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Abstract
In order to study the controlled remote implementation of quantum operation (RIO for
short) for multiple partially unknown quantum operations, we first propose a scheme
in the traditional sense for RIO of a partially unknown operation via the control of
many agents in a network, which triggers that a new RIO scheme to teleporting mul-
tiple partially unknown quantum operations to a distant receiver via the control of
one agent is put forwards. After that, we extend the above new method to the RIO of
multiple partially unknown quantum operations via the control ofmany agents in a net-
work. In the extended protocol, as long as all agents cooperate, the receiver can restore
the partially unknown quantum operation acting on each qubit. However, even if one
agent does not cooperate, the receiver cannot completely restore the partially unknown
quantum operation acting on each qubit. This methodworks essentially through entan-
gling quantum information during implementation, which greatly reduces the required
auxiliary qubit resources, local operations and classical communication. Finally, the
above scheme is further generalized to transmitting multiple partially unknown quan-
tum operation-string for many distant receivers via the control of many agents in a
network.
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1 Introduction

As one of the remarkable characteristics of quantum mechanics, quantum entangle-
ment is a very important resource of quantum computation and quantum information.
On the one hand, entanglement can improve the overall stability and against fluc-
tuations of the measurement settings in qubit sytems [1–3]. On the other hand,
entanglement can be utilized to transfer informations. A canonical example of entan-
glement assisted processes is provided by quantum state teleportation (QST) [4],where
an unknown quantum state is transmitted from the sender to the remote receiver in
a completely different way compared with a classical state, without teleporting the
state carrier itself. Another important application of quantum entanglement, which
correlates closely to QST, is quantum operation teleportation (QOT). The first QOT
protocol was proposed by Huelga et al. [5], where QOT is also called the remote
implementation of quantum operation (RIO), and may be understood as that a sender
transfers an unknown quantum operation belonging to a local system to a receiver
in a remote system without physically sending the device. Remote implementation
of a quantum operation means that this unknown quantum operation performed on
the local system is teleported and simultaneously acts on an unknown state belonging
to the remote system. Obviously, the RIO is different from simple teleportation of
quantum operation without action, and it is also not an implementation of nonlocal
quantum operation [6, 7]. After Huelga et al’s pioneering work, a series of works on
RIO have appeared both in theoretical [8–17] and experimental [18–20].

In 2002, Huelga, Plenio and Vaccaro (HPV) [21] proposed the idea of telepor-
tation of angles, which is a special remote control of restricted sets of quantum
operations. Subsequently, Wang [8] proposed and proved protocols of remote imple-
mentations of partially unknown quantum operations of multiqubits via deducing the
general restricted sets of quantum operations and found the unified recovery opera-
tions. It is useful and interesting to investigate the remote implementations of partially
unknown quantum operations because they consume less overall resources than the
ones of the completely unknown quantum operations do, and such RIOs can satisfy the
requirements of some practical applications. Here, the “partially unknown”quantum
operations are thought of as those belonging to some restricted sets that satisfy some
given restricted conditions. Note that the restricted sets of quantum operations are still
very large sets of unitary transformations because their unknown elements take con-
tinuous values, which had been seen in Refs. [8, 10, 11, 21]. In the simplest case of one
qubit, two kinds of restricted sets of quantum operations are, respectively, a set of diag-
onal operations and a set of off-diagonal operations [21]. For the case of multiqubits,
the general forms of restricted sets of quantum operations were obtained in Ref. [8]
and every row and column of these operations have only one nonvanishing element.
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At present, some significant progress has been made on the remote implementation of
partially unknown quantum operations [8, 10, 11, 13, 20–25].

It must be emphasized that the literatures [10–12, 16, 22, 24] mentioned above
are also RIO controlled schemes. In these controlled RIO protocols, not only does
a controller play such a role that the quantum channel between sender and receiver
is opened by his or her operations, but also the controller’s measurement (classical
information) affects the form of the sender’s operations or the receiver’s operations.
This implies that the controller’s action contains two aspects of “start up”and “autho-
rization”so that the RIOs can be faithfully and determinedly completed. Based on this
fact, we can say the controlled RIO protocol definitely enhances the security of remote
quantum information processing and communications. Startup of quantum channel in
the controlled RIO protocol is easy to understand. However, from our point of view,
the necessity of the authorization from controllers and the variations of its ways in
the controlled RIO protocol, that is, why, how, and when to distribute the passwords
(carry out authorization) by the controllers, this need to be carefully studied in order
to faithfully and determinedly complete the protocol in the different cases and for
the different purposes of RIOs. It will be seen that they are not trivial or simple, and
they have practical significance and applications in engineering. For example, when
the controller trusts the sender or receiver, it is easy for controller to authorize and
communicate with others; when the controller hopes to “say the last words”, he or she
only authorizes the receiver at a chosen stage of the protocols. In addition, it should be
pointed out that a controller has only a qubit here. When there are many controllers,
they can form one or several controlled parties. Every controlled party is made of m
controllers, and then the length of its distributing password will be to m c-bits. Obvi-
ously, more number of controllers implies higher security. The reason is that, if only
one controller does not collaborate with other, the rest participants will not be able to
complete the task. In other words, each controller possesses a part of ‘key’. Only if
they work together at the same time can the safe box’ be opened.

BothHPVs andWang’s protocol ofRIOs useBell states as a quantumchannel.How-
ever, it is well known that Greenberger–Horne–Zeilinger (GHZ) states [26] are also a
very important quantum resource in quantum information processing and communi-
cation. Motivated by the scheme of teleportation of multi-qubit quantum information
using GHZ states, we would like to investigate the remote implementations of quan-
tum operations using GHZ state(s). Specifically, using the GHZ type state(s) in our
RIO schemes can enhance security (since it’s particles can distribute to multiple
controllers), increase variety, extend applications, as well as advance efficiency via
fetching in many controllers.

In this paper, we restrict ourselves to an issue, i.e., remotely implementing multiple
partially unknown quantum operations from a sender to a distant receiver via the
control of many agents in a network. We wish that the receiver can successfully get
access to the original operation of each qubit, as long as all the agents collaborate
through local operation and classical communication. However, even if one agent
does not cooperate, the original operation of each qubit can not fully be recovered by
the receiver. The topic here might be of particular interest, since the controlled remote
implementation of quantum operations should have some remarkable applications in
the remote quantum information including the future quantum internet servers.
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Besides Sect. 1written as introduction, this paper are arranged as follows: in Sect. 2,
we present a RIO scheme usingGHZ state and introduce our restricted sets of quantum
operations via the control of many agents, which is a protocol in the traditional sense
of RSP. In Sect. 3, inspired by the RIO scheme in Sect. 1, we propose a method to
implement multiple partially unknown quantum operations for the distant receiver
through the control of one agent. Then we compare our scheme with the scheme in
Sect. 2. In Sect. 4, we discuss how to decompose multi-qubit GHZ State, and then
extend the scheme in Sect. 3 to multi-agent controlled RIO. In Sect. 5, we further
extend to implementing multiple partially unknown quantum operation-strings for
many distant receivers, via the control of many agents in a network. A brief discussion
and summary are given in Sect. 6.

2 RIO of a partially unknown quantum operation to a distant receiver
via the control of many agents

In order to embody the influence of the controller, the number of the operation trans-
ferred and the receiver is reduced to one in this section, respectively. Then, a standard
RIO scheme is proposed for implementing a partially unknown quantum operation to
a distant receiver via the control of many agents. For concreteness, suppose that the
quantum operation to be remotely implemented belongs to one of the two restricted
sets defined by [8]

U0 =
(
u0 0
0 u1

)
, U1 =

(
0 u0
u1 0

)
. (1)

We can say that they are partially unknown in the sense that the values of theirmatrix
elements are unknown, but their structures, that is, the positions of their nonzeromatrix
elements, are known. In our notation, a restricted set of one-qubit operations is denoted
by Ud , where d = 0 or 1 indicates, respectively, this operation belonging to a diagonal
or off-diagonal restricted set.

Assuming that Alice wants to apply Ud (d ∈ {0, 1}) on Bob’s qubit B, where qubit
B is in an unknown state

|ϕ〉B = (α|0〉 + β|1〉)B , (2)

where the coefficients α and β are complex numbers with α2 + β2 = 1, and {|0〉, |1〉}
are the eigenstates of the σ (1,1) = |0〉〈0| − |1〉〈1| Pauli operator of the respective
qubit. The above task can only be done under the control of n agents and their role
of n agents is that to take the responsibility to decide whether or not and when the
task should be done. The quantum channel linking Alice, Bob, and the n agents is a
(n + 2)-qubit GHZ state, which is given by

|GHZ〉 = 1√
2
(|0〉a |0〉b|0〉⊗n + |1〉a |1〉b|1〉⊗n), (3)
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where GHZ qubits a belong to Alice, and Bob holds GHZ qubit b, while the other n
GHZ qubits belong to the n agents. The joint system of Alice, Bob and the n agents
initially reads

|T 〉 = |GHZ〉 ⊗ |ϕ〉B
= 1√

2
(|0〉a |0〉b|0〉⊗n + |1〉a |1〉b|1〉⊗n)(α|0〉 + β|1〉)B .

(4)

Our RIO scheme is made of the following six steps.
Step 1: Bob’s preparing. As a receiver, Bob first performs a controlled-NOT gate

NBb using his qubit B occupied by unknown state (to be acted state) as a control,
his shared part b (the second qubit in the above initial state) of the GHZ state as a
target, here the unitary operation N is defined as N = |0〉〈0| ⊗ σ (0,0) + |1〉〈1| ⊗
σ (0,1) with Pauli operations σ (0,0) = |0〉〈0| + |1〉〈1| and σ (0,1) = |0〉〈1| + |1〉〈0|.
Complementarily, the other Pauli operations are σ (1,0) = |0〉〈1| − |1〉〈0| and σ (1,1) =
|0〉〈0| − |1〉〈1|. This operation transforms the state |T 〉 into

NBb|T 〉 = 1√
2
[(α|0〉a |0〉B |0〉⊗n + β|1〉a |1〉B |1〉⊗n)|0〉b

+ (α|1〉a |0〉B |1〉⊗n + β|0〉a |1〉B |0〉⊗n)|1〉b].
(5)

Subsequently, Bob measures his shared part of GHZ state in the computational
basis |c〉b〈c| (c = 0, 1), then the corresponding collapsed state of residual qubits will
be written as

α|c〉a |0〉B |c〉⊗n + β|c ⊕ 1〉a |1〉B |c ⊕ 1〉⊗n (c = 0, 1), (6)

where ⊕ is an addition mod 2. The purpose of this step is to let the unknown state
be correlated with Alice’s local qubit a. This is a precondition that Alice is able to
remotely implement a quantum operation belonging to the restricted sets.

Step 2: First classical communication. Bob sends the classical message c to Alice.
The aim of this step is that the receiver Bob tells Alice that he is ready to receive the
remote operation, as well as his prepared way.

It must be emphasized that Bob’s preparing has two equivalent ways with respect
to c = 0 or 1, respectively. If Bob first fixes the value of c and tells Alice before the
beginning of protocol, this step can be saved. In particular, when c is just taken as 0,
the sender Alice does not need the transformation σ (0,c) in the next steps, since σ (0,0)

is trivial.
Step 3: Alice’s sending.Alice’s operation includes four parts. After receiving Bob’s

classical bit c, Alice first performs a prior transformation σ (0,c) dependent on c, then
the state in Eq. (6) becomes

α|0〉a |0〉B |c〉⊗n + β|1〉a |1〉B |c ⊕ 1〉⊗n (c = 0, 1). (7)
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Second, she carries out the quantum operationUd (d ∈ {0, 1}) on her qubit a, which
transforms the state in Eq. (7) to

αud |d〉a |0〉B |c〉⊗n + βud⊕1|d ⊕ 1〉a |1〉B |c ⊕ 1〉⊗n (c, d = 0, 1). (8)

Third, she executes a Hadamard transformationH on her qubit a, where Hadamard
transformationH has the form:

H|d〉 = 1√
2
[|0〉 + (−1)d |1〉], d ∈ {0, 1},

which transform the state shown in (8) into

1√
2
{|0〉a[αud |0〉B |c〉⊗n + βud⊕1|1〉B |c ⊕ 1〉⊗n]

+ (−1)d |1〉a[αud |0〉B |c〉⊗n − βud⊕1|1〉B |c ⊕ 1〉⊗n]},
(9)

where c, d ∈ {0, 1}. Finally, she measures her qubit a in the computational basis
|l〉a〈l| (l = 0, 1). After that, When a possible global phase factor is ignored, the state
in Eq. (9) collapses into

αud |0〉B |c〉⊗n + (−1)lβud⊕1|1〉B |c ⊕ 1〉⊗n (c, d, l = 0, 1). (10)

The action of the first part σ (0,c) is to perfectly prepare the state of the joint system,
this is a superposition state that the basis in the locally acted system (belonging to the
Alice’s subsystem) of every component state is the same as its basis in the remotely
operated system (belonging to the space of the unknown state in the receiver’s subsys-
tems) and the corresponding coefficients are ones of the unknown state. The second
part of the sending step is an operation belonging to the restricted sets, which will be
remotely implemented in the protocol. The third part of the sending step, theHadamard
gate, is often seen in quantum computation and quantum communication. Its action is
similar to the cases in the teleportation of states. The fourth part of the sending step
is a measurement on the computational basis whose aim is to project to the needed
result.

Step 4: Second classical communication. Alice sends the classical messages d, l
to Bob.

The communication to Bob is that the sender Alice tells the receiver Bob what
measurement (denote by l) has been done and which kind of operations (denote by d)
has been transferred. In the protocol, Alice has a one-to-one mapping table to indicate
a kind of restricted set by a value of classical information. It can be encoded by one c-
bit, in which 0 denotes a restricted set of diagonal operations and 1 denotes a restricted
set of off-diagonal operations. This communication is necessary in order to faithfully
and determinedly finish the protocol.

Step 5: Agents’ operating. Each agent’s operation includes controlling step and
allowing step. In controlling step, each agent j ( j = 1, 2, . . . , n) first performs a
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Hadamard transformation H on her/his GHZ qubit A j , then the state in Eq. (10)
becomes

αud |0〉B
{

1√
2
[|0〉 + (−1)c|1〉]

}⊗n

+ (−1)lβud⊕1|1〉B
{

1√
2
[|0〉 + (−1)c+1|1〉]

}⊗n

(c, d, l = 0, 1).

(11)

Then he/shemakes ameasurement on her/his sharedGHZqubit A j in a single-qubit
computational basis |ε j 〉A j 〈ε j | (ε j = 0, 1), the corresponding collapse state is

αud |0〉B + (−1)l+
∑n

j=1 ε j βud⊕1|1〉B (d, l, ε j = 0, 1). (12)

This step is a key matter in the controlled RIO protocol. In fact, when one agent
has not done it, there are no feasible remote implementations of quantum operations.
Only if each agent agrees or wishes that the receiver implements the RIO protocol
does he or she carry out this operation and measurement. Its action is to open the
quantum channel between the sender and receiver that is necessary for the remote
implementation of quantum operations belonging to the restricted sets.

In allowing step, it still has to be completed by each agent j , that is, he or she
transfers one c-bit ε j ( j = 1, 2, . . . , n) to the receiver Bob.

This step can be understood figuratively as that each agent j distributes the
“password”ε j to the receiver Bob, or gives an authorization to Bob, or says the last
word to the receiver in the protocol. This indicates that the role of each agent is very
important and indispensable. In other words, this is not trivial in engineering because
the above means useful in the controlled process and imply potential applications in
practice. Without the password distribution by each agent, the sender and receiver
cannot faithfully and determinedly complete the RIO.

Step 6: Bob’s recovering.Based on n+2 classical bits d, l and ε j ( j = 1, 2, . . . , n),
respectively, from Alice and n agents, Bob performs the following unitary transfor-
mation on his qubit B

(1 − d)σ ( f , f ) + dσ ( f ,1⊕ f ), (13)

where the remainder of l + ∑n
j=1 ε j divided by 2 is f , and d, l, ε j = 0, 1. Then he

can successfully recover the quantum operation Ud by using the transformation (13),
that is

[(1 − d)σ ( f , f ) + dσ ( f ,1⊕ f )][αud |0〉B
+(−1)l+

∑n
j=1 ε j βud⊕1|1〉B] = Ud(|ϕ〉B), d = 0, 1. (14)

Obviously, we use the relationsUd |0〉 = ud |d〉 andUd |1〉 = ud⊕1|d⊕1〉 (d = 0, 1)
in Eq. (14), and use notation rules to describe the general formulae of operations in
our scheme, so the probability of success of our scheme is 100%.
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3 RIO of multiple partially unknown quantum operations to a distant
receiver via the control of one agent

Inspired by the scheme in Sect. 2 and in order to embody that how to realize a protocol
withmultiple operations, we consider that RIO ofmultiple partially unknown quantum
operations to a distant receiver via the control of one agent in this section.

Assume that Alice holds a string of partially unknown quantum operations labeled
by 1, 2, . . . ,m, which come from the two restricted sets and is given by as follows

Ud1 ⊗ Ud2 ⊗ · · · ⊗ Udm (d1, d2, . . . , dm ∈ {0, 1}). (15)

Bob has a string of message qubits labeled by 1, 2, . . . ,m, which is initially in
unknown quantum state

m⊗
k=1

(αk |0〉k + βk |1〉k), (16)

where, the complex numbersαk andβk satisfy |α|2k+|β|2k = 1 (k = 1, 2, . . . ,m). Alice
wants to send them partially unknown quantum operations to the distant receiver Bob
via the control of one agent Charlie, such that Bob can get the complete information
of each partially unknown quantum operation carried by his corresponding message
qubit (in unknown quantum state) only if Charlie collaborates. This can be done by
the following procedure.

Step 1Alice constructs the following EPR entangled state through local logic gates

|G〉 = 1√
2m+2

{
m⊗

k=1

(|00〉k′k′′ + |11〉k′k′′)(|00〉AC + |11〉AC )

+
m⊗

k=1

(|00〉k′k′′ − |11〉k′k′′)(|00〉AC − |11〉AC )

} (17)

as the quantum channel, and then sends an EPR qubit C to the controller Charlie
andm EPR qubits (1′′, 2′′, . . . ,m′′) to the receiver Bob, while keeping the otherm+1
EPR qubits (1′, 2′, . . . ,m′) and an EPR qubit A to herself.

The process of constructing quantum channel |G〉 is given as follows: The input
state is the 2(m + 1)-qubit product state |ψ1〉 as

|ψ1〉 = |00〉1′1′′ |00〉2′2′′ · · · |00〉m′m′′ |00〉AC . (18)

Firstly, Alice performs the Hadamard operation (H) on qubit 1′ and rewrite the
H|ψ1〉 as

|ψ2〉 = H|ψ1〉 = 1√
2
(|00〉 + |10〉)1′1′′ |00〉2′2′′ · · · |00〉m′m′′ |00〉AC . (19)
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Then, she operates CNOT N operations on the qubit pairs (1′, 2′), (1′, 3′), . . .,
(1′,m′) and (1′, A), respectively, where qubit 1′ is used as controlled qubit and each
of m qubits 2′, 3′, . . . ,m′, A are used as target qubit. The transformed |ψ2〉 can be
expressed as

|ψ3〉 = 1√
2
(|00〉1′1′′ |00〉2′2′′ · · · |00〉m′m′′ |00〉AC

+ |10〉1′1′′ |10〉2′2′′ · · · |10〉m′m′′ |10〉AC ).

(20)

After implementing the Hadamard operations on 1′, 2′, . . . ,m′, A, Alice executes
CNOT operations on the qubit pairs (1′, 1′′), (2′, 2′′), . . . , (m′,m′′), (A,C), respec-
tively, where qubits 1′, 2′, . . . ,m′, A are used as controlled qubit and each of 2m + 1
qubits 1′′, 2′′, . . . ,m′′,C is used as target qubit. The 2(m + 1)-qubit state can be
generated as

|ψ4〉 = 1√
2
[

m⊗
k=1

|φ+〉k′k′′ |φ+〉AC +
m⊗

k=1

|φ−〉k′k′′ |φ−〉AC ], (21)

where |φ±〉 = 1√
2
(|00〉 ± |11〉). Obviously, |G〉 = |ψ4〉.

The state of the whole system is given by

m⊗
k=1

(αk |0〉k + βk |1〉k) ⊗ |G〉

= 1√
2m+2

{
m⊗

k=1

[(αk |0〉k + βk |1〉k)(|00〉k′k′′ + |11〉k′k′′)](|00〉AC + |11〉AC )

+
m⊗

k=1

[(αk |0〉k + βk |1〉k)(|00〉k′k′′ − |11〉k′k′′)](|00〉AC − |11〉AC )}.

(22)

Step 2 Bob performs a series of CNOT operations respectively on qubit pairs
(1, 1′′), (2, 2′′), . . . ,(m,m′′). For simplicity, normalized factors throughout the fol-
lowing paper are omitted. After Bob’s operating, the state in Eq. (22) becomes

m⊗
k=1

[(αk |00〉kk′ + βk |11〉kk′)|0〉k′′ + (αk |01〉kk′ + βk |10〉kk′)|1〉k′′ ]

(|00〉AC + |11〉AC )

+
m⊗

k=1

[(αk |00〉kk′ − βk |11〉kk′)|0〉k′′ − (αk |01〉kk′ − βk |10〉kk′)|1〉k′′ ]

(|00〉AC − |11〉AC ).

(23)
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Now, Bob carries out a series of single-qubit measurements respectively on his EPR
qubit 1′′, 2′′, . . . ,m′′ in basis |c〉k′′ 〈c| (c = 0, 1), and sends the sender Alice all of his
measurement results (the corresponding classical message of eachmeasurement result
is c) via classical communication. Then the corresponding collapse state is

m⊗
k=1

(αk |0, c〉kk′ + βk |1, c ⊕ 1〉kk′)(|00〉AC + |11〉AC )

+
m⊗

k=1

(−1)c(αk |0, c〉kk′ − βk |1, c ⊕ 1〉kk′)(|00〉AC − |11〉AC ).

(24)

Step 3 After hearing the measurements from Bob, Alice performs a series of Pauli
transformations σ (0,c) (dependent on c, c = 0, 1) on her particles 1′, 2′, . . . ,m′,
respectively, then the state in Eq. (24) becomes

m⊗
k=1

(αk |00〉kk′ + βk |11〉kk′)(|00〉AC + |11〉AC )

+
m⊗

k=1

(−1)c(αk |00〉kk′ − βk |11〉kk′)(|00〉AC − |11〉AC ).

(25)

Second, she carries out the quantum operation Udk (dk ∈ {0, 1}) on her each EPR
qubit k′, which transforms the state in Eq. (25) to

m⊗
k=1

(αkudk |0, dk〉kk′ + βkudk⊕1|1, dk ⊕ 1〉kk′)(|00〉AC + |11〉AC )

+
m⊗

k=1

(−1)c(αkudk |0, dk〉kk′ − βkudk⊕1|1, dk ⊕ 1〉kk′)(|00〉AC − |11〉AC ).

(26)

Third, she executes a Hadamard transformationH on each EPR qubit, which trans-
form the state shown in Eq. (26) into

m⊗
k=1

[(αkudk |0〉 + βkudk⊕1|1〉)k |0〉k′ + (−1)dk (αkudk |0〉 − βkudk⊕1|1〉)k |1〉k′ ]

(|00〉 + |11〉)AC

+
m⊗

k=1

(−1)c[(αkudk |0〉 − βkudk⊕1|1〉)k |0〉k′ + (−1)dk (αkudk |0〉 + βkudk⊕1|1〉)k |1〉k′ ]

(|00〉 − |11〉)AC .

(27)

where c, dk ∈ {0, 1}. Finally, Alice measures her each EPR qubit in the computational
basis |l〉k′ 〈l| (l = 0, 1), and and sends the messages dk of each Udk used by her and
l of each EPR qubit k′ measured by her to the receiver Bob. After that, the state in
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Eq. (27) collapses into

m⊗
k=1

(−1)dkl [(αkudk |0〉 + (−1)lβkudk⊕1|1〉)k](|00〉 + |11〉)AC

+
m⊗

k=1

(−1)c+dkl [(αkudk |0〉 + (−1)l+1βkudk⊕1|1〉)k](|00〉 − |11〉)AC ,

(28)

and one has

|ζ 〉(|00〉 + |11〉)AC + |ζ ′〉(|00〉 − |11〉)AC , (29)

with

|ζ 〉 =
m⊗

k=1

|ζ 〉k, |ζ ′〉 =
m⊗

k=1

|ζ ′〉k, (30)

where |ζ 〉 and |ζ ′〉 are the states for them qubits (1, 2, . . . ,m) belonging to Bob, while
|ζ 〉k and |ζ ′〉k are the states of Bob’s qubit k. From Eq. (28), one can see that the states
|ζ 〉k and |ζ ′〉k depend on the dk of Alice’s applied Udk and the outcome l of Alice’s
single-qubit measurement on the qubits k′, and given by

|ζ 〉k = (−1)dk ·l(αkudk |0〉 + (−1)lβkudk⊕1|1〉) for dk, l = 0, 1 (31)

|ζ ′〉k = (−1)c⊕(dk ·l)(αkudk |0〉 + (−1)l⊕1βkudk⊕1|1〉) for dk, l = 0, 1 (32)

where c is a output of Bob’s measurement result on his qubit k′′.
The results (31) and (32) show that according to the Alice’s operating Udk on qubit

k′ and the outcome of Alice’s measurement on qubit k′, Bob can always recover the
state Udk (αk |0〉k + βk |1〉k) of the message qubit k from the state |ζ 〉k or |ζ ′〉k of his
qubit k, by performing a single-qubit unitary operationUk = (1−dk)σ (l,l)+dkσ (l,l⊕1)

or U ′
k = (1 − dk)σ (l⊕1,l⊕1) + dkσ (l⊕1,l).

Step 4 Alice and Charlie execate a Hadamard transformationH on their respective
qubits A and C . As a result, the state |00〉AC −|11〉AC goes to |01〉AC +|10〉AC while
the state |00〉AC + |11〉AC remains unchanged. after Alice’s and Charlie’s Hadamard
transformations, the state (29) will change into

|ζ 〉(|00〉 + |11〉)AC + |ζ ′〉(|01〉 + |10〉)AC . (33)

Subsequently, Alice and Charlie perform a measurement on their respective qunits
A and C in the computational basis, and then each sends the measurement outcome to
Bob.One can see fromEq. (33) that if Bob knows that Alice andCharlie bothmeasured
their qubits in the sate |0〉 or |1〉, he can judge that his m qubits (1, 2, . . . ,m) must be
in the state |ζ 〉. On the other hand, expression (33) shows that if Bob knows that Alice
measured her qubit in the state |0〉 (|1〉) while Charlie measured his qubit in state |1〉
(|0〉), he knows that his m qubits (1, 2, . . . ,m) must be in the state |ζ ′〉. That is to say,

123



2 Page 12 of 24 J.-Y. Peng et al.

according to the measurement outcomes from Alice and Charlie, Bob can determine
whether his m qubits are in |ζ 〉 or |ζ ′〉.

Step 5Note that the state |ζ 〉 (|ζ ′〉), described in Eq. (30), is a product of individual-
qubit states |ζ 〉1, |ζ 〉2, . . ., |ζ 〉m (|ζ ′〉1, |ζ ′〉2, . . ., |ζ ′〉m) for the qubits (1, 2, . . . ,m).
And, as mentioned above, Bob can always recover the state Udk (αk |0〉k + βk |1〉k)
of the message qubit k from the state |ζ 〉k or |ζ ′〉k of his message qubit k, based
on the outcomes of Alice’s measurements on the qubits k′ as well as the message
dk of Udk applied by Alice on qunit k′, and via a single-qubit unitary operation
Uk or U ′

k on his qubit k. Thus, Bob can always reconstruct the corresponding state⊗m
k=1 Udk (αk |0〉k + βk |1〉k) of m message qubits (1, 2, . . . ,m) from the state |ζ 〉 or

|ζ ′〉 of hism qubits (1, 2, . . . ,m), according to the outcomes of Alice’s measurements
on the qubits (1′, 2′, . . . ,m′) andm messages (d1, d2, . . . , dm) of (Ud1,Ud2 , . . . ,Udm )

performed by Alice, and through his series {U1,U2, . . . ,Um} or {U ′
1,U

′
2, . . . ,U

′
m} of

local single-qubit unitary operations.

Remark 1 (i) Now, we show that Bob can’t get the full information of quantum opera-
tions when Charlie doesn’t cooperate. Examining the state (29), one can see that when
only Alice executes a Hadamard transformationH on her qubit A, the state (29) well
become

[(|ζ 〉 + |ζ ′〉)|0〉C + (|ζ 〉 − |ζ ′〉)|1〉C ]|0〉A
+[(|ζ 〉 + |ζ ′〉)|0〉C − (|ζ 〉 − |ζ ′〉)|1〉C ]|1〉A, (34)

which implies that whether Alice measures her qubit A in state |0〉 or |1〉, the
density operator of the m qubits (1, 2, . . . ,m) belonging to Bob well, after tracing
over Charlie’s qubit C , be given by

ρ = (|ζ 〉 + |ζ ′〉)(〈ζ | + 〈ζ ′|) + (|ζ 〉 − |ζ ′〉)(〈ζ | − 〈ζ ′|). (35)

The result (35) shows that the m qubits (1, 2, . . . ,m) are in a mixed state, in
which they are in a superposition state |ζ 〉 + |ζ ′〉 with a probability p1 = ||ζ 〉 +
|ζ ′〉|2/2(〈ζ |ζ 〉 + 〈ζ ′|ζ ′〉) while being in the other superposition state |ζ 〉 − |ζ ′〉 with
a probability p2 = ||ζ 〉 − |ζ ′〉|2/2(〈ζ |ζ 〉 + 〈ζ ′|ζ ′〉).

Based on Eqs. (30)–(32), one can express the states |ζ 〉+|ζ ′〉 and |ζ 〉−|ζ ′〉 involved
in Eq. (35) as follows

|ζ 〉 ± |ζ ′〉 = (−1)ds ·l |̃ζ 〉(αsuds |0〉 + (−1)lβsuds⊕1|1〉)s
± (−1)c⊕(ds ·l)|ζ̃ ′〉(αsuds |0〉 + (−1)l⊕1βsuds⊕1|1〉)s for ds, l = 0, 1

(36)

where the subscript s represents any one of the m qubits (1, 2, . . . ,m) belonging to
Bob, and the notations ds and l denote the value of nonvanishing elements ofmatrixUds
used by Alice and Alice’s measurement message on her EPR qubit s′ (corresponding
to Bob’s qubit s), respectively. In Eq. (36), we further note that |̃ζ 〉 = ⊗

t 	=s |ζ 〉t and
|ζ̃ ′〉 = ⊗

t 	=s |ζ ′〉t are the states of the remainingm−1 qubits belonging to Bob (after
excluding the qubit s). Here, |ζ 〉t and |ζ ′〉t are the states of qubit t (t 	= s), which
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depend on the outcomes of Alice’s measurements on the qubits t ′ and the value of
nonvanishing elements of matrix Udt used by Alice, and take the form of Eqs. (31)
and (32), respectively.

Obviously, U†
ds
Uds = I because Uds is a unitary matrix. It follows that |uds |2 =

|uds⊕1|2 = 1. From Eqs. (35) and (36), it is easily shown that for each (ds, l) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)} of Alice’s implementing Uds and Alice’s measurement
on qubit s′, and for each c ∈ {0, 1}, the density operator for the remaining m − 1
qubits belonging to Bob is, after tracing over the qubit s, given by

ρ̃ = trs(ρ)

= |αs |2|uds |2(|̃ζ 〉 + |ζ̃ ′〉)(〈̃ζ | + 〈ζ̃ ′|) + |βs |2|uds⊕1|2(|̃ζ 〉 − |ζ̃ ′〉)(〈̃ζ | − 〈ζ̃ ′|)
+ |αs |2|uds |2(|̃ζ 〉 − |ζ̃ ′〉)(〈̃ζ | − 〈ζ̃ ′|) + |βs |2|uds⊕1|2(|̃ζ 〉 + |ζ̃ ′〉)(〈̃ζ | + 〈ζ̃ ′|)

= (|̃ζ 〉 + |ζ̃ ′〉)(〈̃ζ | + 〈ζ̃ ′|) + (|̃ζ 〉 − |ζ̃ ′〉)(〈̃ζ | − 〈ζ̃ ′|),
(37)

where we have used |αs |2+|βs |2 = 1. Equation (37) implies that the density operator,
for the remaining m − 1 “non-traced” qubits belonging to Bob, has the same form as
Eq. (35). Therefore, repeating the above single-qubit tracing procedure, one finds that
the density operator for any qubit r belonging to Bob (r = 1, 2, . . ., or m) can, after
tracing over Bob’s other m − 1 qubits, be written as

ρr = |αr |2|0〉〈0| + |βr |2|1〉〈1| (38)

for any (dr , l) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. The above process demonstrates that
the density operator (38) depends only on the outcome of Alice’s measurement on the
qubit r ′, but independent of the outcome of Alice’s measurement on all other qubits.

Equation (38) demonstrates that the following results. Firstly, any qubit r belonging
to Bob is in a mixed state, in which it is in the state |0〉 with a probability |αr |2, while
being in the state |1〉 with a probability |βr |2. Secondly, Bob doesn’t know anything
about Udr . Therefore, Bob can not fully restore the state Udr (αr |0〉r + βr |1〉r ) for any
message qubit r belonging to Bob with the agent does not cooperate with him.

(ii) It is necessary for us to compare the present method with the method in the
Sect. 2. From the description above, we conclude that to teleportm partially unknown
quantum operations to a distant receiver via the control of one agent, the present
method requires only: 2m + 2 auxiliary qubits for the generation of the state (17), one
qubit being assigned to the controller, one single-qubit Hadamard transformation and
one single-qubit measurement being preformed by the controller, and one-bit classical
message being sent by the controller.

However, as addressed in the Sect. 2, to implement the present task, the method in
theSect. 2will require: 3m auxiliary qubits for preparingm copies of a three-qubitGHZ
state when the number of controller is one, m qubits being assigned to the controller,
m single-qubit Hadamard transformations and m single-qubit measurements being
preformed by the controller, and m-bit classical messages being sent to the receiver
by the controller.
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The above analysis demonstrates that for the case of m = 1, the present scheme is
trivial, since it requires 4 auxiliary qubits while the method in the Sect. 2 only needs 3
auxiliary qubits. However, the advantage for the present protocol appears whenm = 2,
because it requires the same number of auxiliary qubits but less local operation and
classical communication, compared with the method in the Sect. 2. Moreover, when
m = 3, the number of auxiliary qubits required in present method becomes smaller
than that using the method in the Sect. 2. One can clearly see that the advantage
of the present method becomes apparent with the increment of m. Especially, when
m is a large number, the required auxiliary qubit resources, local operations by the
controller and classical communication between the controller and the receiver are
greatly reduced in the present approach.

On a final note, we point out that excluding Alice’s measurement on qubit A and the
number ofAlice’s single-qubitmeasurements needed in the present scheme is the same
as that required by the method in the Sect. 2. This is obvious, since using the method
in the Sect. 2, Alice also needs to perform a series of single-qubit measurements, each
acting on one GHZ qubit.

4 RIO of multiple partially unknown quantum operations to a distant
receiver via the control of many agents

This section demonstrates the influence of many operations and agents in RIO pro-
tocol. Thus, the proposed protocol only contains one receiver. For the convenience
of the discussion in this section, we first consider the decomposition of multi-qubit
GHZ states. GHZ states play an important role in quantum information processing.
Many theoretical protocols have appeared for the generation ofmulti-qubitGHZ states.
Moreover, it has reported that up to four-qubit GHZ states were experimentally pre-
pared with polarized-state photons [27] and trapped ions [28]. As especially relevant
to this work, we consider the following two types of (n + 1)-qubit GHZ states:

|GHZ〉+ = |00 · · · 0〉 + |11 · · · 1〉, (39)

|GHZ〉− = |00 · · · 0〉 − |11 · · · 1〉. (40)

We find that if a Hadamard transformationH is performed on each qubit, the states
(39) and (40) will be decomposed, respectively, into

|GHZ〉+ →
∑
{xt }

|{xt }〉|0〉 +
∑
{yt }

|{yt }〉|1〉, (41)

|GHZ〉− →
∑
{xt }

|{xt }〉|1〉 +
∑
{yt }

|{yt }〉|0〉, (42)

where |{xt }〉 = |x1x2 · · · xn〉 and |{yt }〉 = |y1y2 · · · yn〉 are computational basis states
of the first n qubits (xt , yt ∈ {0, 1}; t = 1, 2, . . . , n), and

∑
{xt } |{xt }〉 (∑{yt } |{yt }〉) is

a sumover all possible basis states |{xt }〉 (|{yt }〉) each containing an even (odd) number
of “1”s. For instance, when n = 4,

∑
{xt } |{xt }〉 = |0000〉+|0011〉+|0101〉+|0110〉+
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|1001〉 + |1010〉 + |1100〉 + |1111〉 and ∑
{yt } |{yt }〉 = |0001〉 + |0010〉 + |0100〉 +

|1000〉 + |0111〉 + |1011〉 + |1101〉 + |1110〉. Note that the number of the basis states
|{xt }〉 is the same as that of the basis states |{yt }〉, thus the two states (41) and (42) on
the right side both have the same normalized factors.

Now, we generalize the method in Sect. 3 to the RIO of multiple partially unknown
quantum operations via the control of many agents. Suppose that Bob has a string
of message qubits labeled by 1, 2, . . . ,m, which is initially in the unknown state
(16) (i.e.,

⊗m
k=1(αk |0〉k + βk |1〉k)). Alice wishes to teleport the m partially unknown

quantum operations in Eq. (15) (i.e.,
⊗m

k=1 Udk ) to Bob via the control of n agents
(C1,C2, . . . ,Cn) in a network, such that Bob can get the complete information of each
partially unknown quantumoperation carried by his correspondingmessage qubit only
if all the agents collaborate. This can be done by the following four steps.

Step 1Alice generates the following EPR-GHZ entangled state through local gates

|G′〉 =
m⊗

k=1

(|00〉k′k′′ + |11〉k′k′′)|GHZ〉+ +
m⊗

k=1

(|00〉k′k′′ − |11〉k′k′′)|GHZ〉−, (43)

where |GHZ〉± = |00 · · · 0〉 ± |11 · · · 1〉 are (n + 1)-qubit GHZ states, and then she
sends the first n GHZ qubits to the n agents and the m EPR qubits (1′′, 2′′, . . . ,m′′)
to Bob, while keeping the last GHZ qubit and the other m EPR qubits (1′, 2′, . . . ,m′)
to herself.

The process of generating the |G′〉 is given as follows: The input state is the (2m +
n + 1)-qubit product state |φ1〉 as

|φ1〉 = |00〉1′1′′ |00〉2′2′′ · · · |00〉m′m′′ |00 · · · 0〉C1···Cn A. (44)

Firstly, a Hadamard operation (H) is performed on qubit 1′ and rewrite the H|φ1〉
as

|φ2〉 = (|00〉 + |10〉)1′1′′ |00〉2′2′′ · · · |00〉m′m′′ |00 · · · 0〉C1···Cn A. (45)

Then, she operates CNOT operations on the qubit pairs (1′, 2′), (1′, 3′), . . ., (1′,m′)
and (1′, A), respectively, where qubit 1′ is used as controlled qubit and each ofm qubits
2′, 3′, . . . ,m′, A are used as target qubit. The transformed |φ2〉 can be expressed as

|φ3〉 = 1√
2
(|00〉1′1′′ |00〉2′2′′ · · · |00〉m′m′′ |00 · · · 0〉C1···Cn A

+ |10〉)1′1′′ |10〉2′2′′ · · · |10〉m′m′′ |0 · · · 01〉C1···Cn A).

(46)

After implementing the Hadamard operations on 1′, 2′, . . . ,m′, A, Alice executes
CNOT operations on the qubit pairs (1′, 1′′), (2′, 2′′), . . . , (m′,m′′), (A,C1), (A,C2),
. . ., (A,Cn), respectively, where qubits 1′, 2′, . . . ,m′, A are used as controlled qubit
and each of m + n qubits 1′′, 2′′, . . . ,m′′,C1,C1, . . . ,Cn is used as target qubit. The
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(2m + n + 1)-qubit state can be generated as

|φ4〉 =
m⊗

k=1

(|00〉 + |11〉)k′k′′ |GHZ〉+ +
m⊗

k=1

(|00〉 − |11〉)k′k′′ |GHZ〉−.

The state of the whole system is given by

m⊗
k=1

(αk |0〉k + βk |1〉k)|G′〉

=
m⊗

k=1

[(αk |0〉k + βk |1〉k)(|00〉k′k′′ + |11〉k′k′′)]|GHZ〉+

+
m⊗

k=1

[(αk |0〉k + βk |1〉k)(|00〉k′k′′ − |11〉k′k′′)]|GHZ〉−.

(47)

Step 2 After doing exactly the same as Steps 2 and 3 in Sect. 3, we have

|ζ 〉|GHZ〉+ + |ζ ′〉|GHZ〉−, (48)

where |ζ 〉 and |ζ ′〉 are the states for the m message qubits (1, 2, . . . ,m) belonging to
Bob. Note that the left part of the first (second) product term in the right side of Eq. (47)
is the same as that of the first (second) product term in the right side of Eq. (22). Hence,
the two states |ζ 〉 and |ζ ′〉 here take the same form as |ζ 〉 and |ζ ′〉 described by (30),
respectively.

Step 3Each agent andAlice perform aHadamard transformationH on their respec-
tive GHZ qubits. After that, based on (41) and (42), one gets from (48)

|ζ 〉{
∑
{xt }

|{xt }〉|0〉 +
∑
{yt }

|{yt }〉|1〉} + |ζ ′〉{
∑
{xt }

|{xt }〉|1〉 +
∑
{yt }

|{yt }〉|0〉}. (49)

Step 4 Each agent and Alice make a measurement on their respective GHZ qubits,
and then send their measurement results to Bob. Recall the notation of |{xt }〉 and |{yt }〉
described above, i.e., each basis state |{xt }〉 ( |{yt }〉) contains an even (odd) number
of “1”s. Therefore, one sees from (49) that Bob can predict that the m message qubits
(1, 2, . . . ,m) belonging to him must be in the state |ζ 〉 (|ζ ′〉), if he knows that the
outcome of the n agents’ measurement on their n GHZ qubits contains an even number
of “1”s and that Alice measured her GHZ qubit in the state |0〉 (|1〉). On the other hand,
the result (49) shows that Bob knows that his m message qubits (1, 2, . . . ,m) must be
in the state |ζ 〉 (|ζ ′〉), if he knows that the outcome of n agents’ measurement includes
an odd number of “1”s and that Alice measured her GHZ qubit in the state |1〉 (|0〉).
Thus, according to the measurement outcomes from the n agents and Alice, Bob can
predict whether his m message qubits are in |ζ 〉 or |ζ ′〉.

As addressed in the Sect. 3, Bob can always restore the corresponding state⊗m
k=1 Udk (αk |0〉k + βk |1〉k) of m message qubits (1, 2, . . . ,m) from the state |ζ 〉
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or |ζ ′〉 of his m qubits (1, 2, . . . ,m), according to all of Alice’s measurements on the
qubits (1′, 2′, . . . ,m′) and information about all the matrices that Alice has used, and
through his series of local single-qubit unitary operations.

Remark 2 (i) Even if only one controller does not cooperate, Bob will not be able
to recover the operations that Alice wanted to transmit to him. The corresponding
analysis which caculates the reduced density matrix of every qubit is the same as
the Remark1.(i) and is omitted. We have shown from (48) that the partially unknown
quantum operations

⊗m
k=1 Udk carried by the m message qubits (1, 2, . . . ,m) can be

recovered by Bob, as long as each agent performs a Hadamard transformation and
then a measurement on her/his qubit. Now let us focus on the problem that Bob can
not gain the full quantummessages about these partially unknown quantum operations
even if one agent does not collaborate. To see this, let us go back to the state (48). This
state can be rewritten as

|ζ 〉[(|ς+〉 + |ς−〉)|0〉Ct + (|ς+〉 − |ς−〉)|1〉Ct ]
+ |ζ ′〉[(|ς+〉 + |ς−〉)|0〉Ct − (|ς+〉 − |ς−〉)|1〉Ct ],

(50)

where |0〉Ct and |1〉Ct are the two logic states of the GHZ qubit belonging to agent
Ct (t = 1, 2, . . . , n − 1, or n), while |ς+〉 and |ς−〉, taking the form of (39) and (40)
respectively, are the GHZ states of the remaining n GHZ qubits belonging to other
n − 1 agents and Alice.

Suppose that the agent Ct does not collaborate with Bob. When the other n − 1
agents and Alice perform a Hadamard transformation on their respective GHZ qubit,
it follows from (41) and (42) that the states |ς+〉 and |ς−〉 will be transformed into

|ς+〉 →
∑
{x ′

r }
|{x ′

r }〉|0〉A +
∑
{y′

r }
|{y′

r }〉|1〉A, |ς−〉 →
∑
{x ′

r }
|{x ′

r }〉|1〉A +
∑
{y′

r }
|{y′

r }〉|0〉A,

(51)

where the subscript A represents the GHZ qubit belonging to Alice; |{x ′
r }〉 =

|x ′
1x

′
2 · · · x ′

n−1〉 and |{y′
r }〉 = |y′

1y
′
2 · · · y′

n−1〉 are computational basis states of the n−1
GHZ qubits belonging to the other n− 1 agents (x ′

r , y
′
r ∈ {0, 1}; r = 1, 2, . . . , n− 1).

Further,
∑

{x ′
r } |{x ′

r }〉 (
∑

{y′
r } |{y′

r }〉) represents a sum over all possible basis states
|{x ′

r }〉 (|{y′
r }〉) each containing an even (odd) number of “1”s. The state (50) will, after

replacing |ς±〉 by (51), change into

[(|ζ 〉 + |ζ ′〉)|0〉Ct + (|ζ 〉 − |ζ ′〉)|1〉Ct ]
∑
{x ′

r }
|{x ′

r }〉|0〉A

+[(|ζ 〉 + |ζ ′〉)|0〉Ct − (|ζ 〉 − |ζ ′〉)|1〉Ct ]
∑
{x ′

r }
|{x ′

r }〉|1〉A (52)

+[(|ζ 〉 + |ζ ′〉)|0〉Ct − (|ζ 〉 − |ζ ′〉)|1〉Ct ]
∑
{y′

r }
|{y′

r }〉|0〉A
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+[(|ζ 〉 + |ζ ′〉)|0〉Ct + (|ζ 〉 − |ζ ′〉)|1〉Ct ]
∑
{y′

r }
|{y′

r }〉|1〉A,

which implies that if the other n − 1 agents and Alice perform a measurement on
their respective GHZ qubits, the m message qubits (1, 2, . . . ,m) belonging to Bob
well be entangled with agent Ct ’s GHZ qubit.

From (52), it is easily seen that for ever outcome |{x ′
r }〉|0〉A, |{x ′

r }〉|1〉A, |{y′
r }〉|0〉A,

or |{y′
r }〉|1〉A of the other n−1 agents’ and Alice’s measurements on their GHZ qubits,

the density operator of the m message qubits (1, 2, . . . ,m) belonging to Bob is, after
tracing over agent Ct ’s GHZ qubit, given by

ρ = (|ζ 〉 + |ζ ′〉)(〈ζ | + 〈ζ ′|) + (|ζ 〉 − |ζ ′〉)(〈ζ | − 〈ζ ′|). (53)

Since Eq. (53) takes the same form as (35), one can obtain the same results (36),
(37) and (38) as described above. Therefore, Bob can full restore the corresponding
state

⊗m
k=1 Udk (αk |0〉k + βk |1〉k) of m message qubits (1, 2, . . . ,m), only if all the

agents collaborate with him.
(ii) To prepare m-qubit information to a distant receiver via the control of n agents,

the present method requires only: 2m + n + 1 auxiliary qubits for preparing the state
(43), one qubit being distributed to each agent, one single-qubit Hadamard transfor-
mation and one single-qubit measurement being performed by each agent, and one-bit
classical message being sent to the receiver by each agent.

In contrast, to implement the same task, the method in the Sect. 2 requires:m(n+2)
auxiliary qubits for preparing m copies of a (n + 2)-qubit GHZ state, m qubits being
distributed to each agent,m single-qubit Hadamard transformation andm single-qubit
measurements being performed by each agent, andm-bit classical message being sent
to the receiver by each agent.

For the case of m = 1, the present method is not interesting since it requires one
more auxiliary qubit than the method in the Sect. 2. However, the advantage of the
present proposal appears when m = 2 and becomes apparent as m increases.

5 Controlled RIO of multiple partially unknown operations tomany
distant receivers

It is interesting to note that the method described above can be further extended
to teleport multiple multiple partially unknown operation-strings to many distant
receivers via the control of many agents in a network. Assume that Alice has s partially
unknown operation strings labeled by 1, 2, . . . , s. The partially unknown operation
string t contains mt partially unknown operations, which is written as

⊗mt
j=1 Ud j,t

(t = 1, 2, . . . , s). The total operation of the s partially unknown operation strings
is given by

⊗s
t=1

⊗mt
j=1 Ud j,t . Suppose that Bob holds s qubit strings labeled by

1, 2, . . . , s. The qubit string t contains mt message qubits, which is initially in the
state

⊗mt
j=1(α j,t |0〉 j,t + β j,t |1〉 j,t ) (t = 1, 2, . . . , s), here |α j,t |2 + |β j,t |2 = 1,

j = 1, 2, . . . ,mt and t = 1, 2, . . . , s. The state of the s qubit strings is given by⊗s
t=1

⊗mt
j=1(α j,t |0〉 j,t + β j,t |1〉 j,t ).
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Now, Alice wishes to teleport the s partially unknown quantum operation strings to
s distant receivers (the message carried by the partially unknown quantum operation
string t is for the receiver t) via the control of n agents in a network, such that each
receiver can fully recover the partially unknown quantum operation string acting on
the corresponding qubit string, only if all the agents cooperate. The present task can
be implemented with the following EPR-GHZ entangled state

s⊗
t=1

mt⊗
j=1

(|00〉 j ′ j ′′,t + |11〉 j ′ j ′′,t )|GHZ〉+

+
s⊗

t=1

mt⊗
j=1

(|00〉 j ′ j ′′,t − |11〉 j ′ j ′′,t )|GHZ〉−,

(54)

where |GHZ〉± are the GHZ states (39) and (40) of the (n + 1) GHZ qubits shared
by the n agents and Alice; the mt EPR qubits (1′′, 2′′, . . . ,m′′

t ) for the set t belong to
the receiver t , while the other mt EPR qubits (1′, 2′, . . . ,m′

t ) for the set t are kept by
Alice. Here, the set t represents “the qubit string t and the mt EPR group shared by
Alice and the receiver t”(t = 1, 2, . . . , s). The state of whole system is given by

s⊗
t=1

mt⊗
j=1

[(α j,t |0〉 j,t + β j,t |1〉 j,t )(|00〉 j ′ j ′′,t + |11〉 j ′ j ′′,t )]|GHZ〉+

+
s⊗

t=1

mt⊗
j=1

[(α j,t |0〉 j,t + β j,t |1〉 j,t )(|00〉 j ′ j ′′,t − |11〉 j ′ j ′′,t )]|GHZ〉−.

(55)

After doing the same as Step 2 and Step 3 of the Sect. 3, we obtain

s⊗
t=1

|ζ 〉t |GHZ〉+ +
s⊗

t=1

|ζ ′〉t |GHZ〉−, (56)

where |ζ 〉t = ⊗mt
j=1 |ζ 〉 j,t and |ζ ′〉t = ⊗mt

j=1 |ζ ′〉 j,t are the states for mt message
qubits (1, 2, . . . ,mt ) belonging to the receiver t . |ζ 〉 j,t and |ζ ′〉 j,t are the states of qubit
j for the receiver t , which depend on the outcomeofAlice’s single-qubitmeasurements
on the qubit j ′ for the set t and the message d j,t of matrix Ud j,t used by Alice, and
take the form of (31) and (32), respectively.

Not that the states |ζ 〉t and |ζ ′〉t have the same form as |ζ 〉 and |ζ ′〉 described
in (30), respectively. Therefore, based on (56) and using the above procedure, it is
straightforward to show that partially unknown quantum operation string acting on
each qubit string can be recovered by the corresponding receiver, with the aid of all
the agents.

In order to restore the partially unknown quantum operation string acting on the
corresponding qubit string for each receiver, the following procedure can be followed:
(i) Each agent and Alice need to perform a Hadamard transformation and then a
measurement on their respective GHZ qubits. (ii) Each agent and Alice need to send
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each receiver their measurement results on their GHZ qubits. And (iii) Alice needs to
send the receiver t the outcome of her single-qubit measurement on the EPR qubits
1′, 2′, . . . ,m′

t for the set t and the message d j,t of matrix Ud j,t acted on EPR qubit j ′
for the set t and j ′ ∈ {1′, 2′ . . . ,m′

t }, so that the receiver t can recover the partially
unknown quantum operation string acting on the corresponding qubit string t .

On the other hand, it can be shown from (56) that even if one agent does not
collaborate, the density operator for each qubit belonging to each receiver takes the
formof (38), i.e., no receiver can fully restore the partially unknownquantumoperation
string acting on the corresponding message qubit string without the cooperation of all
the agents.

Remark 3 To realize the present task, the present method requires only: 3
∑s

t=1mt +
n + 1 auxiliary qubits for preparing the state (54), one quibt being assigned to each
agent, one single-qubit Hadamard transformation and one single-qubit measurement
being performed by each agent, and one-bit classical message being sent to each
receiver by each agent.

In contrast, to implement the same task, the method in the Sect. 2 requires:∑s
t=1mt (n+2) auxiliary qubits for preparing

∑s
t=1mt copies of a (n+2) qubit GHZ

state;
∑s

t=1mt qubits being assigned to each agent,
∑s

t=1 mt single-qubit Hadamard
transformations and

∑s
t=1mt single-qubit measurements being performed by each

agent, and mt -bit classical message being sent to the receiver t by each agent.

One can see that even for mt = 1 and s = 2, the present method is effective,
since (i) the number of qubits distributed to each agent, the number of Hadamard
transformations by each agent, or the number of measurement by each agent is 1,
which is, however, 2 for the method in the Sect. 2; and (ii) the number of auxiliary
qubits required is n+5,which is smaller than 2n+4 needed in themethod in the Sect. 2,
when n > 1. More interestingly, with the increment of mt , s, or n, the advantage of
the present method becomes very apparent.

6 Discussion and conclusion

In the existing one-way RIO schemes, the transmitted quantum operation is only a
unitary operation. The scheme in the Sect. 2 of this paper is one of this types, which
has the simplest form of expression and is most understandable protocol with the
control of many agents.

It is worth mentioning that in terms of the control efficiency of each agent on RIO,
our schemes in the Sects. 3, 4 and 5 are identical to those in the Sects. 2, since the result
(38) applied in our protocols in the Sects. 3, 4 and 5 are the same as those used in the
Sect. 2. However, as mentioned above, our schemes in the Sects. 3, 4 and 5 are very
simple and economical in the implementation ofmultiple partially unknownoperations
via the control of many agents in a network. What’s more, in the protocol of the Step
3 of the third section, if the Eq. (29) is changed to |ζ 〉(|0〉 + |1〉)C + |ζ ′〉(|0〉 − |1〉)C ,

Bob also can recover the operation through the corresponding operation of the agent.
But as seen in the Eqs. (17), (43), and (54), in our quantum channel Alice is both the
sender and the controller. If she does not cooperate as a controller in the Step 4 of
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the protocol in Sects. 3, 4 and 5, then Bob cannot restore the corresponding quantum
operation. These specific analysis process is similar to that of the non-cooperation
with the agents in the Remark1.(i). This modification makes the sender has power to
control whole protocol, which improves security of protocol again.

Our schemes in the Sects. 4 and 5 work essentially through having originally-non-
entangled quantum informations, carried by two message qubits, to be entangled each
other after Alice applies partially unknown quantum operations and then execute a
series of single-qubit measurements. This can be seen from Eq. (48). For instance,
let us consider the case of m = 2, i.e., applying Ud1

⊗
Ud2 on the state (α1|0〉1 +

β1|1〉1)⊗ (α2|0〉2 +β2|1〉2) of the two message qubits (1, 2) and teleporting it to Bob.
Based on Eqs. (30)–(32), one can see that if Alice measures the qubits 1′ and 2′ in the
basis |0〉1′ 〈0| and |0〉2′ 〈0|, respectively, the state (48) for the remaining qubit system
will be

(α1ud1 |0〉1 + β1ud1⊕1|1〉1)(α2ud2 |0〉2 + β2ud2⊕1|1〉2)|GHZ〉+
+ (α1ud1 |0〉1 − β1ud1⊕1|1〉1)(α2ud2 |0〉2 − β2ud2⊕1|1〉2)|GHZ〉−.

(57)

The result (57) implies that if Bob measures the qubit 1 in the state α1ud1 |0〉1 +
β1ud1⊕1|1〉1, he can predict that his qubit 2 must be in the state α2ud2 |0〉1 +
β2ud2⊕1|1〉2. On the other hand, if Bob detects the qubit 1 in the state α1ud1 |0〉1 −
β1ud1⊕1|1〉1, he knows that his qubit 2 must be in the state α2ud2 |0〉2 − β2ud2⊕1|1〉2.
Hence, if Alice implements single-qubit measurements, the quantum informations
carried by the two message qubis (1, 2) via the action of Ud1

⊗
Ud2 are not only

transferred onto Bob’s qubits (1, 2) but also become entangled each other.
In quantum communication, the most common single-qubit measurement bases are

{|0〉, |1〉} and {|+〉 = 1√
2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉)}. As mentioned above, the

former is used in our schemes, because it is quite difficult to make a measurement in
the basis {|+〉, |−〉} for some kind of qubits such as superconducting charge and flux
qubits, but straightforward in the basis {|0〉, |1〉}. In fact, based on |0〉 = 1√

2
(|+〉+|−〉)

and |1〉 = 1√
2
(|+〉 − |−〉), Hadamard transforms are not necessary in our protocols,

because the same results can be got when each agent measures his/her qubit in the
basis {|+〉, |−〉}, instead of a Hadamard transformation followed by a measurement
in the basis {|0〉, |1〉}, and then sends his/her measurement outcome |+〉 or |−〉 by
one-bit classical message to the receiver(s).

As shown above, Alice’s single-qubit measurements on EPR qubits, Alice’s single-
qubit operation (Hadamard transformation/measurement) on GHZ qubit, and each
agent’s operation on GHZ qubit are independently executed on different qubits, so
our protocols actually does not require the operating order among Alice’s single-qubit
measurements, Alice’s single-qubit operation and each agent’s operation.

Although we do not intend to conduct a comprehensive study on the security of
our protocols here to prevent all possible forms of eavesdropping and/or deception,
we believe that it may be quite secure for several reasons. First, the eavesdropping by
entangling ancillary qubits with the receiver’s qubits can be revealed by comparing a
subset of the states the receiver received to onesAlice sent. Second, the qubits thatAlice
sends to Bob are basically useless without the classical information owned by Alice.
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Hence, even if Eve was to intercept the qubits intended for the receiver, and replace
them by fakes, and somehow eavesdropped on the (classical) communication channels
through which all the agents disclose to the receiver their measurement outcomes, she
would still not be able to recover the message qubits’ original states without access
to Alice’s classical information (her measurement outcomes), given that Alice sends
her classical information to the receiver using standard quantum cryptography [29].
It is conceivable that an eavesdropper might obtain partial information by entangling
enough ancillary qubits with the qubits belonging to all the agents and the receiver,
but presumably such entanglement could be detected by tests conducted on ‘sample’
EPR-GHZ entangled states initially shared by Alice and the other parties.

In summary, we have first proposed a RIO scheme of a partially unknown quantum
operation via the control of n agents, which is a remote implementation protocol
in the sense of current RIO. Inspired by the scheme, we put forward the RIO of
multiple partially unknown quantum operations from a sender to a distant receiver
via the control of one agent, and then have generalized it to RIO of multiple partially
unknown quantum operations via the control of many agents in a network. Then, we
proposed a series of protocols in Sects. 2 to 5. The difference of these protocols is the
number of participants and transmitted operations. Obviously, the security is higher
but the recover operations are more complex with increasing number of participants.
Meanwhile, these different scenarios can solve different actual problems in the RIO
network. A special feature of our entangling quantum information concept is to
implement a control of multiple partially unknown quantum operations RIO. The
present scheme needs to assign only one qubit to each agent, followed by every agent
performing only one Hadamard transformation and onemeasurement, and the sending
only one-bit classical message to the receiver. As a result, the required auxiliary qubit
resources, the number of local operations, and the quantity of classical communication
are greatly reduced in the present scheme. Then,to our knowledge, the present RIO
protocols can be divided into three types in terms of the mode of transmission, such as
unidirectional transmission, bidirectional transmission and circular transmission. In
the first type, most schemes only contains the situation of one controller, one receiver
or one sender, except for ref. [10], such transmission between multiple sender and
receivers under the control of multiple controllers is still missing. Similarly, we also
study the extension of many-party RIO (many controllers and many receivers) in
this transmission type because incorporation of multiple participants further merits
consideration towards the realization of versatile quantum networks. The difference
of these two protocols is that the ref. [10] utilizes a product of GHZ state as channel,
but our schemes adopt GHZ type states. This means that the former can be seen as a
repetition of many simple schemes, and a unitary operation needs to be decomposed
into the product of some restrictive operations in equation (1) before transmission.
This unitary operation is too special. it is difficult to find such expressions for common
unitary operations. Therefore, this greatly limits the application scope of the scheme.
In our scheme, the restrictive operations are obtained directly, with the result that
it is more convenient to implement. Moreover, our scheme can also be extended to
multiple senders as ref. [10] easily by distributing each restrictive operation to each
sender. In general, our scheme is not only easier to realize, but also offers a ideal of
RIO network.
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The method presented here can also be extended to implement a multiparty con-
trolled RIO of multiple partially unknown quantum operation-strings to many distant
receivers. We believe that our schemes are considerable interest, especially because
of its relatively straightforward nature in realizing simultaneous control of multiple
partially unknown quantum operations RIO in an efficient and simple manner.

Acknowledgements This work is supported by National Science Foundation of Sichuan Province (No.
2022NSFSC0534), the Central Guidance on Local Science and Technology Development Fund of Sichuan
Province (No. 22ZYZYTS0064), the Chengdu Key Research and Development Support Program (No.
2021-YF09-0016-GX), the key project of Sichuan Normal University (No. XKZX-02).

Data availability All data generated or analysed during this study are included in this published article.

References

1. Berihu, T., Stefano, O., Matteo, G.A.P.: Bayesian estimation of one-parameter qubit gates. J. Phys. B
At. Mol. Opt. Phys. 42, 035502 (2009)

2. Davide, B., Simone, C., Stefano, V., et al.: Experimental estimation of one-parameter qubit gates in
the presence of phase diffusion. Phys. Rev. A 81, 012305 (2010)

3. Berihu, T., Marco, G.G., Stefano, O., et al.: Phase estimation in the presence of phase diffusion: the
qubit case. Phys. Scr. T140, 014062 (2010)

4. Bennett, C.H., Brassard,G., Crépeau,C., et al.: Teleporting an unknownquantum state via dual classical
and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 1993, 70 (1895)

5. Huelga, S.F., Vaccaro, J.A., Chefles, A., et al.: Quantum remote control: teleportation of unitary oper-
ations. Phys. Rev. A 63(4), 042303 (2001)

6. Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy
channels. Phys. Rev. A 59, 4249–4254 (1999)

7. Eisert, J., Jacobs, K., Papadopoulos, P., Plenio, M.B.: Optimal local implementation of nonlocal quan-
tum gates. Phys. Rev. A 62, 052317 (2000)

8. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys.
Rev. A 74(3), 396–401 (2006)

9. Zhan, Y.B., Ma, P.C., Zhang, Q.Y.: Remote implementation of an unknown sing-qubit operation by
different dimensional quantum channel. Int. J. Quantum Inf. 10(7), 1250074 (2012)

10. Wang, A.M.: Combined and controlled remote implementations of partially unknown quantum oper-
ations of multiqubits using Greenberger–Horne–Zeilinger states. Phys. Rev. A 75, 062323 (2007)

11. Peng, J.Y., He, Y.: Cyclic controlled remote implementation of partially unknown quantum operations.
Int. J. Theor. Phys. 58, 3065–3072 (2019)

12. He, Y.H., Lu, Q.C., Liao, Y.M., et al.: Bidirectional controlled remote implementation of an arbitrary
single qubit unitary operation with EPR and cluster states. Int. J. Theor. Phys. 54(5), 1726–1736 (2015)

13. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Multicharacters remote rotation sharing with five-particle cluster
state. Quantum Inf. Process. 18, 339 (2019)

14. Zhao, N.B., Wang, A.M.: Hybrid protocol of reomte implementation of quantum operations. Phys.
Rev. A 76, 062317 (2007)

15. Chen, A.X., Deng, L., Wu, Q.P.: Remote operation on quantum state among multiparty. Commun.
Theor. Phys. 48, 837 (2007)

16. Lin, J.Y., He, J.G., Gao, Y.C., Li, X.M., Zhou, P.: Controlled remote implementation of an arbitrary
singlequbit operation with partially entangled quantum channel. Int. J. Theor. Phys. 56(4), 1085–1095
(2017)

17. Lv, S.X., Zhao, Z.W., Zhou, P.: Joint remote control of an arbitrary single-qubit state by using a
multiparticle entangled stste as the quantum channel. Quantum Inf. Process. 17, 8 (2018)

18. Xiang, G.Y., Li, J., Guo, G.C.: Teleporting a rotation on remote photons. Phys. Rev. A 71(4), 044304
(2005)

19. Huang, Y.F., Ren, X.F., Zhang, Y.S., et al.: Experimental teleportation of a quantum controlled-NOT
gate. Phys. Rev. Lett. 93(24), 240501 (2004)

123



2 Page 24 of 24 J.-Y. Peng et al.

20. Qiu, L., Wang, A.M.: Scheme for remote implementation of partially unknown quantum operations of
two qubits in cavity QED. Commun. Theor. Phys. 50(5), 1233 (2008)

21. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation
of angles. Phys. Rev. A 65(4), 042316 (2002)

22. Fan, Q.B., Liu, D.D.: Controlled remote implementation of partially unknown quantum operation. Sci.
China Ser. G Phys. Mech. Astron. 51(11), 1661–1667 (2008)

23. Chen, Y.T., Hwang, T.: Multiparty quantum remote control. Quantum Inf. Process. 12(11), 3545–3552
(2013)

24. Chen, L.B., Lu, H.: Deterministic and controlled many-to-one and one-to-many remote quantum
rotations via partially entangled quantum channels. Sci. China Ser. G Phys. Mech. Astron. 44(11),
1187–1195 (2014)

25. Luo, S.H., Wang, A.M.: Remote implementation of partially unknown quantum operation and its
entanglement costs. arXiv:1301.5866v1 (2013)

26. Kafatos, M.: Bell’s Theorem. Quantum Theory and Conceptions of the Universe, pp. 69–72. Springer,
Berlin (1989). https://doi.org/10.1007/978-94-017-0849-4 . (Chapter 10)

27. Pan, J.W., Daniell, M., Gasparoni, S., et al.: Experimenal four-photon entanglement and high-fidelity
teleportation. Phys. Rev. Lett. 86(20), 4435 (2001)

28. Sackett, C.A., Kielpinski, D., King, B.E., et al.: Experimental entanglement of four particles. Nature
404, 256 (2000)

29. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1301.5866v1
https://doi.org/10.1007/978-94-017-0849-4

	Many-party controlled remote implementations of multiple partially unknown quantum operations
	Abstract
	1 Introduction
	2 RIO of a partially unknown quantum operation to a distant receiver via the control of many agents
	3 RIO of multiple partially unknown quantum operations to a distant receiver via the control of one agent
	4 RIO of multiple partially unknown quantum operations to a distant receiver via the control of many agents
	5 Controlled RIO of multiple partially unknown operations to many distant receivers
	6 Discussion and conclusion
	Acknowledgements
	References




