0, . . . , N .
For instance, by imposing 0 < k < 1/4 we obtain a corresponding restriction on s
(we omit the details).

The above root calculation should be compared with the classical case with a
translation of s units, for which the roots of RN+1 are

x j = s + 2
√
r t cos

(
π

j + 1

N + 1

)
, j = 0, . . . , N ,

once again regarding a random walk with a proper restriction on r , s, t so that x j ∈
[−1, 1], for all j .

Now we compute the matrix weights on the zeros above. Such calculation needs to
take in consideration the fact that each root is double (we omit the discussion for the
case of larger multiplicities). In this case the residue calculation gives us that

Wj = g′j (λ j ), g j (λ) := −(λ j − λ)2(J − λI )−100 , λ j = x j , y j , j = 0, . . . , N ,

(26)

an expression which can be deduced from (see [19])

(J − λI )−1i j =
N∑

k=0

P∗i (λk)Wk Pj (λk)

λk − λ
,

and noting that this corresponds to the Laurent sum of the operator on the left-hand
side except for the sign change λk − λ = −(λ− λk). With formula (26), a calculation
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shows that for every N we have a corresponding set of multiples of the matrices given
by

Wa,b;1 := 1

2(a2 + b2)

⎡
⎢⎢⎣
2a2 + b2 ab ab b2

ab b2 b2 −ab
ab b2 b2 −ab
b2 −ab −ab 2a2 + b2

⎤
⎥⎥⎦ ,

Wa,b;2 := 1

2(a2 + b2)

⎡
⎢⎢⎣

b2 −ab −ab −b2
−ab b2 + 2a2 −b2 ab
−ab −b2 b2 + 2a2 ab
−b2 ab ab b2

⎤
⎥⎥⎦ .

More precisely, we have a collection of 4(N + 1) roots with weights

ψ(x j ) = 2

N + 2
sin2

(
π

j + 1

N + 2

)
Wa,b;1, j = 0, . . . , N ,

ψ(y j ) = 2

N + 2
sin2

(
π

j + 1

N + 2

)
Wa,b;2, j = 0, . . . , N .

This should be compared with the classical setting, recalling that in such case,

ψ(x j ) = 2

N + 2
sin2

(
π

j + 1

N + 2

)
= 1

2pq(N + 2)
(4pq − x2j ), j = 0, . . . , N .

(27)

Wenote a fewbasic properties ofWa,b;1 andWa,b;2. First, both are positive semidefinite
matrices with eigenvalues 0 and 1 (multiplicity 2). Moreover, seen as linear maps,
Wa,b;1 is trace-preserving, whereasWa,b;2 transforms densities into tracelessmatrices.
Also Wa,b;1 admits the following Kraus representation

Wa,b;1 =
3∑

i=1
W 1

i ⊗W
1
i , W 1

1 =
1

2(a2 + b2)

[
a b
b −a

]
,

W 1
2 =

a

2(a2 + b2)
I2, W 1

3 =
b

2(a2 + b2)
I2,

fromwhich we conclude that such weight represents a completely positive map. How-
ever,Wa,b;2 does not represent a positivemap in general, as illustrated by an inspection
with certain density examples.

For a specific instance of the above take N = 4 (5 sites), so we have 20 roots, with
weights

1

3
Wa,b;1,

1

3
Wa,b;2,
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associated with zeros s and s(1− 2a2 − 2b2) respectively; weights

1

4
Wa,b;1,

1

4
Wa,b;2,

associated with zeros s ± k, s(1− 2a2 − 2b2)± k respectively; and weights

1

12
Wa,b;1,

1

12
Wa,b;2,

associated with zeros s±√3k, and s(1−2a2−2b2)±√3k respectively. If, moreover,
s = a = b = k = 1/2, we have

{x j } j=0...4 =
{
−
√
3

2
,−1

2
, 0,

1

2
,

√
3

2

}
,

{y j } j=0...4 =
{
−√3+ 1

2
, 0,

1

2
, 1,

√
3+ 1

2

}
,

each with multiplicity 2 except for 0 and 1/2 with multiplicity 4 (noting that in this
case, 1−2a2−2b2 = 0). This should be compared with the classical setting, see (27).

7 An example of a QMC on Z≥0

Consider the walk induced by the block matrix on Z≥0 given by

� =

⎡
⎢⎢⎢⎣

0 C 0
A 0 C

A 0 C

0
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , (28)

where A and C are the compact forms (see (7)) of R1⊗ R1+ R2⊗ R2 and L1⊗ L1+
L2 ⊗ L2, respectively, and

L1 =
√
p/2I2, L2 =

√
(1− p)/2

[
0 1
1 0

]
, R1 =

√
q/2

[
1 0
0 −1

]
,

R2 =
√

(1− q)/2

[
0 1
1 0

]
.

Observe that R∗1 R1 + R∗2 R2 + L∗1L1 + L∗2L2 = I2. Therefore,

A = 1

2

⎡
⎣

q 0 1− q
0 1− 2q 0

1− q 0 q

⎤
⎦ , C = 1

2

⎡
⎣

p 0 1− p
0 1 0

1− p 0 p

⎤
⎦ .
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The matrices A and B are simultaneously diagonalizable, i.e.,

A = U
⎡
⎣
1/2

1/2− q
q − 1/2

⎤
⎦U∗, C = U

⎡
⎣
1/2

1/2
p − 1/2

⎤
⎦U∗,

U = 1√
2

⎡
⎣
1 0 −1
0
√
2 0

1 0 1

⎤
⎦ . (29)

Choosing

�n =

⎡
⎢⎢⎣
1

(1− 2q)n (
1− 2q

1− 2p

)n

⎤
⎥⎥⎦ ,

we can symmetrize the operator (28), getting that each of the nonzero blocks are given
by

1

2
U
⎡
⎣
1 √

1− 2q √
(1− 2p)(1− 2q)

⎤
⎦U∗.

The Stieltjes transform associated with (28) is given by

B(z;W )

= 2U

⎡
⎢⎢⎢⎢⎢⎣

z −√z2 − 1
z −√z2 − (1− 2q)

1− 2q
z −√z2 − (1− 2p)(1− 2q)

(1− 2p)(1− 2q)

⎤
⎥⎥⎥⎥⎥⎦
U∗.

(30)

Therefore, we get an absolutely continuous weight matrix given by

dW (x) = 2

π
UD(x)U∗dx,

where

D(x) =
⎡
⎣
[ω1(x)]+

[ω2(x)]+
[ω3(x)]+

⎤
⎦ ,
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where

ω1(x) =
√
1− x2, ω2(x) =

√
1− 2q − x2

1− 2q
,

ω3(x) =
√

(1− 2p)(1− 2q)− x2

(1− 2p)(1− 2q)
. (31)

Here we are using the notation [ f (x)]+ = f (x) if f (x) ≥ 0 and 0 otherwise. Similar
results can be obtained if we do not consider the compact form.

Nowconsider the samewalk as before in (28), but adding amatrix B at the upper-left
corner, i.e.

�̃ =

⎡
⎢⎢⎢⎣

B C 0
A 0 C

A 0 C

0
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , (32)

where B is a matrix which we assume it can be written as

B = 1

2
U
⎡
⎣
b1

b2
b3

⎤
⎦U∗, (33)

with U defined by (29). According to Theorem 2.6 of [15], the Stieltjes transform
B(z; W̃ ) associated with (32) can be written as B(z; W̃ ) = (B(z;W )−1 − B)−1.
Since we are assuming (33) and taking in mind (30), we obtain

B(z; W̃ )

= 2U

⎡
⎢⎢⎢⎢⎢⎢⎣

1

z −√z2 − 1
− b1

1− 2q

z −√z2 − (1− 2q)
− b2

(1− 2p)(1− 2q)

z −√z2 − (1− 2p)(1− 2q)
− b3

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

U∗.

After rationalization and some computations we obtain

B(z; W̃ )

= 2U

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−z + b1 +
√
z2 − 1

2b1z − 1− b21
−z + b2 −

√
z2 − (1− 2q)

2b2z − 1+ 2q − b22
−z + b3 +

√
z2 − (1− 2p)(1− 2q)

2b3z − (1− 2p)(1− 2q)− b23

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
U∗.

(34)
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Therefore the weight matrix is given by W̃ = W̃ac + W̃d , where the absolutely con-
tinuous part is given by

dW̃ac(x)

= 2

π
U

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[√
1− x2

]
+

1+ b21 − 2b1x [√
1− 2q − x2

]
+

1− 2q + b22 − 2b2x [√
(1− 2p)(1− 2q)− x2

]
+

(1− 2p)(1− 2q)+ b23 − 2b3x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U∗dx .

Observe that the denominators are always nonnegative in the range of the definition
of each square root. The discrete part W̃d is given by three Dirac deltas located at the
poles of the Stieltjes transform (34), i.e.

W̃d(x) = U
⎡
⎣
W̃ ({z1}) δz1(x)

W̃ ({z2}) δz2(x)
W̃ ({z3}) δz3(x)

⎤
⎦U∗,

where

z1 = 1+ b21
2b1

, z2 = 1− 2q + b22
2b2

, z3 = (1− 2p)(1− 2q)+ b23
2b3

,

and

W̃ ({z1}) = b21 − 1

b21
1{b21>1},

W̃ ({z2}) = b22 − (1− 2q)

b22
1{b22>1−2q},

W̃ ({z3}) = b23 − (1− 2p)(1− 2q)

b23
1{b23>(1−2p)(1−2q)}.

Observe that in principle b1, b2 and b3 can be taken as any real numbers, but we are
interested in finding under what conditions the points z1, z2 and z3 are located inside
the interval [−1, 1] (so that all the support of W̃ is inside the interval [−1, 1]). By the
definition it is possible to see that |z1| ≤ 1, |z2| ≤ 1, |z3| ≤ 1, if and only if b1 = 1,
and

b2 ∈ [−1−
√
2q,−1+√2q] ∪ [1−√2q, 1+√2q],

b3 ∈ [−1−
√
2(p + q − 2pq),−1+√2(p + q − 2pq)]

× ∪[1−√2(p + q − 2pq), 1+√2(p + q − 2pq)].
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Joining thiswith the conditions underwe have positive jumps,we have that W̃ ({z1}) =
0 and W̃ ({z2}) , W̃ ({z3}) are positive if

b2 ∈ [−1−
√
2q,−√1− 2q) ∪ (

√
1− 2q, 1+√2q],

b3 ∈ [−1−
√
2(p + q − 2pq),−√(1− 2p)(1− 2q))

× ∪(
√

(1− 2p)(1− 2q), 1+√2(p + q − 2pq)].

The particular case where B = A is given by b1 = 1, b2 = 1− 2q, b3 = 2q − 1.
Therefore z1 = 1, z2 = 1− q, z3 = p + q − 1, W̃ ({z1}) = W̃ ({z2}) = 0 and

W̃ ({z3}) = 2(p − q)

1− 2q
1{p>q}.

The weight matrix is then given by W̃ = W̃ac + W̃d , where

dW̃ac(x) = 1

π
U

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[√
1+ x

1− x

]

+ [√
1− 2q − x2

]
+

(1− 2q)(1− q − x) [√
(1− 2p)(1− 2q)− x2

]
+

(1− 2q)(1− p − q + x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U∗dx .

(35)

and

W̃d(x) = p − q

1− 2q
1{p>q}

⎡
⎣

1 0 −1
0 0 0
−1 0 1

⎤
⎦ δp+q−1(x). (36)

Observe that in this situation, as expected, the support of W̃ is inside the interval
[−1, 1].

Let us now study recurrence of this QMC in terms of the corresponding weight
matrices.Note that theQMCdetermined by (28) is such that vertex 0 admits a transition
to an absorbing state, so we have the transience of this walk with respect to such site.
Let us prove this in terms of the associated measure. First, recall that the trace is
invariant by the change of coordinates U which, on its turn, does not depend on x .
Therefore, we need only to examine the behavior of ω1 and ω3 in (31). Regarding ω1,
a calculation gives that

lim
z↑1

∫ 1

−1

√
1− x2

1− zx
dx = lim

z↑1
π(z2 − 1+√1− z2)

z2
√
1− z2

= π,

so the above limit is finite. Regarding ω3, note that since 0 < p, q < 1, we have
a := (1 − 2p)(1 − 2q) > 0 if and only if both p and q are greater than 1/2 or both
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are less than 1/2. If this is the case, we have that ω3(x) ≥ 0 if x ∈ (−√a,
√
a). If we

write q = p + ε (with ε ∈ ( 12 − p, 1− p) if 1
2 < p < 1), we obtain

lim
z↑1

∫ √
a

−√a

√
a − x2

1− zx
dx = π(1−√4p(1− p)+ 2ε(1− 2p)), (37)

which is also a finite number (as expected, the term inside the root is always positive
under the above restrictions). A similar reasoning holds in the case 0 < p < 1

2 , where
we write q = p+ε, with ε ∈ (−p, 1

2 − p). In the case that ω3 does not have a positive
part, the trace computation is determined by ω1. Since U∗ρ is also a density matrix
we conclude that, in every case, site 0 is transient with respect to any initial density.

Now considering (32) with B = A [see (35) and (36)], we have, regarding ω̃1, that

lim
z↑1

∫ 1

−1
1

1− zx

√
1+ x

1− x
dx = lim

z↑1
π(1+ z −√1− z2)

z
√
1− z2

= ∞.

Regardind ω̃3, we note that the denominator is positive if x ∈ (−√a,
√
a), which can

be seen as in the transient walk above (i.e., consider the cases for which p, q ∈ (0, 1
2 )

or p, q ∈ ( 12 , 1)). But then the limit to be examined is the same as for the transient
walk, namely, Eq. (37), which is finite. We have concluded that recurrence of site 0
depends on the initial choice of density matrix. For instance, the densities

ρα =
[
1 0
0 0

]
⊗ |0〉〈0|, ρβ =

[
0 0
0 1

]
⊗ |0〉〈0|,

are such that site 0 is recurrent with respect to ρα but transient with respect to ρβ .
More generally, site 0 will be recurrent with respect to any density matrix ρ ⊗ |0〉〈0|
for which ρ11 > 0. It would be interesting to find examples of matrices B at the block
position (0, 0) for which the resulting walks are irreducible (if this is in fact possible,
a guess would be to obtain a change of coordinates V distinct from U).

Remark 7.1 If B in (33) is not simultaneously diagonalizable with A andC , it is possi-
ble to derive again the weight matrix assuming that B = 1

2Vdiag{b1, b2, b3}V∗, whereV is unitary. The corresponding weight matrix will be also unitarily diagonalizable.

8 QMCs on Z

In this section, we treat the case of tridiagonal QMCs on the real line, that is, the set
of vertices V will consist of the integers, thus the walk will have one-step transition
probabilities from |i〉 to |i − 1〉 , |i〉 or |i + 1〉 and there are no barriers. Starting from
a tridiagonal QMC � on Z, where each of the blocks of the matrix representation is
of order N 2 × N 2, we will construct a new tridiagonal QMC on Z≥0 × {1, 2}, where
each of the blocks of the matrix representation is of dimension 2N 2 × 2N 2 with a
possible barrier on site |0〉. This is what we call the folding trick and was introduced
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for the first time in [5]. Finally, recurrence of this type of walks will be discussed via
an application of the Stieltjes transform.

Consider then the matrix representation for a tridiagonal QMC on Z, given by

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . B−2 C−1
A−2 B−1 C0

A−1 B0 C1
A0 B1 C2

A1 B2 C3
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (38)

where each block Ak, Bk,Ck is an N 2 × N 2 matrix given by a summation

Xk =
tk∑

r=1
�Yr�, Yr ∈ MN (C), �Yr� = Yr ⊗ Yr ,

and we assume that there exists a sequence of Hermitian matrices (En)n∈Z ∈ MN2(C)

and non-singular matrices (Rn)n∈Z ∈ MN2(C) such that

A∗n R∗n+1Rn+1 = R∗n RnCn+1, n ≥ 0

R∗−n−1R−n−1C−n = A∗−n−1R∗−n R−n, n ≥ 0,
RnBn = EnRn, n ∈ Z. (39)

The previous conditions coincide with those of Theorem 4.1 when we consider the
first line with the walk restricted to Z≥0 and the second line with the walk restricted
to Z<0. Let us define

� j := R∗j R j ∈ MN2(C), j ∈ Z.

Consider the two independent families of matrix-valued polynomials defined recur-
sively from (38) as

Q1
0(x) = IN2 , Q2

0(x) = 0,

Q1−1(x) = 0, Q2−1(x) = IN2 ,

xQα
n (x) = Qα

n+1(x)An + Qα
n (x)Bn + Qα

n−1(x)Cn, α = 1, 2, n ∈ Z. (40)

and the block vectors Qα(x) = (. . . , Qα−2(x), Qα−1(x), Qα
0 (x), Qα

1 (x), Qα
2 (x), . . .

)
,

α = 1, 2, are linearly independent solutions, depending on the initial values at n = 0,
of the eigenvalue equation xQα(x) = Qα(x)�.
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Fig. 2 QMC � on Z

As in the classical case, we introduce the block tridiagonal matrix

�̆ =

⎡
⎢⎢⎢⎣

G0 N1
M0 G1 N2

M1 G2 N3
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ ,

where each block entry is a 2N 2 × 2N 2 matrix, given by

G0 =
[
B0 A−1
C0 B−1

]
, Mn =

[
An 0
0 C−n−1

]
, n ≥ 0,

Gn =
[
Bn 0
0 B−n−1

]
, Nn =

[
Cn 0
0 A−n−1

]
, n ≥ 1.

The term folding trick comes from the transformation of the original walk �, whose
graph is represented in Fig. 2, to the QMC described by �̆, which is represented by
the folded walk in Fig. 3.

Note that �̆ is a block tridiagonal matrix on Z≥0, thereby we can apply all the
properties we have seen in previous sections. The following polynomials are defined
in terms of (40),

Qn(x) =
[
Q1

n(x) Q1−n−1(x)
Q2

n(x) Q2−n−1(x)

]
∈ M2N2(C), n ≥ 0, (41)

and these satisfy

xQ0(x) =Q1(x)M0 +Q0(x)G0, Q0(x) = I2N2 ,

xQn(x) =Qn+1(x)Mn +Qn(x)Gn +Qn−1(x)Nn, n = 1, 2, . . .

The leading coefficient of Qn(x) is always a nonsingular matrix. Moreover, for

R̆n :=
[
Rn 0N2

0N2 R−n−1

]
, n ≥ 0, Ĕ0 :=

[
E0 R0A−1R−1−1

R−1C0R
−1
0 E−1

]
,

Ĕn :=
[
En 0N2

0N2 E−n−1

]
, n ≥ 1,
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Fig. 3 Folded walk of � on Z≥0 × {1, 2} given by �̆

we see that the block matrices of �̆ satisfy the conditions (39) for n ≥ 0 :

M∗
n R̆

∗
n+1 R̆n+1 = R̆∗n R̆nNn+1, R̆nGn = Ĕn R̆n,

where matrices R̆n are non-singular and Ĕn are Hermitian for all n ≥ 0. Defining

�̆ j := R̆∗j R̆ j ∈ M2N2(C), j = 0, 1, 2, . . . ,

the correspondence between �̆ j and � j is

�̆ j :=
[

� j 0N2

0N2 �− j−1

]
.

By Dette et al. [15] [see also (14)], there exists a weight matrix W leading to the
Karlin–McGregor formula for �̆ :

�̆
(n)
j i = �̆ j

∫
R

xnQ∗j (x)dW (x)Qi (x). (42)

Oncewe have found theweightmatrix appearing on (42), we can also obtain the blocks
�

(n)
j i of the original walk �. The key for this operation is the following proposition:

Proposition 8.1 Assume that � is a QMC of the form (38). The relation between �̆
(n)
i j

and �
(n)
i j is

�̆
(n)
j i =

[
�

(n)
j i �

(n)
j,−i−1

�
(n)
− j−1,i �

(n)
− j−1,−i−1

]
, i, j ∈ Z≥0. (43)
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Proof Since �̆ j i = 02d2 for |i − j | > 1, it is easy to see that (43) holds for n = 1.
So, suppose that (43) is valid for some n, then

�̆
(n+1)
j i = [�̆�̆n] j i =

∞∑
k=0

�̆ jk�̆
(n)
ki = �̆ j, j−1�̆(n)

j−1,i + �̆ j j �̆
(n)
j i + �̆ j, j+1�̆(n)

j+1,i

= Mj−1�̆(n)
j−1,i + G j �̆

(n)
j i + N j+1�̆(n)

j+1,i .

By the induction hypothesis and the result above,

�̆
(n+1)
j i

=
[
A j−1 0
0 C− j

][
�

(n)
j−1,i �

(n)
j−1,−i−1

�
(n)
− j,i �

(n)
− j,−i−1

]
+
[
Bj 0
0 B− j−1

][
�

(n)
j,i �

(n)
j,−i−1

�
(n)
− j−1,i �

(n)
− j−1,−i−1

]

+
[
C j+1 0
0 A− j−2

][
�

(n)
j+1,i �

(n)
j+1,−i−1

�
(n)
− j−2,i �

(n)
− j−2,−i−1

]

=
[

A j−1�(n)
j−1,i + Bj�

(n)
j,i + C j+1�(n)

j+1,i A j−1�(n)
j−1,−i−1 + Bj�

(n)
j,−i−1 + C j+1�(n)

j+1,−i−1
C− j�

(n)
− j,i + B− j−1�(n)

− j−1,i + A− j−2�(n)
− j−2,i C− j�

(n)
− j,−i−1 + B− j−1�(n)

− j−1,−i−1 + A− j−2�(n)
− j−2,−i−1

]

=
[

�
(n+1)
j i �

(n+1)
j,−i−1

�
(n+1)
− j−1,i �

(n+1)
− j−1,−i−1

]
.

��
Note that we can evaluate �̆

(n)
j i by (42) and then extract the block �

(n)
j i as in (43).

Further, for a density operator ρ ∈ MN (C), we have

p ji;ρ(n) = Tr
(
�

(n)
j i ρ
)
= Tr

([
�

(n)
j i 0
0 0

][
ρ

0

])
= Tr

([
IN2 0
0 0

]
�̆

(n)
j i

[
IN2 0
0 0

] [
ρ

0

])
.

However, we would like to obtain the probability above avoiding the evaluation of
�̆

(n)
j i . This can be done via a generalization of the Karlin–McGregor formula on Z≥0.

We proceed as follows: first, write the decomposition

dW (x) =
[
dW11(x) dW12(x)
dW21(x) dW22(x)

]
,

where dW21(x) = dW ∗
12(x), since dW (x) is positive definite. Then one has for i, j ∈

Z≥0,

�̆
(n)
j i = �̆ j

∫
R

xnQ∗j (x)dW (x)Qi (x)

41=
[
� j 0
0 �− j−1

] ∫
R

xn
[
Q1

j (x) Q1− j−1(x)
Q2

j (x) Q2− j−1(x)

]∗ [
dW11(x) dW12(x)
dW ∗

12(x) dW22(x)

] [
Q1

i (x) Q1−i−1(x)
Q2

i (x) Q2−i−1(x)

]

=
2∑

α,β=1

[
� j
∫
R
xnQα∗

j (x)dWαβ(x)Qβ
i (x) � j

∫
R
xnQα∗

j (x)dWαβ(x)Qβ
−i−1(x)

�− j−1
∫
R
xnQα∗− j−1(x)dWαβ(x)Qβ

i (x) �− j−1
∫
R
xnQα∗− j−1(x)dWαβ(x)Qβ

−i−1(x)

]
.
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Joining equation above and Proposition 8.1, we obtain the Karlin–McGregor formula
for a QMC on Z, given by

�
(n)
j i =

2∑
α,β=1

� j

∫
R

xnQα∗
j (x)dWαβ(x)Qβ

i (x), for any i, j ∈ Z, n ≥ 0. (44)

Conversely, if there exist weight matrices dW11(x), dW12(x), dW22(x) such that�
(n)
j i

is of the form (44), then �̆
(n)
j i is of the form

�̆
(n)
j i = �̆ j

∫
R

xnQ∗j (x)dW (x)Qi (x).

The weight matrix

W (x) =
[
W11(x) W12(x)
W ∗

12(x) W22(x)

]
,

is called the spectral block matrix of �.

Remark 8.2 Extending Theorem 5.1 to the QMC on Z, we observe that, since Q1
0 =

Q2−1 = IN and Q2
0 = Q1−1 = 0N , we obtain

∞∑
n=0

p00;ρ(n)

=
∞∑
n=0

Tr
[
�

(n)
00 vec(ρ)

]
= lim

z→1

∞∑
n=0

znTr

[
�0

∫
R

xnQ1∗
0 (x)dW11Q

1
0(x)vec(ρ)

]

= lim
z→1

∞∑
n=0

Tr

[
�0

∫
R

(zx)n(x)dW11(x)vec(ρ)

]
= lim

z→1
Tr

[
�0

dW11(x)

1− zx
vec(ρ)

]

= lim
z→1

z Tr
[
�0B(z−1;W11)vec(ρ)

]
= lim

z→1
Tr [�0B(z;W11)vec(ρ)] ,

where B(z;W ) is the Stieltjes transform of a weight matrix W defined by (12). Anal-
ogously,

∞∑
n=0

p−1,−1;ρ(n) = lim
z→1

Tr
[
�−1B(z;W22)vec(ρ)

]
.

Since we are assuming that �0 and �−1 are positive definite matrices, vertex |0〉 is
ρ-recurrent if and only if

lim
z↓1 Tr (B(z;W11)vec(ρ)) = ∞,
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and vertex |−1〉 is ρ-recurrent if and only if

lim
z↓1 Tr (B(z;W22)vec(ρ)) = ∞.

Let us write the matrix � in the form

� =
[
�− C
A �+

]
, C =

⎡
⎢⎣

...
...

...

0 0 0 · · ·
C0 0 0 · · ·

⎤
⎥⎦ , A =

⎡
⎢⎢⎢⎣

· · · 0 0 A−1
· · · 0 0 0
· · · 0 0 0

...
...

...

⎤
⎥⎥⎥⎦ ,

�+ =

⎡
⎢⎢⎢⎣

B0 C1
A0 B1 C2

A1 B2 C3
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , �− =

⎡
⎢⎢⎢⎣

. . .
. . .

. . .

A−4 B−3 C−2
A−3 B−2 C−1

A−2 B−1

⎤
⎥⎥⎥⎦ . (45)

Our goal now is to write the Stieltjes transforms associated with the weight matrices
Wαβ, α, β = 1, 2, in terms of the Stieltjes transforms associated with W±, the weight
matrices associated with �±. For that we will need the following lemma.

Lemma 8.3 [20] Let B be a Banach space and T1 : Dom(T1) → B and T2 :
Dom(T2)→ B be linear operators with block representations

T1 =
[
A 0
C D

]
and T2 =

[
A C
0 D

]
,

respectively. If A and D are invertible, then T1 and T2 have inverses, given by

T−11 =
[

A−1 0
−D−1CA−1 D−1

]
and T−12 =

[
A−1 −A−1CD−1
0 D−1

]
.

Denote by Pk, P
−
k and P+k the projection maps onto the space generated by site |k〉 on

Z, Z<0 andZ≥0, respectively, andQk = IZ−Pk,Q
−
k = IZ<0−P

−
k ,Q+k = IZ≥0−P

+
k .

Then, applying Lemma 8.3, we obtain

�(I − zQ0�)−1

=
[
�− C
A �+

] [
I − z�− −zC

0 I − zQ+0 �+
]−1

=
[
�− C
A �+

] [
(I − z�−)−1 z(I − z�−)−1C(I − zQ+0 �+)−1

0 (I − zQ+0 �+)−1
]

=
[
�−(I − z�−)−1

[
z�−(I − z�−)−1 + I

]
C(I − zQ+0 �+)−1

A(I − z�−)−1 [zA(I − z�−)−1C +�+](I − zQ+0 �+)−1
]

. (46)
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By the same arguments,

�(I − zQ−1�)−1

=
[
�− C
A �+

] [
I − zQ−−1�− 0

−zA I − z�+
]−1

=
[
�− C
A �+

] [
(I − zQ−−1�−)−1 0

z(I − z�+)−1A(I − zQ−−1�−)−1 (I − z�+)−1
]

=
[
(�− + zC(I − z�+)−1A)(I − zQ−−1�−)−1 C(I − z�+)−1(
I + z�+(I − z�+)−1

)
A(I − zQ−−1�−)−1 �+(I − z�+)−1

]
,

and

C(I − zQ0�
+)−1 =

⎡
⎢⎣

...
...

...

0 0 0 · · ·
C0 0 0 · · ·

⎤
⎥⎦
[
I 0
∗ ∗
]−1

=
⎡
⎢⎣

...
...

0 0 · · ·
C0 0 · · ·

⎤
⎥⎦ .

Denoting

�−(z) :=
∞∑
n=0

zn
(
�−
)n = (I − z�−)−1,

�+(z) :=
∞∑
n=0

zn
(
�+
)n = (I − z�+)−1,

we obtain

F00(z) = zP0�(I − zQ0�)−1P0

=
[
0 0
0 zP+0

[
zA(I − z�−)−1C(I − zQ0�

+)−1 +�+(I − zQ+0 �+)−1
]
P
+
0

]
,

where the only non-null block equals

= z2P+0

⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

· · · A−1�−−1,−2(z) A−1�−−1,−1(z)
· · · 0 0
· · · 0 0

...
...

⎤
⎥⎥⎥⎦

⎡
⎢⎣

...
...

...

0 0 0 · · ·
C0 0 0 · · ·

⎤
⎥⎦

⎤
⎥⎥⎥⎦P

+
0 + F+00(z)

= z2P+0
[
A−1�−−1,−1(z)C0 0

0 0

]
P
+
0 + F+00(z) = z2

[
A−1�−−1,−1(z)C0 0

0 0

]
+ F+00(z).

Note that F00(z) has only one non-null N 2 × N 2 block, due to the projections multi-
plying on the left and on the right-hand side.Without loss of generality, we will rewrite
this kind of blocks as its only non-null block. For instance, we have
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F00(z) = z2A−1�−−1,−1(z)C0 + F+00(z).

Applying twice the equation

Fji (s) = � j j (s)
−1(� j i (s)− δ j i I ), (47)

for F00(z) and F+00(z), we obtain

I −�00(z)
−1 = z2A−1�−−1,−1(z)C0 + I −�+00(z)

−1,

and after some algebra, we get

�00(z) = �+00(z)(I − z2A−1�−−1,−1(z)C0�
+
00(z))

−1. (48)

Analogously,

F−1,−1(z) = zP−−1
[
�−(I − zQ−1�−)−1+ zC(I − z�+)−1A(I − zQ0�

−)−1
]
P
−
−1

= F−−1,−1(z)+ z2C�+00(z)A−1,

thus

�−1,−1(z) = (I − F−1,−1(z))−1 = (I − F−−1,−1(z)− z2C�+00(z)A−1)
−1

= �−−1,−1(z)(I − z2C0�
+
00(z)A−1�

−
−1,−1(z))

−1,

that is,

�−1,−1(z) = �−−1,−1(z)(I − z2C0�
+
00(z)A−1�

−
−1,−1(z))

−1. (49)

Now we use Eq. (46) to obtain

F0,−1(z) = zP0A(I − z�−)−1P−1 = zA−1�−−1,−1(z),

which, together with Eqs. (47) and (48), gives

�0,−1(z)
= �00(z)F0,−1(z) = z�+00(z)(I − z2A−1�−−1,−1(z)C0�

+
00(z))

−1A−1�−−1,−1(z).
(50)

In the same way,

F−1,0(z) = zC0�
+
00(z),

gives
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�−1,0(z)
= �−1,−1(z)F−1,0(z) = z�−−1,−1(z)(I − z2C0�

+
00(z)A−1�−1,−1(z))

−1C0�
+
00(z).

(51)

We notice that the block matrices of both �+ and �− satisfy the conditions of
Eq. (39), thus there are positive weight matrices W± associated with �± for which
the associated polynomials are orthogonal. Then, we can write

�+
0 :=

∫
R

dW+ and �−
−1 :=

∫
R

dW− .

Recalling that (see (15))

� j i (s) = � j

∫
R

1

1− sx
Q∗j (x)dW (x)Qi (x),

and Q1
0 = Q2−1 = IN2 , Q2

0 = Q1−1 = 0N2 , we obtain the following Stieltjes trans-
forms relations

B(z−1;W11) = z�−1
0 �00(z), B(z−1;W22) = z�−1

−1�−1,−1(z),
B(z−1;W12) = z�−1

−1�0,−1(z), B(z−1;W21) = z�−1
−1�−1,0(z),

B(z−1;W+) = z(�+
0 )−1�+00(z), B(z−1;W−) = z(�−

−1)
−1�−−1,−1(z).

Joining with the identities (48)–(51), the new Stieltjes transform identities are
obtained:

�0B(z;W11) = �+
0 B(z;W+)(I − A−1�−

−1B(z;W−)C0�
+
0 B(z;W+))−1,

�−1B(z;W22) = �−
−1B(z;W−)(I − C0�

+
0 B(z;W+)A−1�−

−1B(z;W−))−1,
�0B(z;W12) = �+

0 B(z;W+)(I − A−1�−
−1B(z;W−)C0�

+
0 B(z;W+))−1

×A−1�−
−1B(z;W−),

�−1B(z;W21) = �−
−1B(z;W−)(I − C0�

+
0 B(z;W+)A−1�−

−1B(z;W−))−1

×C0�
+
0 B(z;W+). (52)

Sometimes the operators �+
i and �−

i are equal to the identity operator. In this case,
(52) are reduced to

�0B(z;W11) = B(z;W+)(I − A−1B(z;W−)C0B(z;W+))−1,
�−1B(z;W22) = B(z;W−)(I − C0B(z;W+)A−1B(z;W−))−1,
�0B(z;W12) = B(z;W+)(I − A−1B(z;W−)C0B(z;W+))−1A−1B(z;W−),

�−1B(z;W21) = B(z;W−)(I − C0B(z;W+)A−1B(z;W−))−1C0B(z;W+).

(53)
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The above results will be applied in the following examples so that one is able to
conclude recurrence properties of the walk.

Example 8.4 Let � be a homogeneous OQW on S = Z with matrix representation

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . 0 �L�
�R� 0 �L�

�R� 0 �L�
�R� 0 �L�

�R� 0 �L�
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R =
[

1√
3

0

0 1√
2

]
, L =

[√
2√
3

0

0 1√
2

]
.

In order to study recurrence or transience of the walk for each density operator onC2,

wewill apply the Stieltjes transformation discussed above. The polynomials associated
with � are

Q1
0(x) = I4, Q2

0(x) = 04
Q1−1(x) = 04, Q2−1(x) = I4
xQα

n (x) = Qα
n+1(x)�R� + Qα

n−1(x)�L�, α, β = 1, 2, n ∈ Z.

The weight matrix associated with �+ is

W+(x)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
√
2

4π

[√(
4− 9x2

2

)]

+
21/4

√
3

2π

[√(√
2(2
√
2− 3x2)

)]

+
21/4

√
3

2π

[√(√
2(2
√
2− 3x2)

)]

+
2(x2−1+

√
1−x2)

x2(1−x2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and since the matrices are diagonal, it is easy to see thatW+(x) = W−(x). The weight
matrix W11(x) is obtained by an application of the first formula of (52),

B(z;W11) = B(z;W+)(I − A−1B(z;W+)C0B(z;W+))−1,

and thenwe apply thePerron-Stieltjes inversion formula to obtain the referredmeasure.

After some calculus, we have, for a density matrix ρ =
[
a b
b∗ 1− a

]
on C

2,

∞∑
n=0

p00;ρ(n) =
∞∑
n=0

Tr
(
�

(n)
00 vec(ρ)

)
= lim

z→∞Tr (�00(z)vec(ρ))

= lim
z→∞Tr (B(W11, z)vec(ρ))
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(48)= lim
z→∞

1− a√
1− z2

+ 6a(8
√
2z2 + 3

√
18− 16z2 − 9

√
2)

(3
√
2+√18− 16z2)(18− 16z2)

=
{
∞, if a < 1

3, if a = 1
.

Therefore site |0〉 is ρ-transient for ρ =
[
1 0
0 0

]
and ρ-recurrent otherwise. ��

It is worth recalling that the weight matrix of the example above is a particular case
of Proposition 1.3 of [25].

Example 8.5 Consider a QMC �̂ induced by the block matrix on V = {0, 1, 2, . . .}
given by

� =

⎡
⎢⎢⎢⎣

B r I
t I B r I

t I B r I
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , 0 < r , t < 1,

where B = [σB], σB = V ∗1 · V1 + V ∗2 · V2, where V1 and V2 are the same as in the
example appearing in Sect. 6. For simplicity we assume 0 < a, b, s < 1, a2+b2 < 1.
In this waywe have that Tr(σ (X)) = sTr(X), so we suppose that r+s+t = 1 in order

to have that �̂ is trace-preserving. The matrices Rn =
(√

r
t

)n
satisfy the conditions

of Eq. (39), thus we denote

�n = R∗n Rn =
(r
t

)n
.

By the classical symmetrization

Y = diag(Y0,Y1, . . .), Yi =
(√

r

t

)i−1
I4, i = 0, 1, . . . ,

we obtain

J = Y�Y−1 =

⎡
⎢⎢⎢⎣

B k I
k I B k I

k I B k I
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , k = √r t .

The matrix B is symmetric, thus we can apply the spectral theorem to get

B = UDU∗, D = s

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1− 2a2 − 2b2 0
0 0 0 1− 2a2 − 2b2

⎤
⎥⎥⎦ ,
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where

U =
√
2

2

⎡
⎢⎢⎢⎢⎣

1 a√
a2+b2 − b√

2a2+b2 −
ab√

2a2+b2√a2+b2
0 b√

a2+b2
2a√

2a2+b2 − b2√
2a2+b2√a2+b2

0 b√
a2+b2 0

√
2a2+b2√
a2+b2

1 − a√
a2+b2

b√
2a2+b2

ab√
2a2+b2√a2+b2

⎤
⎥⎥⎥⎥⎦

,

which gives

H(x)

:= U

⎡
⎢⎢⎢⎢⎣

(s−x)2
k2

− 4 0 0 0

0 (s−x)2
k2

− 4 0 0

0 0 (s(1−2a2−2b2)−x)2
k2

− 4 0

0 0 0 (s(1−2a2−2b2)−x)2
k2

− 4

⎤
⎥⎥⎥⎥⎦
U∗,

and then the associated weight matrix is [17]

dW (x) = 1

4πk(a2 + b2)

×

⎛
⎜⎜⎝[w1(x)]+

⎡
⎢⎢⎣
2a2 + b2 ab ab b2

ab b2 b2 −ab
ab b2 b2 −ab
b2 −ab −ab 2a2 + b2

⎤
⎥⎥⎦

+ [w2(x)]+

⎡
⎢⎢⎣

b2 −ab −ab −b2
−ab 2a2 + b2 −b2 ab
−ab −b2 2a2 + b2 ab
−b2 ab ab b2

⎤
⎥⎥⎦

⎞
⎟⎟⎠ dx,

where

w1(x) =
√
4− (s − x)2

k2
, w2(x) =

√
4− (s(1− 2a2 − 2b2)− x)2

k2
.

Note that we can rewrite the weight matrix in terms of w1(x), w2(x) and B by

dW (x) = w1(x)

4πk(a2 + b2)

(
(2a2 + 2b2 − 1)I4 + 1

s
B

)

+ w2(x)

4πk(a2 + b2)

(
I4 − 1

s
B

)
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= 1

2kπ
U

⎡
⎢⎢⎣
[w1(x)]+

[w1(x)]+
[w2(x)]+

[w2(x)]+

⎤
⎥⎥⎦U∗, (54)

whose support is given by

R : = supp(dW ) = {y ∈ R : 1
k
(y I4 − B) has an eigenvalue in [−2, 2]}

= [−2k + s(1− 2a2 − 2b2), s + 2k]. (55)

The Stieltjes transform of W is

B(z;W ) =
∫
R

1

2kπ
U

⎡
⎢⎢⎢⎣

w1(x)
z−x

w1(x)
z−x

w2(x)
z−x

w2(x)
z−x

⎤
⎥⎥⎥⎦U∗dx, (56)

where the integrals of the elements on the diagonal are

∫
R

w1(x)dx

z − x
= π

k
(z − s − i

√
4k2 − (s − z)2) := 2kπh1(z),

∫
R

w2(x)dx

z − x
= π

k
(z − s(1− 2a2 − 2b2)− i

√
4k2 − (s(1− 2a2 − 2b2)− z)2)

:= 2kπh2(z). (57)

The transience of this walk can be computed by using Theorem 16:

lim
z↓1 Tr

[
z vec−1

(
B(z;W )vec

([
u v

v∗ 1− u

]))]
= 1− s +√s2 − 2s + 1− 4k

2k2

= r + t +√r2 − 2r t + t2

2r t

=
{
1/r , if t ≥ r

1/t, otherwise.

Since this limit is valid for any density operator ρ =
[
u v

v∗ 1− u

]
∈ M(C2), we

conclude that this QMC is transient.
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Let us extend the above QMC to the real line: now the set of vertices is V = Z and
the new QMC � has matrix representation

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

t I B r I
t I B r I

t I B r I
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Take the splitting of Eq. (45) applied to � :

� =
[
�− C
A �+

]
, C =

⎡
⎢⎣

...
...

...

0 0 0 · · ·
r I 0 0 · · ·

⎤
⎥⎦ , A =

⎡
⎢⎢⎢⎣

· · · 0 0 t I
· · · 0 0 0
· · · 0 0 0

...
...

...

⎤
⎥⎥⎥⎦ .

The weight matrix associated with �+ is W+ = W , where W is given by (54) and
with support R given by (55). We have�+

0 = �−
−1 = I4 and the Stieltjes transform of

W+ is given by (56) and (57). The operators �0 = R∗0 R0 and �−1 = R∗−1R−1 are the
ones obtained by Eq. (39), giving �0 = I and �−1 = A−1C = r

t I . For simplicity,
assume s = 2k. Then, we apply formula (52) to obtain

B(z;W11) = U

⎡
⎢⎢⎣
l1(z)

l1(z)
l2(z)

l2(z)

⎤
⎥⎥⎦U∗,

where

l1(z) =
√
z(4k − z)

z(z − 4)
, l2(z) =

√−z(z + 4k)

z(4k − z)
,

and we evaluate

B(z;W22) = t

r
B(z;W11)

B(z;W21) = B(z;W12) = t B(z;W11)B(z;W+)

= tU

⎡
⎢⎢⎣
h1(z)l1(z)

h1(z)l1(z)
h2(z)l2(z)

h2(z)l2(z)

⎤
⎥⎥⎦U∗,
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where hi (z), i = 1, 2 are defined by (57). Applying [16, Eq. (1.10)] we obtain the
spectral measure of �,

dW (x) =
[
U 0
0 U

] [
D11(x) D12(x)
D12(x)

t
r D11(x)

] [
U∗ 0
0 U∗

]
,

where

D11(x) = diag

(
−1[√

x(4k − x)
]
+

,
−1[√

x(4k − x)
]
+

,
−1[√−x(4k + x)

]
+

,
−1[√−x(4k + x)

]
+

)
,

D12(x)

= diag

(
2k − x

2r
[√

x(4k − x)
]
+

,
2k − x

2r
[√

x(4k − x)
]
+

,
−2k − x

2r
[√−x(4k + x)

]
+

,
−2k − x

2r
[√−x(4k + x)

]
+

)
.

The procedure to obtain the spectral measure for � was inspired by the classical case.
The reader can note that the expressions appearing in (53) are analogous to the classical
reasoning. However, some of the transition matrices do not commute, thus the order
of the operators in such formulae has to be maintained.

Now, for any density operator on C
2, we have by Remark 8.2 that

∞∑
n=0

p00;ρ(n) = lim
z→1

Tr
(
�−1

0 B(z;W11)vec(ρ)
)
= lim

z→1

1√
z(z − 4k)

=
{

1√
1−4k , if k < 1/4,

∞, i f k = 1/4.

That is, the walk � (for s = 2k) is recurrent only when k = 1/4 and this happens for
t = r = 1/4. For the general case we can follow the same steps to obtain

∞∑
n=0

p00;ρ(n) = lim
z→1

1√
z2 − 2sz + s2 − 4k2

=
{

1√
1−2s+s2−4k2 , if s �= 1− 2k,

∞, i f s = 1− 2k.

Since we are assuming r + s + t = 1 and k = √
r t, recurrence occurs when 0 =

r − 2
√
r t + t = (

√
r −√t)2, that is, when t = r . ��

Remark 8.6 The example in Sect. 6 is such that σB+t2 I < I , thus
∑∞

j=0 p0 j;ρ(n) < 1
for some initial density operator ρ. This case is interpreted as a walk with a ver-
tex named |−1〉 , which is an absorbing vertex of the QMC, giving the correction∑∞

j=−1 p0 j;ρ(n) = 1. Now we point out the difference that an absorbing vertex on
the QMC can take: the QMC � acting on Z≥0 has an absorbing vertex on site |0〉 ,
and it is transient for any choice of t, r , s, a, b. On the other hand, for a, b, s fixed and
t = r = 1− s, the extended QMC on the integer line is always recurrent.
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9 The case of non-symmetric weight matrices

As discussed previously, Theorem 4.1 describes the fundamental conditions regarding
the existence of a positive weight matrix associated with a given QMC. Then, a natural
question arises: is there anything that can be done in the case ofQMC that do not satisfy
such conditions, perhaps involving a non-symmetric matrix of measures? Based on
[34], we are in fact able to discuss a non-general Karlin–McGregor formula for � by
using a different kind of polynomial orthogonality, where the term non-generalmeans
that we obtain the (i, j)-th block entry of �n only for i = 0, which will allow us to
obtain certain developments for the recurrence problems we are interested in.

We will be mostly interested in homogeneous QMCs, that is, operators � of the
form (13), such that An = A, Bn = B,Cn+1 = C, ∀n = 0, 1, 2, . . . for some
A, B,C ∈ MN2(C). For instance, if we have a homogeneous OQW with

A = 1√
3

[
1 0
−1 1

]
, C = 1√

3

[
1 1
0 1

]
, B = 02,

then A0C1 is not Hermitian, consequently it is not possible to obtain a proper positive
definite weight matrix W that makes the corresponding matrix-valued polynomials
orthogonalwith respect toW .However,wemay consider another kind of orthogonality
for the associated polynomials in terms of a reasoning seen in [34]. For a homogeneous
QMC, Theorem 3.4 of [34] assures the existence of a weight matrix W supported on
some subspace � of C such that the polynomials Qn(x), defined recursively by

Q0(x) = IN2 , Q−1(x) = 0N2 ,

xQn(x) = Qn+1(x)An + Qn(x)Bn + Qn−1(x)Cn, (58)

satisfy

∫
�

xkdW (x)Qn(x) = 0, (59)

for all integers n > k ≥ 0. Polynomials {Qn(x)}n≥0 for which there exists a weight
matrix W satisfying (59) are called semi-orthogonal polynomials with respect to W .
Since this concept of orthogonality is weaker, the Karlin–McGregor formula for non-
symmetric QMCs will be weaker as well. Nevertheless, we will be able to obtain an
application of such construction for the problem of recurrence.

For completeness, let us derive the Karlin–McGregor formula for non-symmetric
weight matrices with the necessary adaptations with respect to semi-orthogonality.We
have xnQ(x) = Q(x)�n, where Q(x) = (Q0(x), Q1(x), . . .). Component-wise,

xnQr (x) =
∞∑
k=0

Qk(x)�
(n)
kr . (60)

Fix i, j ∈ Z≥0 vertices. Fix a time parameter n with the extra condition n ≥ i, then
multiply Q∗j (x) on the left-hand side of (60)with r = j+i and integrate on� to obtain
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∫
�

xnQ∗j (x)dW (x)Q j+i (x) =
∞∑
k=0

∫
�

Q∗j (x)dW (x)Qk(x)�
(n)
k, j+i

(59)=
j∑

k=0

∫
�

Q∗j (x)dW (x)Qk(x)�
(n)
k, j+i . (61)

Hypothesis n < i in this situation would make the integral on the left-hand side of
(61) to vanish, by an application of (59). The same idea is applied to the right-hand
side of (61), where we want the sum of integrals to become only one term, which
happens for the particular case j = 0:

∫
�

xnQ∗0(x)dW (x)Qi (x) =
∫

�

Q∗0(x)dW (x)Q0(x)�
(n)
0,i .

Hence, we obtain the Karlin–McGregor Formula for non-symmetric QMCs:

�
(n)
0,i =

(∫
�

dW (x)

)−1 ∫
�

xndW (x)Qi (x), i ∈ Z≥0, n = 0, 1, 2, . . . (62)

This equation gives, for a fixed vertex i ∈ Z≥0, the (0, i)-th block entry of �n for
any time n ≥ 0. The case n ≥ i follows from the construction above and, for n < i,
�

(n)
0,i = 0d2 since � is block tridiagonal and the right-hand side of Eq. (62) vanishes

by Eq. (59). Therefore, we can obtain the probability for the walker to reach site |0〉,
given that it started on site |i〉 with initial state ρ ∈ MN (C), by

p0i;ρ(n) = Tr
(
�

(n)
0,i ρ
)
= Tr

((∫
�

dW (x)

)−1 ∫
�

xndW (x)Qi (x)ρ

)
, i ∈ Z≥0,

n = 0, 1, 2, . . . .

Regarding the case of a finite number of vertices V = {0, 1, 2, . . . , N }, we proceed
as expected: the eigenvalues of � are the roots of the determinant of

RN+1(x) = QN (x)(x I − BN )− QN−1(x)CN ,

where {Qn(x)}Nn=0 are the polynomials associated with �. Suppose that � describes
a homogeneous QMC, then {Qn(x)}Nn=0 are semi-orthogonal with respect to the mea-
sure

Wk = lim
z→λk

(λk − z) ([�] − z I )−100 ,

that is,

τ∑
k=1

λikWkQ j (λk) = 0,
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for j > i, where τ is the number of eigenvalues of � counting multiplicities. The
Karlin–McGregor formula for this kind of QMC is then

�
(n)
0 j =

τ∑
k=1

λnkWkQ j (λk).

Example 9.1 Let � be the homogeneous OQW with 3 vertices defined by

� =
⎡
⎣

0 �C� 0
�A� 0 �C�
0 �A� 0

⎤
⎦ , A = 1√

3

[
1 1
0 1

]
C = 1√

3

[
1 0
−1 1

]
. (63)

The polynomials associated with � are

Q0(x) = I4, Q1(x) = x�A�−1, Q2(x) = xQ1(x)�A�−1 − �C��A�−1.

Hence the eigenvalues of � are precisely the roots of

R3(x) = xQ2(x)− Q1(x)�C�,

which are

λ1 = 0, λ2 = −
√
2

3
, λ3 =

√
2

3
, λ4 = −

√
3

3
, λ5 =

√
3

3
,

λ6 = −
√
2
√
6− 3

6
+ i

√
2
√
6+ 3

6
, λ7 =

√
2
√
6− 3

6
− i

√
2
√
6+ 3

6
,

λ8 = −
√
2
√
6− 3

6
− i

√
2
√
6+ 3

6
, λ9 =

√
2
√
6− 3

6
+ i

√
2
√
6+ 3

6
.

Joining the results of Grünbaum [19] and Zygmunt [34], we obtain

9∑
k=1

Q∗i (λk)WkQ j (λk) =
{
04, if i > j

Fi j ∈ M4(C), not necessarily null if i ≤ j
,

where
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Wk = lim
z→λk

(λk − z)([�] − z I12)
−1
00

= lim
z→λk

⎛
⎜⎜⎜⎜⎝

(λk − z)
1

81z6 − 3z2 − 2

×

⎡
⎢⎢⎢⎢⎣

− 81z6+9z4−2z2−2
z − 27z4+6z2−1

3z − 27z4+6z2−1
3z −z(9z2 + 5)

27z4+6z2−1
3z − 729z8−162z6−54z4−z2+2

z(9z2−2)
z(81z4+27z2−14)

9z2−2
21z2+1

3z
27z4+6z2−1

3z
z(81z4+27z2−14)

9z2−2 − 729z8−162z6−54z4−z2+2
z(9z2−2)

21z2+1
3z

−z(9z2 + 5) − 21z2+1
3z − 21z2+1

3z −z(81z4 + 7)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

.

Those values are

W1 = 1

6

⎡
⎢⎢⎣

6 1 1 0
−1 3 0 1
−1 0 3 1
0 −1 −1 0

⎤
⎥⎥⎦ , W2 = W3 = 1

8

⎡
⎢⎢⎣
0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎤
⎥⎥⎦ ,

W4 = W5 = 1

12

⎡
⎢⎢⎣

1 1 1 2
−1 −1 −1 −2
−1 −1 −1 −2
2 2 2 4

⎤
⎥⎥⎦ ,

W6 = W7 =

⎡
⎢⎢⎢⎢⎢⎣

3−i√5
−90+6i√15

− 1
12 − 1

12
7−i√15

−30+18i√15

− 1
12

5
30−6i√15

5
30−6i√15

−15−7i√15
−180+12i√15

− 1
12

5
30−6i√15

5
30−6i√15

−15−7i√15
−180+12i√15

7−i√15
−30+18i√15

15+7i√15
−180+12i√15

15+7i√15
−180+12i√15

11+3i√15
−30+18i√15

⎤
⎥⎥⎥⎥⎥⎦

,

W8 = W9 =

⎡
⎢⎢⎢⎢⎢⎣

−3−i√5
−90+6i√15

− 1
12 − 1

12
−7−i√15
−30+18i√15

− 1
12 − 5

30−6i√15
− 5

30−6i√15
15−7i√15

−180+12i√15

− 1
12 − 5

30−6i√15
− 5

30−6i√15
15−7i√15

−180+12i√15
−7−i√15
−30+18i√15

−15+7i√15
−180+12i√15

−15+7i√15
−180+12i√15

−11+3i√15
30+18i√15

⎤
⎥⎥⎥⎥⎥⎦

.

A simple calculation shows that

dW (x) =
9∑

k=1
Wk = I4.
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Therefore the Karlin–McGregor formula for this OQW is

�
(n)
0,i =

(∫
�

dW (x)

)−1 ∫
�

xndW (x)Qi (x)

=
9∑

k=1
λnkWkQi (λk), i = 0, 1, 2, n ≥ i .

For instance, we have

�
(10)
0,2 =

9∑
k=1

λnkWkQ2(λk) = 1

59049

⎡
⎢⎢⎣

63 −45 −45 54
−27 26 10 −45
−27 10 26 −45
90 −27 −27 63

⎤
⎥⎥⎦ ,

which agrees with the corresponding block of �10. The probability of the walker to
be on site |0〉 after 10 steps, given that it started on site |2〉with initial density operator
ρ =

[
a b
b∗ 1− a

]
is

p02;ρ(10) = Tr

⎡
⎢⎢⎣vec−1

⎛
⎜⎜⎝

1

59049

⎡
⎢⎢⎣

63 −45 −45 54
−27 26 10 −45
−27 10 26 −45
90 −27 −27 63

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a
b
b∗

1− a

⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎤
⎥⎥⎦

= 13+ 4a − 16Re(b)

6561
.

Analogously,

p02;ρ(2) = 1+ 4a − 4Re(b)

9
, p02;ρ(3) = 0, p02;ρ(4) = 1

27
.

However, the general Karlin–McGregor formula does not apply for this OQW. Indeed,
we have

�
(2)
2,2 =

1

9

⎡
⎢⎢⎣
0 0 0 1
0 0 −1 1
0 −1 0 1
1 −1 −1 1

⎤
⎥⎥⎦ ,

and

1

18

⎡
⎢⎢⎣
15 37 37 82
24 32 30 18
24 30 32 18
25 29 29 6

⎤
⎥⎥⎦ =

⎛
⎝

9∑
k=1

Q∗2(λk )WkQ2(λk )

⎞
⎠
−1⎛
⎝

9∑
k=1

λ2k Q
∗
2(λk )WkQ2(λk )

⎞
⎠

�= �
(2)
2,2.
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Fig. 4 Eigenvalues of �̌ with 20 vertices

The reason why this is happening is that Q2 and Q0 are not orthogonal, since

9∑
k=1

Q∗0(λk)WkQ2(λk) = 1

4

⎡
⎢⎢⎣
−2 4 4 28
−8 −21 −21 −62
−8 −21 −21 −62
4 18 18 68

⎤
⎥⎥⎦ .

Let us study now the case of a larger number of sites n. Consider

� =

⎡
⎢⎢⎢⎢⎢⎣

0 �C�
�A� 0 �C�

. . .
. . .

. . .

�A� 0 �C�
�A� 0

⎤
⎥⎥⎥⎥⎥⎦
∈ M4n(C),

where A,C are defined by (63). The compact form of � is given by

�̌ =

⎡
⎢⎢⎢⎢⎢⎣

0 C
A 0 C

. . .
. . .

. . .

A 0 C
A 0

⎤
⎥⎥⎥⎥⎥⎦
∈ M3n(C), A = 1

3

⎡
⎣

1 0 0
−1 1 0
1 −2 1

⎤
⎦ , C = 1

3

⎡
⎣
1 2 1
0 1 1
0 0 1

⎤
⎦ .

If we evaluate the eigenvalues λ1, . . . , λ3n of �̌ and put them on the complex plane, the
outcome is a graph of the form represented in Fig. 4. Each dot represents an eigenvalue
of �̌. ��
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Example 9.2 Let � be a homogeneous QMC with 5 vertices defined by

� =

⎡
⎢⎢⎢⎢⎣

�B0� �C1� + �C2� 0 0 0
�A1� + �A2� �B0� �C1� + �C2� 0 0

�A1� + �A2� �B0� �C1� + �C2� 0
�A1� + �A2� �B0� �C1� + �C2�

�A1� + �A2� �B0�

⎤
⎥⎥⎥⎥⎦

,

where

B0 =
√
5

5

[
0 0
0 1

]
, C1 =

√
5

5

[
1 0
0 1

]
, C2 =

√
5

5

[
0 0
0 1

]
,

A1 =
√
5

5

[
1 0
−1 1

]
, A2 =

√
5

5

[
1 0
1 1

]
.

In compact form, � becomes

�̌ =

⎡
⎢⎢⎢⎢⎣

B C 0 0 0
A B C 0 0
0 A B C 0
0 0 A B C
0 0 0 A B

⎤
⎥⎥⎥⎥⎦

, B = 1

5

⎡
⎣
0 0 0
0 0 0
0 0 1

⎤
⎦ , A = 1

5

⎡
⎣
2 0 0
0 2 0
2 0 2

⎤
⎦ , C = 1

5

⎡
⎣
1 0 0
0 1 0
0 0 2

⎤
⎦ .

The eigenvalues of �̌ are given by

λ1 = 0, λ2 = −1

5
, λ3 = 1

5
, λ4 = 3

5
, λ5 = −

√
2

5
, λ6 =

√
2

5
,

λ7 = −
√
6

5
, λ8 =

√
6

5
, λ9 = 1

5
− 2

√
3

5
, λ10 = 1

5
+ 2

√
3

5
,

and the weight matrix is given by

W1 =
⎡
⎣
1/3 0 0
0 1/3 0

2/11 0 0

⎤
⎦ , W2 =

⎡
⎣

0 0 0
0 0 0

−1/2 0 1/4

⎤
⎦ , W3 =

⎡
⎣

0 0 0
0 0 0

−8/15 0 1/3

⎤
⎦ ,

W4 =
⎡
⎣

0 0 0
0 0 0
1/6 0 1/4

⎤
⎦W5 =

⎡
⎣

1/4 0 0
0 1/4 0

104+√2
292 0 0

⎤
⎦ ,W6 =

⎡
⎣

1/4 0 0
0 1/4 0

104−√2
292 0 0

⎤
⎦ ,

W7 =
⎡
⎣

1/12 0 0
0 1/12 0

− 17
√
6

20 − 67
30 0 0

⎤
⎦ ,W8 =

⎡
⎣

1/12 0 0
0 1/12 0

− 17
√
6

20 − 67
30 0 0

⎤
⎦ ,

W9 =
⎡
⎣

0 0 0
0 0 0

10529
4818 + 3016

√
3

2409 0 1/12

⎤
⎦ , W10 =

⎡
⎣

0 0 0
0 0 0

10529
4818 − 3016

√
3

2409 0 1/12

⎤
⎦ .
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The polynomials Qn(x) associated with �̌ [see (58)] satisfy (59), that is,

10∑
j=1

λnjW ( j)Qk(λ j ) = 0,

for all integers n > k ≥ 0. As an example, formula (62) gives, for ρ =
[
a b
b∗ 1− a

]
,

that

�̌
(7)
0,3 =

10∑
k=1

λ7kW (k)Q3(λk) = 8

78125

⎡
⎣
52 0 0
0 52 0
907 0 579

⎤
⎦ ⇒ p03;ρ(7) = 4632+ 608a

15625
.

��
Let us now consider the case of infinite vertices. For that we recall that the Stieltjes

transform B(z;W ) associated with a homogeneous QMC � with matrix representa-
tion

� =

⎡
⎢⎢⎢⎣

B C
A B C

A B C
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ ,

where A,C ∈ MN2(C) are non-singular, is given by

B(z;W ) = (z − B − CB(z;W )A)−1. (64)

Similarly, the Stieltjes transform B(z; W̃ ) associated with a QMC �̃ with matrix
representation

�̃ =

⎡
⎢⎢⎢⎣

B0 C
A0 B C

A B C
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ ,

where A0, A,C ∈ MN2(C) are non-singular, is given by

B(z; W̃ ) = (z − B0 − CB(z;W )A0)
−1. (65)

Example 9.3 Take V = Z≥0 and matrices R = L = 1√
2
I2,

B1 =
√
5

5

[
1 0
0 1

]
, B2 =

√
5

5

[
0 0
0 1

]
, R1 =

√
5

5

[
1 0
−1 1

]
, R2 =

√
5

5

[
1 0
1 1

]
.
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We define a QMC on V whose compact form is

�̌ =

⎡
⎢⎢⎢⎢⎢⎣

B0 C
A0 0 C

A 0 C
A 0 C

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎦

, B0 = B̌1 + B̌2, A0 = Ř1 + Ř2, C = Ľ, A = Ř.

Denote by �̌0 the matrix

�̌0 =

⎡
⎢⎢⎢⎣

0 C
A 0 C

A 0 C
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ ,

and W ,W0 the weight matrices associated with �̌ and �̌0, respectively. Using (64)
and (65) we obtain

B(z;W0)(z) = (2z + 2
√
z2 − 1)I3.

and

B(z;W )

= 5

5z2 − 6z + 5

⎡
⎢⎢⎣

2
√
z2 − 1+ 3z − 1 0 0

0 2
√
z2 − 1+ 3z − 1 0

2
(
(25z2−20z−1)√z2−1+25z3−20z2−13z+8

)

5z2−18z+13 0 2
√
z2 − 1+ 3z − 3

⎤
⎥⎥⎦ .

With the Stieltjes transform, we may obtain the associated weight matrix for �̌ by
applying the Perron-Stieltjes inversion formula. A simple calculation shows that the
weight matrix W is given by

W (x) = 5

π(5x2 − 6x + 5)

⎡
⎢⎢⎣

2
√
1− x2 0 0
0 2

√
1− x2 0

2(25x2 − 20x − 1)
√
1− x2

5x2 − 18x + 13
0 2

√
1− x2

⎤
⎥⎥⎦ ,

× x ∈ [−1, 1].

We now have

∫ 1

−1
Q∗i (x)dW (x)Q j (x) = 0, i > j,

thus formula (62) holds.
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Let us now analyze recurrence of the first vertex of both QMCs �̌ and �̌0. By (16),
we are able to conclude whether the walk is recurrent just by considering the Stieltjes
transform associated with the QMC, that is, we do not need to obtain the explicit
weight matrix associated with the referred QMC. Above, we determined the weight
matrix for completeness, and in order to write the transitions probabilities of the walk
described by � using the Karlin–McGregor formula.

Applying limits to the Stieltjes transform B(z;W0) and B(z;W ) associated with
�̌0 and �̌, respectively, we obtain

lim
z→1

Tr(B(z,W0)ρ) = lim
z→1

2z + 2
√
z2 − 1 = 2,

and using l’Hospital’s rule we get

lim
z→1

Tr(B(z,W )ρ) = ∞,

for any density operator ρ ∈ M2(C). Therefore, by (16), the first vertex |0〉 is transient
for �̌0 and recurrent for �̌. ��

Example 9.4 Take V = Z≥0 and matrices

R1 = 1√
7

[
1 0
−1 √3

]
, R2 = 1√

7

[
1 0
1
√
3

]
, L1 = 1√

7

[√
3 0
0 1

]
. (66)

We define a QMC on V whose compact form is

�̌ =

⎡
⎢⎢⎢⎣

0 C
A 0 C

A 0 C
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , A = Ř1 + Ř2, C = Ľ1.

The Stieltjes transform associated with �̌ satisfies

B(z;W )(z I3 − CB(z;W )A) = I3,

for which a solution is

B(z;W )

= 7

12

⎡
⎢⎢⎣

7z − i
√−49z2 + 24 0 0

0 7z − i
√−49z2 + 24 0

−343z3 + 140z + (49z2 − 8)
√
49z2 − 24

49z2 − 32
0 7z − i

√−49z2 + 24

⎤
⎥⎥⎦ .

(67)
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The weight matrix associated with �̌ is then

W (x) = 7

12

⎡
⎢⎢⎣

√
24− 49x2 0 0

0
√
24− 49x2 0

− (49x2 + 8)
√
24− 49x2

49x2 − 32
0

√
24− 49x2

⎤
⎥⎥⎦ ,

× x ∈
[
−2
√
6

7
,
2
√
6

7

]
.

The polynomials associated with �̌, Qk(x), satisfy

∫ 2
√
6

7

− 2
√
6

7

xi dW (x)Q j (x) = 0, i > j,

thus formula (62) holds. Finally, we conclude that vertex |0〉 is transient, since
∞∑
n=0

p00;ρ(n)

= lim
z→1

Tr (B(z,W )ρ)

= 49z − 7
√
49z2 − 24

12
+ 7a

12

−343z3 + 140z + (49z2 − 8)
√
49z2 − 24

49z2 − 32

= 119+ 7a

102
<∞.

��
Example 9.5 Let us consider the QMC on V = Z≥0 whose compact form is

�̌ =

⎡
⎢⎢⎢⎣

C C
A 0 C

A 0 C
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , A = Ř1 + Ř2, C = Ľ1,

where

R1 = 1√
7

[
1 0
−1 √3

]
, R2 = 1√

7

[
1 0
1
√
3

]
, L1 = 1√

7

[√
3 0
0 1

]
.

This QMC is similar to the one on Example 9.4 with the difference that the first block
is replaced by C . Now �̌ is trace preserving and the associated Stieltjes transform to
�̌, B(z;W ), satisfies

B(z;W )(z I3 − C − CB(z; W̃ )A) = I3,
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where B(z; W̃ ) is the associated Stieltjes transform to the QMCon Example 9.4. Thus,
we obtain

B(z;W )

=

⎡
⎢⎢⎣

7
6
7z−6+√49z2−24

5−7z 0 0

0 7
2
−7z+2√3−√49z2−24

7
√
3z−9 0

343z3−196z2−126z+64+(49z2−28z−4)√49z2−24
160−384z−21z2+588z3−343z4 0 1

2
7z−2+√49z2−24

1−z

⎤
⎥⎥⎦ .

Therefore,

∞∑
n=0

p00;ρ(n) = lim
z→1

Tr (B(z;W )ρ)

= 7

3

(343z3 + (49z2 − 20)
√
49z2 − 24− 182z)a

343z3 − 245z2 − 224z + 160

+ 1

2

7z − 2+√49z2 − 24

1− z
= ∞,

for any density operator ρ =
[
a b
b∗ 1− a

]
. Hence, this QMC is recurrent. ��

Applying the folding trick to anonpositivemeasure. It isworth noting that the folding
trick can also be applied to homogeneous QMCs whose matrix representations are not
symmetrizable. Then, we can examine the associated recurrence problem. In fact, let
us recall Eq. (48):

�00(z) = �+00(z)(I − z2A−1�−−1,−1(z)C0�
+
00(z))

−1.

In order to analyze recurrence of site |0〉 of a given QMC on Z, we have to calculate∑∞
n=0 p00;ρ(n) =∑∞

n=0 Tr(�
(n)
00 ρ) for each density operator ρ. This can be done by

using Eq. (48) in the following way:

∞∑
n=0

�
(n)
00

= lim
z↑1 �00(z) = lim

z↑1 �+
0 B(z;W+)(I − A−1�−

−1B(z;W−)C0�
+
0 B(z;W+))−1,

(68)

where the Stieltjes transform appearing on the right-hand side are obtained by applying
(17). Therefore, we have the following result, which gives a recurrence criterion for
a tridiagonal homogeneous QMC with non-singular coins above and below the main
diagonal.
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Proposition 9.6 Fix N ∈ {1, 2, 3, . . .}, A, B,C operators on C
N2

with A,C non-
singular such that

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

A B C
A B C

A B C
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

,

is a QMC on Z. Given a density operator ρ ∈ MN (C), a vertex i ∈ Z is ρ-recurrent
if and only if

lim
z↑1 Tr

[
B(z;W+)(I − A�+

0 B(z;W+)C�+
0 B(z;W+))−1ρ

]
= ∞, (69)

where B(z;W+) is the solution of (64). Therefore a QMC � is recurrent if and only
if (69) is satisfied for any density operator ρ ∈ MN (C).

Proof Vertex |0〉 is ρ-recurrent if and only if

∞∑
n=0

Tr
(
�

(n)
00 ρ
)
= ∞.

Since the QMC is homogeneous we have�+ = �−, hence (68) gives the equivalence
between recurrence and Eq. (69). ��
Example 9.7 We will extend the QMC on Z≥0 given by Example 9.4 to Z. Let � be a
homogeneous QMC with compact matrix representation given by

�̌ =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .

A 0 C
A 0 C

A 0 C
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

, A = Ř1 + Ř2, C = Ľ1,

where R1, R2 and L1 are given by (66). The Stieltjes transform associated with �+ is
the same as the one given by (67). Therefore, according to Proposition 9.6, we have

∞∑
n=0

p00;ρ(n)

= lim
z→1

Tr(B(z;W+)(I − A�+
0 B(z;W+)C�+

0 B(z;W+))−1ρ)
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= lim
z→1

Tr

⎛
⎜⎜⎝7

⎡
⎢⎢⎣

1√
49z2−24 0 0

0 1√
49z2−24 0

−343z3+84z+(49z2+8)√49z2−24
49z2−32 0 1√

49z2−24

⎤
⎥⎥⎦

⎡
⎣

a
2b

1− a

⎤
⎦

⎞
⎟⎟⎠

= lim
z→1

Tr

⎛
⎜⎜⎝

⎡
⎢⎢⎣

7a√
49z2−24
14b√

49z2−24
7a−343z

3+84z+(49z2+8)√49z2−24
49z2−32 + 7(1−a)√

49z2−24

⎤
⎥⎥⎦

⎞
⎟⎟⎠

= lim
z→1

7a
−343z3 + 84z + (49z2 + 8)

√
49z2 − 24

49z2 − 32
+ 7√

49z2 − 24

= 182a + 595

425
,

for any density operator ρ =
[
a b
b∗ 1− a

]
. Therefore, we conclude that this QMC is

transient. ��
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