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Abstract
In this paper, we propose a fully quantummulti-secret sharing scheme. In contrast with
regular secret sharing schemes, multi-secret sharing schemes share a set of unknown
secrets, and during the reconstruction phase, all the secrets are reconstructed. The
main technique is to suitably modify a quantum trap code to construct a scheme
where increasing number of secret states are recovered as more and more participants
combine their shares. It is desirable that the dimensions of the share states are within
implementable limits. In view of this and due to the significantly large dimension of the
share states produced by our first construction, we introduce a discrete-time quantum
walk-based technique to reduce the dimension of the shares making the schemes more
suitable for practical purposes. Our methods are unconditional and do not depend
on any computational hardness assumptions like lattice-based problems. Our scheme
is simple, secure against adversarial attacks and can be easily modified into several
variants of multi-secret sharing schemes.
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�, �Y ES , �NO Access structure, qualified sets, forbidden sets
(n, k) k-out-of-n threshold access structure
ti i-th threshold
S, S Domain of secrets
(SH ARE, RECON ) Secret sharing scheme
�

(s)
i Distribution on share of i-th participant

I , X , σx ,Y , Z , σz Pauli matrices
Pn Set of n-qubit Pauli matrices
[n] {1, 2, . . . , n}
σ , σni , σki Permutation map (not to be confused with the Pauli opera-

tors)
|φ〉 Qubit/quantum state/secret
ShTh(n, k), RecTh(n, k) Fully quantum threshold secret sharing scheme
Sharek,n, Reck,n Semi-quantum threshold secret sharing scheme
U , R,C, S, F,G Unitary operators
Ei j Elementary matrix
[C1, . . . ,Cd ] Block diagonal matrix

Abbreviations
SSS Secret sharing scheme
MSSS Multi-secret sharing scheme
QSSS Quantum secret sharing scheme
QMSSS Quantum multi-secret sharing scheme
QECC Quantum error-correcting code

1 Introduction

Protection of sensitive data is one of the main goals of cryptography, and to this end,
secret sharing is one of the most important cryptographic primitives which has been
widely studied. Secret sharing (SS) was introduced independently by Shamir [1] and
Blakely [2]. A secret sharing scheme (SSS) consists of a secret to be shared among
a set of participants with the stipulation that when some predetermined subsets of
participants called qualified sets pool their information together, they can reconstruct
their secret. Also, some specified subsets of participants called forbidden sets should
not have any information about the secret.

Several real-life scenarios demandmore flexible or general SSSs, and this necessity
has given rise to the extensive study of several variants of SSSs. One such necessity
is for a SSS to be able to share multiple secrets at one go. Such SSSs are called multi-
secret sharing schemes(MSSS) [3–7]. SSSs are often model dependant. But generally
what is done is that in a MSSS, several secrets are distributed among a group of
participants by a dealer and depending on the model of reconstruction, several MSSSs
have been proposed. In one suchmodel, only authorized sets can reconstruct the all the
secrets by combining their shares (or their pseudo shares), while other subsets cannot
know any information about them. In another model, the stipulation is that as more and
participants combine their shares, they can recover more number of secrets from the
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set of secrets which was originally shared. Such a variant is called a multi-threshold
MSSS [8–13]. In another variant which is prevalent in the area of visual secret sharing,
as more and more participants combine their shares, they get closer to a secret(this
includes a predefined notion of closeness). This variant is named progressive secret
sharing [14–16].
Related work With the advent of quantum computation, a natural extension of the
above is to study quantum secret sharing (QSS) where the goal is to share and protect
sensitive data in a quantum environment. QSS has been in extensively studied [17–24]
The motivation to study QSS schemes(single secret) is twofold: (1) Semi-quantum:
to share a classical secret in a quantum environment and (2) fully quantum: to share
a quantum secret in a quantum environment. It has been pointed out by the authors
in [20] that sharing a quantum state is more difficult than sharing classical informa-
tion and hence fully quantum schemes are far lesser in number than semi-quantum
ones. We have observed the same for quantummulti-secret sharing schemes(QMSSS)
[25], and to the best of our knowledge, a QMSSS sharing quantum states has not
been studied before. QMSSSs have found application in block-chains [26, 27] and
in multiparty communication (secret sharing) [28–31]. We have also observed that in
several MSSSs in the literature [13], the security is conditional and is based on the
security of computationally hard problems like lattice-based problems. Construction
of QSSSs using quantum walks has been studied recently in [32, 33]. The authors
in [32] used quantum walks on a 4 × d lattice folded into a torus and the Fourier
coin to realize an entanglement-free QSS where the participants use a d-level state.
In [33], the authors have utilized the additive properties of circular quantum walks to
construct a threshold QSSS to share a single classical secret in a quantum environ-
ment. We have used product states in our constructions and the use of product states to
construct entanglement-free QSS both in the both in the traditional and the multiparty
case has been considered in [34, 35]. As we have noted before that sharing a quantum
state in a quantum environment is a more challenging issue, we attempt to construct
a more general fully quantum MSSS. Our construction works for general graphs and
not only specialized graphs like the circle. Discrete-time quantum walks [36, 37] have
also found application in other areas of quantum computation as in [38–40]. An excel-
lent source containing several properties of discrete quantum walks is [41]. Quantum
walks on graphs have been further studied in [42–44]. In visual SSSs, the secret is
an image and the dealer splits the image into n shares (noise-like shadows). During
reconstruction, the secret image can be reconstructed by k authorized shadows, while
less than k shares reconstruct nothing of the original image. The advantage of visual
secret sharing is that the secret image can be reconstructed by superimposing the k
shares and with no cryptographic computation. In the progressive variant [14, 15, 45]
of such schemes, the more the number of shadows are superimposed, the clearer (or
closer to the original secret image) the reconstructed image is. In other words, themore
the number of participants combine their shares, the closer they get to the secret. This
involves a precise mathematical notion of closeness or clarity which varies among dif-
ferent papers in the literature. It is natural to study visual secret sharing in the quantum
context [46, 47].
QuantumwalksQuantumwalks are quantumanalogues of classical randomwalks. Just
as classical randomized algorithms use random walks, quantum walks have proved to
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be beneficial to the design of quantum algorithms [48]. The evolution of a quantum
walk in discrete time is specified by the product of two unitary operators: (1) a “coin
flip” operator and (2) a conditional shift operator, which are applied repeatedly. So
starting from an initial state, after a finite amount of time, there is a list of quantum
states which are reachable from the initial state. This set of reachable states can be
completely described by specifying the initial state, the coin flip operator and the shift
operator(s).

Suppose we want to share a set of quantum secrets among participants. It is costly
and poses implementation challenges to share each of the secrets to all the participants
via quantum SSSs. However, if the set of secrets form a set of reachable states starting
from an initial state, then it is enough to share the initial state, the coin flip operator
and the conditional shift operators, and in one shot, we can share the whole set of
quantum secrets among participants in a quantum environment. This is the idea that
we explore and develop in this paper.

Another question that we address in this paper is the following: How to design the
most general and practical quantum SSS? For a secret sharing scheme to be practi-
cal, it is desirable that the scheme can accommodate as many participants as possible
(possibly infinite) without refreshing the system periodically or without communicat-
ing with the old participants from time to time. Such quantum schemes have been
considered in [49, 50] and are called quantum evolving secret sharing schemes. Now
if we use these schemes in conjunction with a multi-secret sharing scheme whose set
of secrets is the set of the reachable states from a quantum walk, then we can have a
truly general quantum secret sharing which can share arbitrarily many secrets among
unbounded number of participants. This is possible because quantum walks can be
performed on infinite lattices for as long as possible.

Our contributions Our main contributions are as follows:

• First we construct an unconditional fully quantum MSSS—sharing a set of quan-
tum states in a quantum environment utilizing a modification of the trap code [51,
52] to incorporate a incremental or multi-threshold properties.

• Since the use of trap code causes a blow up in the dimension of the shares, in
the following sections, we attempt to reduce the dimensions of the share states
utilizing discrete-time quantum walks and remove the use of trap codes.

• As applications, we construct multi-threshold variants of the quantum walk-based
schemes which also do not use trap codes. We also show that our constructions
can be used in the “progressive” setting where participants get closer to the secret
as more and more participants combine their shares.

• Our construction is entanglement-free which makes practical implementation eas-
ier and can be potentially applied on a larger number of participants as compared to
schemes utilizing entanglement. While the results of this paper are theoretical and
the paper has an algorithmic flavour, the flexibility and scalability of our construc-
tions and the significant reduction in the dimension of the share states to make the
constructed schemes within the reach of practical implementation should appeal
to physicists and practitioners as well. To the best of the knowledge of the authors,
the technique of modifying the trap code, application of our technique in the quan-
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tum progressive model and the use of discrete quantum walks in multi-threshold
case have not been considered before.

PaperorganizationThepaper is organized as follows. Section2describes the required
tools and we give formal definitions of computational security of a QMSSS. In Sect. 3,
we elaborate the construction of our QMSSS based on a modification of the trap
code(see Sect. 3.1.1). In the next Sect. 4 we use quantumwalks to construct variants of
QMSSSs. The following Sect. 5 discusses generalizations to general access structures,
outlines a model for a possible quantum progressive SSS and this followed by Sect. 6
where we discuss the security of our scheme against adversarial attacks. In Sect. 7,
we compare our constructed scheme with the existing ones and study its advantages.
In Sect. 8 we discuss some aspects and further applications of our scheme and we
conclude the paper in Sect. 9.

2 Preliminaries

Definition 1 (Access structure) Let P = {p1, . . . , pn} be a set of participants. A
collection � ⊆ 2P is monotone if B ∈ � and B ⊆ C imply that C ∈ �. An access
structure over P , � = (�Y ES, �NO) is a pair of collections of sets �Y ES, �NO ⊆ 2P ,
such that �Y ES and 2P\�NO are monotone, and �Y ES ∩ �NO = φ. Sets in �Y ES are
called qualified, and sets in �NO are called forbidden sets.

Definition 2 (Threshold access structures) Let 1 ≤ k ≤ n. A k-out-of-n or (n, k)
threshold access structure� over a set of participantsP = {p1, . . . , pn} is the complete
access structure accepting all subsets of size at least k, that is, �Y ES = {A ⊆ P :
|A| ≥ k} and �NO = {A ⊆ P : |A| < k}.
Definition 3 (Multi-threshold access structures) A multi-threshold access structure
consists of participantsP = {p1, p2, . . . , pn} and independent (ti , n)-threshold access
structures for i = 1, 2, . . . ,m satisfying t1 < t2 < . . . < tm .

Definition 4 (Secret sharing scheme (SSS) [1, 2]) For an access structure and S (|S| ≥
2) a domain of secrets, an SSSS consists of a pair of algorithms (SH ARE; RECON )

such that (i) SH ARE is a probabilistic sharing algorithm for generating shares of
participants and (i i) RECON is a deterministic reconstruction algorithm to recover
the secret. SH ARE and RECON satisfy the following conditions:

1. SH ARE on input a secret s ∈ S outputs the shares {�(s)
1 , . . . ,�

(s)
n }) of the

participants.
2. Correctness For every secret s ∈ S, every qualified subset in�Y ES can reconstruct

the secret. For s ∈ S, and B ∈ �Y ES , it holds that

Pr [RECON ({�(s)
i }i∈B, B) = s] = 1,

where the probability is over the randomness of the sharing procedure.
3. Privacy For every unqualified subset B /∈ �Y ES , and every two secrets s1 and s2

belonging to S, the distribution of the secret shares of parties in B generated with
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secret s1 and the distribution of the shares of parties in B generated with secret s2
are identical. Namely, the distributions ({�(s1)

i }i∈B) and ({�(s1)
i }i∈B) are identical.

Multi-secret sharing scheme (MSSS) A SSS where instead of a single secret, a set
of secret is shared among participants. Let S = {s1, . . . , sr } be a set of secrets, where
each si belonging to a set Si , is shared among participants in such a way that each
subset of P can recover a certain subset of S, but has absolutely no information on the
remaining secrets. We follow the definition of Blundo et al. [3] in the following. For
each subset of participants A ⊂ P , we denote by SA ⊂ S the set of secrets that can
be recovered by the participants in A, referred to as the A-secret-set. For monotone
access structures, for any A ⊂ B ⊂ P , it holds that SA ⊂ SB .

Definition 5 (Multi-threshold multi-secret sharing scheme) Given n participants,
thresholds, 2 ≤ t1 < t2 < . . . < tk ≤ n, and a set of secrets S = {s1, . . . , sr },
the following conditions are satisfied for a SSS to be multi-threshold and multi-SSS:

1. If the number of participants combining their shares is less than t1, no information
about any secret in S can be obtained. For any subset A ⊂ P , participants have
no information on any subset of secrets in S \ SA.

2. Any subset A ⊂ P of participants can recover the A-secrets-set SA.More precisely,
for an increasing chain of subsets of secrets St1 ⊂ St2 ⊂ · · · ⊂ Stk = S indexed by
the threshold values, a subset A of participants of size ti ≤ |A| < ti+1 can recover
the secrets of Sti . If the number of participants combining their shares is greater
or equal to tk , all secrets in S can be reconstructed.

Definition 6 (Pauli matrices) Single qubit Pauli matrices are

I =
[
1 0
0 1

]
, X(= σx ) =

[
0 1
1 0

]
, Z(= σz) =

[
1 0
0 −1

]

and Y = i X Z =
[
0 −i
i 0

]
.

An n-qubit Pauli matrix is given by the n-fold tensor product of single-qubit Paulis.
The set of all n-qubit Pauli matrices is denoted by Pn , where |Pn| = 4n .

Definition 7 (Quantum one-time pad [37]) n theQuantum one-time pad cryptosystem,
we have

• an n-qubit string |ξ 〉 = |ξ1〉 . . . |ξn〉,
• shared key: two n-bit strings k, k′.
• To encode qubit by qubit: |φi 〉 = σ

ki
x σ

k′
i

z |ξi 〉.
• To decode qubit by qubit: |ξi 〉 = σ

k′
i

z σ
ki
x |φi 〉.

Here, |xi 〉, |φi 〉 are qubits and σx and σz are Pauli matrices. When a quantum one-
time pad is applied, to a party that does not know the key, the encoded text seems
completely mixed (information theoretically) [53].

Definition 8 (Permutation map) A permutation map is a unitary operation that acts on
n qubits and permutes the order of the qubits or equivalently permutes the indices of
the qubits. A permutation σ on n qubits takes the i-th qubit to the σ(i)-th qubit.
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Definition 9 (Trap code [51, 52]) In a trap code, we have

1. Encoding qubit by qubit

• apply a [[n, 1, d]] quantum error-correcting code Enc which will correct up to t
errors. (here d = 2t + 1).

• to the resulting, append n-qubit traps, first in the state |0〉 〈0|⊗n (X -traps) and
second in the state half |+〉 〈+|⊗n ( Z -traps),

• permute the resultant 3n qubits by a random permutation σ , according to the key
k1.

• finally apply a Pauli encryption using the classical randomness in the key k2.
• Mathematically, the encoding of a state ρ is denoted as

Pk2σk1(Enc(ρ) ⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n)σ
†
k1
Pk2 ,

where corresponding to the two part secret key, k = (k1, k2), σk1 is the k1-th permu-
tation, Pk2 is the k2-th Pauli matrix.

2. Decoding

• Apply the inverse Pauli according to key k2.
• to the resulting apply the inverse permutation σ−1 according to the key k1.
• measure X -traps in the computational basis and the Z -traps in the Hadamard basis.
If they are not in their original state, it is rejected.

• decode the quantum error-correcting code Enc.

It is required that the quantum error-correcting code used here is a Calderback-Shor-
Steane (CSS) code and a self-dual code implemented by a Clifford circuit.

Definition 10 (Discrete-time quantum walk [41]) Quantum walk is the quantum ver-
sion of classical random walks. The evolution of a quantum walk in discrete time is
specified by the product of two unitary operators: (1) a “coin flip” operator and (2)
a conditional shift operator, which are applied repeatedly. There are three existing
models of quantum walks which we describe briefly as follows: (The notations and
definitions are taken from [41])

1. Arc-reversal [42, 44] Consider an undirected graph G = (V , E) with |V | = n
and |E | = m. The state space is C

m . Replace each edge of G with a pair of
opposite arcs. The characteristic vectors eu,v of the directed arcs (u, v) span C

m .
The coin flip map is given by the permutation matrix R that reverses each arc, i.e.
Reu,v = ev,u . For any vertex u, let there be an order defined on its neighbours fu :
{1, 2, . . . , deg(u)} −→ {v, v is adjacent to u}. Denote by fu( j) and (u, fu( j))
the j-th neighbour and the j-th arc of u, respectively. Let Cu be a deg(u)×deg(u)

matrix which sends (u, fu( j)) to a superposition of the all the outgoing arcs of
u and satisfying Cue j = ∑deg(u)

k=1 (eTk Cue j )ek . The quantum coin is given by the
block diagonal matrixC = [C1,C2, . . . ,Cn]withCi forming the diagonal blocks.
Hence, for each iteration, the transition matrix is given by U = RC , combination
of a quantum coin and an arc flip. Common choices for quantum coins are the
Fourier coin F = ( 1√

d
e2 jkπ i/d) jk and the Grover coin G = 2

d J − I .
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2. Shunt-decomposition [43] In this case, the graphs are assumed to be d-regular.
Hence, the state space Cm is isomorphic to C

n ⊗ C
d . The arc (u, fu( j)) can be

represented by eu ⊗ e j . The transition matrix is U = SC , where C is a quantum
coin as before and for each vertex, S maps its j-th arc to the j th arc of fu( j). S is
a 0 − 1 permutation matrix which is equivalent to the block diagonal matrix

S =

⎛
⎜⎜⎜⎝

P1
P2

. . .

Pd

⎞
⎟⎟⎟⎠ ,

where Pj maps a vertex to its j-th neighbour.U has the following decomposition:

U = (P1 ⊗ E11 + . . . + Pd ⊗ Edd)(E11 ⊗ C1 + . . . + Edd ⊗ Cn),

where Ei j is an elementary matrix with 1 in the i j-th entry and 0 elsewhere.

3. Two-reflections [38, 39] Let M be a Markov chain on G. let N denote the matrix
obtained from M by taking the square root of its entries. Define

Q1 = (e1 ⊗ (Ne1) . . . en ⊗ (Nen))

and

Q2 = ((NT e1) ⊗ e1 . . . (NT en) ⊗ en).

Since M is doubly stochastic, we have QT
1 Q1 = QT

2 Q2 = I . Finally,U is defined as

U = R1R2 = (2Q1Q
T
1 − I )(2Q2Q

T
2 − I ).

Effectively, Q1 partitions the arcs according to their tails, and Q2 partitions the arcs
according to their heads.

3 Technical details

Deviating from traditional SSSs for single secrets s, our aim is to share a subset
of secrets Sr ⊂ S where the set of secrets is a finite set of quantum states S =
{|φ1〉 , |φ2〉 , . . . , |φu〉}. We assume existence of quantum threshold SSS (both fully
quantum [20] and semi-quantum [21] models) which we need for our constructions. In
our constructed scheme, there is a minimum threshold t1. If the number of participants
cross this threshold, they can reconstruct a certainminimumnumber of secret states but
not the whole set of secrets. More number of participants are required to reconstruct
more number of secret state. Finally, there is a maximum threshold and if the number
of participants cross this threshold, they can reconstruct the full set of secrets. For
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concrete definition, we refer to Definition 5 suitably adjusted to the case of quantum
secrets. For the ease of reference, we introduce the following terms.
Incremental thresholds 1 < t1 < t2 < . . . < tk < n, where n is the total number of
participants and ti ’s are thresholds.
Fully qualified sets A set is fully qualified if the number of participants combining
their shares p satisfies p ≥ tk .
Semi-qualified sets A set is semi-qualified if the number of participants combining
their shares p satisfies t1 ≤ p < tk .
Forbidden setsA set is forbidden if the number of participants combining their shares
p satisfies p < t1.
One may interpret the above conditions to be reminiscent of a ramp scheme. In a ramp
SSS qualified sets can reconstruct the secret and forbidden sets have no information
about the secret. There is a third class of subsets of participants called semi-qualified
who have partial information about the secret. In the present context, we have chosen
not to call our scheme a ramp scheme due to the fact that semi-qualified sets can
completely recover a predetermined chosen subset of the set of secrets. We have not
considered or have made no attempt to quantify the information context of a subset
of secrets. However, in the case of progressive secret sharing (see Sect. 5.3), one may
call our scheme a ramp scheme as there is a well-defined notion of closeness to the
original secret and as more and more participants combine their shares, they get closer
to the secret.

3.1 Main scheme

In this section, we put forward our constructions. In Sect. 3.1.1, we detail our modifi-
cation to the trap code. Next (Sect. 3.1.2) based on this modification, we present the
construction of a fully quantum QMSSS with multiple-thresholds where there is no
relation between the secret quantum states. We describe in detail the correctness and
privacy of our scheme in Sect. 3.2 and analyse the dimension of the shares states in
Sect. 3.3.

3.1.1 Modification to the trap code

As we have mentioned before, our construction is based on a modification to the trap
code. The modification is done as follows: Recall Definition 10 where mathematically
the encoding of a state ρ is given by Pk2σk1(Enc(ρ)⊗ |0〉 〈0|⊗n ⊗ |+〉 〈+|⊗n)σ

†
k1
Pk2 .

By removing the Pauli operator, the state becomes σk1(Enc(ρ) ⊗ |0〉 〈0|⊗n ⊗
|+〉 〈+|⊗n)σ

†
k1

. Consider the permutation σ without the index. Assume that σ has
no fixed points, i.e. σ is a derangement and has the following form. Suppose
σ : [n] −→ [n]. Consider a partition of [n] as [n] = n1 ∪ n2 ∪ . . . ∪ nr . Let
σni : [n] −→ [n] such that σni ( j) = j for each j ∈ [n]\ni and σni ( j) �= j for each
j ∈ ni , 1 ≤ i ≤ r . Suppose

σ = ◦
1≤i≤r

σni = σn1 ◦ . . . ◦ σnr .
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In the original trap code, σ is chosen from all permutations of length n and the total
number of choices is n!. In our case, we shall choose σ from all derangements of
length |ni |, 1 ≤ i ≤ r . It is well known that the total number of derangements of

length |ni | equals |ni | ∑|ni |
k=0

(−1)k

k! . Hence, the total number choices for σ becomes

r∏
i=1

⎛
⎝|ni |

|ni |∑
k=0

(−1)k

k!

⎞
⎠ .

This choice does not affect privacy as the permutations are chosen uniformly at ran-
dom. The advantage of such a decomposition is that one can share the indices of the
smaller permutations in an incremental manner through a multi-threshold SSS. The
effect is that as more and more participants combine their shares, more partitions of
the permutation can be unpermuted and hence more number of secrets can be recon-
structed. This is formalized in step 7 of procedure 1. It was noted in [51, 52] that the
same permutation should be applied on all the input qubits. Note that, same permuta-
tions are used on each partition, and fresh keys for the quantum one-time pad (Pauli)
are used, hence our modification does not hamper security.

Remark 1 This method of using a partitioned permutation is reminiscent of the two-
level classical SSS of [54] where the share strings are partitioned into blocks and
random permutations are applied on the smaller blocks. However, in our method, we
partition the set of secrets instead of the shares. There is no attempt in [54] to reduce
the share. In this paper, on the other hand, we are able to significantly reduce the
dimension of the share states using quantum walks.

3.1.2 No relation between secret states

Let us suppose that we have an unknown set of quantum secrets S = {|φ1〉 , |φ2〉 , . . . ,

|φu〉}. Based on a coin toss, an l-subset Sr = {∣∣φi1

〉
,
∣∣φi2

〉
, . . . ,

∣∣φil

〉} ⊆ S is chosen.
Basic components Consider an increasing chain of thresholds t1 < t2 < · · · < tr . We
shall assume that l ≥ tr otherwise by the pigeon hole principle, there must be thresh-
olds ti and ti+1 such that the number of secrets recovered by number of participants
greater than ti and ti+1 remain same and a threshold ti+1 becomes redundant. Let
(ShTh(n, k), RecTh(n, k)) be a fully quantum perfect threshold SSS sharing a quan-
tum state as in [20]. Let (Share(ti ,n), Rec(ti ,n)) be semi-quantum perfect threshold
SSSs sharing classical secrets for all i as in [21].
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Procedure 1: Share Composite State SHARE1
1. Sr ←− {∣∣φi1

〉
,
∣∣φi2

〉
, . . . ,

∣∣φil

〉}.
2. Partition Sr into r subsets S1

r ,S2
r , . . . ,Sr

r .

3. Do steps 4 to 8 for each w, 1 ≤ w ≤ r .
4. Sw

r ←− {∣∣φi1

〉
,
∣∣φi2

〉
, . . . ,

∣∣φilw

〉}.
5.

∣∣∣Sw
temp1

〉
←− ∣∣φi1

〉 ⊗ ∣∣φi2

〉 ⊗ . . . ⊗ ∣∣φilw

〉
6.

∣∣∣Sw
temp2

〉
←− Enc(

∣∣∣Sw
temp1

〉
) ⊗ |0〉 〈0|⊗lw ⊗ |+〉 〈+|⊗lw .

7.
∣∣∣Sw

comp1

〉
←− σw

k1
(

∣∣∣Sw
temp2

〉
)σ

w†
k1

.

8.
∣∣Scomp2

〉 ←− ⊗
1≤w≤r

∣∣∣Sw
comp1

〉

9.
∣∣Scomp

〉 ←− Pk2
∣∣Scomp2

〉
Pk2 .

10. Run ShTh(n, t1) on
∣∣Scomp

〉
to generate shares |Sh1〉 , |Sh2〉 , . . . , |Shn〉 .

11. Run Share(t1,n) on k2 to generate shares
∣∣∣Shk21

〉
,

∣∣∣Shk22
〉
, . . . ,

∣∣∣Shk2n
〉
.

12. Run Share(ti ,n) on σli for each i to generate shares
∣∣∣Shli1

〉
,

∣∣∣Shli2
〉
, . . . ,

∣∣∣Shlin
〉
.

13. STOP.

Procedure 2: Reconstruction RECON1
1. Get shares |Sh1〉 , |Sh2〉 , . . . , |Shk〉 .

2. Run RecTh(n, t1) on |Sh1〉 , |Sh2〉 , . . . , |Shk〉 to reconstruct
∣∣Scomp

〉
.

3. Get shares
∣∣∣Shk21

〉
,

∣∣∣Shk22
〉
, . . . ,

∣∣∣Shk2k
〉
.

4. Run Rec(t1,n) on
∣∣∣Shk21

〉
,

∣∣∣Shk22
〉
, . . . ,

∣∣∣Shk2k
〉
to reconstruct k2.

5. Get shares
∣∣∣Shli1

〉
,

∣∣∣Shli2
〉
, . . . ,

∣∣∣Shlik
〉
for each i .

6. Find tm such that tm ≤ k < tm+1.

7. Rec(ti ,n) on
∣∣∣Shli1

〉
,

∣∣∣Shli2
〉
, . . . ,

∣∣∣Shlik
〉
for i = 1, . . . ,m such that tm ≤ k <

tm+1; and obtain σl0 , . . . , σlm .
8. On

∣∣Scomp
〉

• use the key k2 to remove the Pauli operator Pk2 to get
∣∣Scomp2

〉
,

• on
∣∣Scomp2

〉
use the decomposition

∣∣Scomp2
〉 ←− ⊗

1≤w≤r

∣∣∣Sw
comp1

〉
,

• use σl1 , . . . , σlm to invert the permutations on the first m subsets and obtain∣∣∣Sw
temp2

〉
for w = 1, . . . ,m.

9. On
∣∣∣Sw

temp2

〉
discard the |0〉and |1〉 states (traps) to get the state Enc(

∣∣∣Sw
temp1

〉
).

10. Decode the QECC to get the partially decoded states
∣∣∣Sw

temp1

〉
’s which use the

tensor product of the original secret states.
11. Obtain the original states from the quantum lines.
12. STOP.

123



380 Page 12 of 27 S. S. Chaudhury, S. Dutta

Fig. 1 Schematic diagram of QMSSS

In Fig. 1, we give a schematic diagram of our construction.

3.2 Correctness and privacy

The proof of correctness and security of the proposed scheme depend on the same
properties of its basic building blocks. We first summarize/outline them and then
move onto proving the correctness and security of our proposal.
Description of (ShTh(n, k), RecTh(n, k)) of [20]. Here, the secret is an unknown
quantum state.

1. Distribution of shares via a polynomial computation: The dealer finds a suitable
prime number d and sets a finite fieldZd . Depending of the number of participants
t who can recover the secret, the dealer randomly chooses t − 1 elements ai ∈ Zd

(i = 1, ..., t − 1). Next the dealer defines the polynomial f (x) = S+ a1x + . . .+
at−1xt−1, S ∈ Zd . For n participants, the dealer evaluates the polynomial on n
different elements of Zd and sends the outputs privately to each participant.

2. Suppose the dealer generates an unknown sequence of states to be shared among
the participants. Next comes the application of a phase shift operation Rz(θ) =
cos θ |0〉 〈0|−sin θ |0〉 〈1|+sin θ |1〉 〈0|+cos θ |1〉 〈1| on every quantum state in the
unknown sequence of quantum states generated by the dealer, where θ = 2π − S

N ,
N being the security coefficient.

3. Insertion of random decoy particles |0〉 , |1〉 , |+〉 , |−〉 for eavesdropping detec-
tion.

All the steps mentioned above are part of the secret sharing procedure in [20]. The cor-
responding secret recovery procedure consists of the application of the corresponding
Lagrange’s interpolation and application of proper phase shift operations. The details
are omitted.
Description of (Share(n,k), Rec(n,k)) of [21]. Here, the secret is a classical secret
S ∈ Zd . Next the dealer defines the polynomial f (x) = S + a1x + . . . + at−1xt−1,
S ∈ Zd as before. For n participants, the dealer evaluates the polynomial on n different
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elements xi of Zd and satisfies each Li = ∏
1≤ j≤n, j �=i

x j
x j−xi

is an integer and shares
the outputs privately to each participant. During reconstruction, the dealer generates
a two-qudit Bell state in the d-dimensional Hilbert space. The participants perform
suitable unitary operations on this Bell state to reconstruct the secret. For more details,
we refer the reader to [21].
Encoding of U See Sect. 4.4.3.

3.2.1 Description of procedures 1 and 2 and correctness of the scheme

Figure1 gives a schematic diagram of our construction.
Procedure 1 SHARE1 Procedure 1 first chooses a subset Sr of the set of secrets S.
In step 2, this chosen subset is then partitioned into r partitions. For each partition,
temporary composite states are created. This is done by taking the tensor product of
the quantum states present in a partition. To the obtained state, the trap code operations
are applied, i.e. a suitable quantum error-correcting code is applied, equal number of
|0〉 and |+〉 states are appended followed by a random permutation and the application
of a random Pauli operator. Thus, from each partition, we obtain a composite state
which looks completely mixed due to the application of the trap code. Finally, all
the composite states from each of partitions are combined (tensored) to get the state∣∣Scomp

〉
. To this state, the underlying quantum threshold secret scheme is applied to

get the shares of the participants. Additionally, the index k2 of the k2 Pauli operator
is shared via an underlying semi-quantum threshold SSS. Similarly, the index of the
random permutation for each of the partition has to be shared. This is again done by
applying a semi-quantum threshold SSS.
Procedure 2 RECON1 Let us suppose that some k participants present their shares.
If k ≥ t0, then by applying the reconstruction procedure of the underlying quantum
threshold SSS, the state

∣∣Scomp
〉
is recovered. Similarly, by applying the reconstruction

procedure of the underlying quantum threshold schemes, the indexof thePauli operator
is recovered. Next, the greatest threshold tm which is less than k is identified. From
step 7, the indices of the respective permutations which were applied to the first m
permutations are recovered. The random permutations are inverted, the trap states (|0〉
and |1〉 states are discarded), the QECC is decoded and hence, the secret quantum
states which belong to the first m partitions are recovered.

Theorem 1 The constructed scheme is correct. Fully qualified sets can recover all the
states in Sr . If p1 < tm ≤ p2, then the number of states recovered by p1 participants
is strictly less than the number of states recovered by p2 participants.

Proof A fully qualified set contains more than tr number of participants. By the cor-
rectness of the underlying threshold schemes, the state

∣∣Scomp
〉
can be recovered and

also the index of the applied Pauli operator k2 can be identified to remove it from the
recovered

∣∣Scomp
〉
to get the state

∣∣Scomp2
〉
. Since the number of participants satisfies

all the thresholds, again by the correctness of the underlying threshold SSSs, all the
indices of the permutations are recovered. The permutations are inverted, the applied
error correcting code is decoded, and the original quantum states are obtained from
the respective quantum lines. Note that, the number of partitions/states on which the
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applied permutation can be inverted depends on the number of thresholds the partic-
ipants satisfy. Hence, suppose the maximum threshold satisfied is tm , then only the
first m permutations can be unpermuted and finally recovered. Thus, we can conclude
the second part of the theorem. ��

3.2.2 Privacy

Theorem 2 Forbidden sets cannot reconstruct any secret state. Any subset of partici-
pants which is not qualified cannot reconstruct the full set of secrets. The number of
secret states reconstructed increases as the number of participants crosses the given
thresholds.

Proof Let us suppose that a forbidden set presents its shares. By the privacy of the
underlying threshold SSSs, the recovered state is independent from

∣∣Scomp
〉
. Also, the

recovered index of the permutations and the index of the Pauli operator are independent
of the actual indices. Since these are independent events, one can conclude that the
joint distributions for twodifferent r -sets of quantumstatesS1,S2 ⊆ S, ({�(S1)

r }r≤|S|)
and ({�(S2)

r }r≤|S|) are identical. Also, note that in contrast to trap codes where the
probability is computed over all permutations of some length N (to be specified later),
in our case, the probability is computed over all such permutations of length N which
can be expressed as a product of r permutations(one for each partition). Clearly, if the
maximum threshold satisfied is tm(m < r ), then the permutations corresponding to
the partitions(> m) cannot be unpermuted. And hence not all states can be recovered.

��

3.3 Dimension of share states

We shall assume for ease of computation that the underlying quantum threshold SSS
(ShTh(n, k), RecTh(n, k)) does not increase the dimension of the share state. We also
note that applying a quantum one-time pad does not change the dimension of the state.
In view of this, it is enough to compute the dimension of

∣∣Scomp
〉
. Let the dimension

of the states in S be bounded above by DS .Also, let the size of a partition be bounded
above by Pr . Let μ be the factor by which the QECC increases the dimension of the
state and suppose for each partition a maximum of M traps are applied. Hence, for

each partition, the dimension of
∣∣∣Sw

comp1

〉
is bounded above by K = DS ×Pr ×μ×M .

Hence, the total dimension of
∣∣Scomp

〉
is bounded above by O(Kr ).

Furthermore, quantum states corresponding to the Pauli operators and the random
permutations are also shared. Even for a small number of states and/or partitions the
dimension of the shares corresponding to

∣∣Scomp
〉
can become very large for practical

applications. The blowup is also due to the QECC which increases dimension. This
motivates us to consider techniques to significantly reduce the dimension of the share
states which does not use trap codes. We describe the modifications in the following
sections.
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4 Modifications and variants

In this section, we attempt to reduce the dimension of the share states. The crucial
assumption here is that there is a known relation between the secret quantum states.
We show that this assumption helps to drastically reduce the dimension of the share
states and also that the known relation between the secret states does not reveal any
information about the states to the forbidden states. As a warm-up (Sect. 4.1), we
present procedure 3 and 4, where the states are related by the powers of a single
unitary operator. To model more general situations, we introduce our quantum walk-
based constructions in Sect. 4.4.

4.1 Relation between quantum states described by a finite number of unitary
operators

The main idea in this section is that to share a set of secrets with some known relations
among the states, it is not necessary to share all the secret states. Again let us suppose
that we have an unknown set of quantum secrets S = {|φ1〉 , |φ2〉 , . . . , |φu〉}. In
addition, let us suppose that |φi 〉 = Ui−1(|φ1〉) for all i = 0, 1, . . . , n. In this case,
it is enough to share |φ1〉, the number of quantum states n and an encoding of the
operator U . Hence, in Procedure 3, we essentially reduce the MSS problem to the
case of sharing just three secrets, one quantum secret and two classical secrets in the
quantum environment. However, situations need not be so simple and might demand
complicated relations between known states. In view of this, we generalize the this
method to more complicated scenarios using the concept of discrete-time quantum
walks in Sect. 4.4.

Procedure 3: Share composite state SHARE2
1. Sr ←− |φ1〉 .

2. Run ShTh(n, k) on |Sr 〉 to generate shares
∣∣∣Shφ

1

〉
,

∣∣∣Shφ
2

〉
, . . . ,

∣∣∣Shφ
n

〉
.

3. S2 ←− m
4. Run Share1(n,k) on S2 to generate shares

∣∣Shm1 〉
,
∣∣Shm2 〉

, . . . ,
∣∣Shmn 〉

.

5. S3 ←− an encoding of U .

6. Run Share2(n,k) on S3 to generate shares
∣∣ShU1 〉

,
∣∣ShU2 〉

, . . . ,
∣∣ShUn 〉

.

7.
∣∣∣Shφ

i

〉
,
∣∣Shmi 〉

,
∣∣ShUi 〉 ←− Share of participant Pi .

8. STOP.

Procedure 4: Reconstruction RECON2
1. Get shares (

∣∣∣Shφ
1

〉
,
∣∣Shm1 〉

,

∣∣∣ShU1
〉
), . . . , (

∣∣∣Shφ
k

〉
,
∣∣Shmk 〉

,

∣∣∣ShUk
〉
).

2. Run RecTh(n, k) on
∣∣∣Shφ

1

〉
,

∣∣∣Shφ
2

〉
, . . . ,

∣∣∣Shφ
k

〉
to get |φ1〉 .

3. Run Rec1
(n,k) on

∣∣Shm1 〉
,
∣∣Shm2 〉

, . . . ,
∣∣Shmk 〉

to get m.

4. Run Rec2
(n,k) on

∣∣∣ShU1
〉
,

∣∣∣ShU2
〉
, . . . ,

∣∣∣ShUk
〉
to get U .

5. ComputeU (|φ1〉),U2(|φ1〉), . . . ,Um−1(|φ1〉) to get the states |φ2〉 , |φ3〉 , . . . , |φm〉 .

6. STOP.
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4.2 Correctness and privacy

Theorem 3 The constructed scheme is correct, i.e. any k or more participants per-
forming the reconstruction procedure by combining their shares can reconstruct all
the secrets |φ1〉 , |φ2〉 , |φ3〉 , . . . , |φm〉 .

Proof From Procedure 3 (i.e. SHARE2), we observe that the initial secret state |φ1〉 is
shared via an fully quantum (n, k) threshold SSS. The maximum power m to which
U is raised and an encoding of U which are treated as classical secrets are shared
using semi-quantum (n, k) threshold SSSs. Now from Procedure 4 (i.e. RECON2),
we see that in order to reconstruct all the secrets, the respective reconstruction pro-
cedures are applied to recover |φ1〉, m and U . Finally, the participants compute
U (|φ1〉),U 2(|φ1〉), . . . ,Um−1(|φ1〉) to get the states |φ2〉 , |φ3〉 , . . . , |φm〉 . ��
Theorem 4 (Privacy) Forbidden sets of participants (i.e. subsets with size less than or
equal to k − 1) cannot reconstruct any secret state.

Proof To reconstruct all the secret states in the state, it is necessary to reconstruct
|φ1〉 and U . By the privacy of the underlying k-out-of-n quantum threshold SSSs,
any forbidden set of participants (i.e. subsets containing ≤ k − 1 participants) cannot
reconstruct either of |φ1〉 orU . Hence, forbidden sets of participants cannot reconstruct
any secret state. The reconstruction of m is not entirely necessary as the participants
can start computingUi (|φ1〉), and without the knowledge ofm, the participants cannot
claim with certainty that they have recovered all the quantum states. Hence, to exactly
reconstruct all the secret quantum states, it is necessary to reconstruct all of |φ1〉, m
and U which a forbidden set of participants cannot. ��

4.3 Dimension of share states

Let DS be the dimension of |φ1〉. Let us assume that application of the underlying
quantum threshold SSS (ShTh(n, k), RecTh(n, k)) does not increase the dimension
of the share state. Also, the semi-quantum threshold schemes share classical secret
privately to the participants and utilize a d-dimensional state for secret reconstruction.
In view of this, one can assume a constant times increase in the overall dimension of
the share states. Assuming for ease of computation that the dimension of the share
state due to sharing m is bounded above by DS , the dimension of a share state is
bounded above by O(D2

S). In comparison with the dimension obtained in Sect. 3.3,
we have D2

S � Kr and this is a significant improvement.
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4.4 Quantummulti-secret sharing schemes based on quantumwalks

We can express a QMSSS in terms of aDiscrete-Time QuantumWalk Model. We shall
construct three SSSs based on the three types of discrete-time quantum walks we have
defined in Sect. 2.

4.4.1 Arc reversal model

In this model, we have the following components:

• A graphG where each edge is replaced by two directed edges(arcs) in the opposite
direction. Let us suppose that X has n vertices and m arcs.

• State space is Cm spanned by the characteristic vector of the arcs eu,v .
• For each vertex u, there is a linear order fu on its neighbours.
• The transition matrix of an arc reversal quantum walk is given byU = RC where

R is a permutationmatrix that reverses an arc andC is a coin flip quantum operator.
We may give the same quantum coin C to all the vertices or we can give different
quantum coins to different vertices.

• AQMSSS based on the Arc reversal model Let us suppose that we have a graph
G = (V , E)(E consists of arcs), an arc reversal operator R and each vertex has
two quantum coins C0 and C1. Hence, we have two phase transition matrices
U0 = RC0 and U1 = RC1. Let the characteristic vectors corresponding to the
arcs be denoted by eu,v . Fix an N ∈ N. The set of secrets is defined as

SN = {A1 ◦ A2 ◦ . . . ◦ Ai (|φ〉), 1 ≤ i ≤ log N , Ai = U0,U1, |φ〉
= eu,v, (u, v) ∈ E}.

To choose a multi-secret, we do the following procedure. Let |φ〉 = eu,v be a fixed
initial state. For any X ≤ N , let us consider the binary expansion of X denoted
as (x1, x2, . . . , xlogX )2. Hence, xk = 0, 1(1 ≤ k ≤ logX ). Corresponding to X ,
we can get a quantum multi-secret as follows: If x2 = 0, then |φ1〉 = U0(|φ〉),
otherwise x2 = 1 and |φ1〉 = U1(|φ〉). Again if x3 = 0, then |φ2〉 = U0(|φ1〉),
otherwise x3 = 1 and |φ2〉 = U1(|φ1〉) and this process is continued until we reach
logX . Formally, the multi-secret is

SX = {A1 ◦ A2 ◦ . . . ◦ Ai (|φ〉), 1 < i ≤ logX , A1 = I , Ai = Uxi }.

Hence, in this process, it is necessary to share the initial stateφ, a natural numberX .
The remaining components like the graph G, and the unitary operatorsU1 andU2
may remain public or private depending on the model being used or depending on
the maximum dimension of the share states that is allowable by the implementing
devices. The procedure is formalized in the following algorithms.
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Procedure 5: Share composite state SHARE3
1. Sini tial ←− |φ1〉 .

2. Run ShTh(n, k) on |Si 〉 to generate shares
∣∣∣Shφ

1

〉
,

∣∣∣Shφ
2

〉
, . . . ,

∣∣∣Shφ
n

〉
.

(ShTh(n, k) is the share procedure of a fully quantum threshold SSS)
3. S2 ←− an encoding of X (logX being the length of the random walk.)
4. Run Share1(n,k) onS2 to generate shares

∣∣Shx1 〉 , ∣∣Shx2 〉 , . . . , ∣∣Shxn 〉 . (Share1(n,k)
is the share procedure of a semi-quantum threshold SSS)

5. S3 ←− a classical encoding of U0.

6. Run Share2(n,k) on S2 to generate shares
∣∣∣ShU0

1

〉
,

∣∣∣ShU0
2

〉
, . . . ,

∣∣∣ShU0
n

〉
.

7. S4 ←− a classical encoding of U1.

8. Run Share3(n,k) on S4 to generate shares
∣∣∣ShU1

1

〉
,

∣∣∣ShU1
2

〉
, . . . ,

∣∣∣ShU1
n

〉
.

9.
∣∣∣Shφ

i

〉
,
∣∣Shmi 〉

,
∣∣∣ShU0

i

〉
,
∣∣∣ShU1

i

〉
←− Share of participant Pi .

10. Share the graph G.
11. STOP.

Note (ShTh(n, k), RecTh(n, k)) is a fully quantum SSS to share the initial state in a
quantum environment. This is the same scheme as described in Sect. 3.2. Again we
omit the exact details and refer the reader to [20]. (Share1(n,k), Rec

1
(n,k)) is a semi-

quantum threshold SSS to share the classical secret X . We have briefly described
this scheme in Sect. 3.2 in the discussion of (Share(n,k), Rec(n,k)) of [21]. Simi-
larly, (Share2(n,k), Rec

2
(n,k)) and (Share3(n,k), Rec

3
(n,k)) are semi-quantum threshold

schemes to share classical secrets in a quantum environment.

Procedure 6: Reconstruction RECON3
1. Get shares (

∣∣∣Shφ
1

〉
,
∣∣Shm1 〉

,

∣∣∣ShU0
1

〉
,

∣∣∣ShU1
1

〉
), . . . , (

∣∣∣Shφ
k

〉
,
∣∣Shmk 〉

,

∣∣∣ShU0
k

〉
,

∣∣∣ShU1
k

〉
).

2. Run RecTh(n, k) on
∣∣∣Shφ

1

〉
,

∣∣∣Shφ
2

〉
, . . . ,

∣∣∣Shφ
k

〉
to get |φ1〉 .

3. Run Rec1
(n,k) on

∣∣Shx1 〉
,
∣∣Shx2 〉

, . . . ,
∣∣Shxk 〉

to get X .

4. Run Rec2
(n,k) on

∣∣∣ShU0
1

〉
,

∣∣∣ShU0
2

〉
, . . . ,

∣∣∣ShU0
k

〉
to get U0.

5. Run Rec3
(n,k) on

∣∣∣ShU1
1

〉
,

∣∣∣ShU1
2

〉
, . . . ,

∣∣∣ShU1
k

〉
to get U1.

6. Recover the graph G
7. Consider the binary expansion of X = (x1, x2, . . . , xlogX )2
8. Do steps 8 to 10 for i = 2 to logX
9. If xi = 0, then |φi 〉 = U0(

∣∣φi−1
〉
),

10. If xi = 1, then |φi 〉 = U1(
∣∣φi−1

〉
)

11. i ←− i + 1
12. Return states |φ1〉 , |φ2〉 , . . . ,

∣∣∣φlogX
〉

13. STOP

4.4.2 Shunt decomposition model

The shunt decompositionmodel can be utilized in a similarmanner as in the arc reversal
model. This model is useful when the underlying graph has a certain symmetry. In
this model, the graph G is assumed to be d-regular. Both in the classical and quantum
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domain, special SSSs have been studied which can handle unbounded number of
participants [49, 55]. We can similarly ask the following question: what if the number
of secrets to be shared is unbounded? In this scenario, the shunt decomposition model
becomes useful as this model has been applied to infinite paths and infinite grids.
Here, also we have a coin operator C and a shift operator S and the transition matrix
is given by U = SC . A QMSSS based on the shunt decomposition model can be
easily constructed using procedures 5 and 6 by suitably modifying the quantum coin
operators and the shift matrix S. Due to this similarity, we omit the exact details.

4.4.3 Two-reflections model

In this model, there is no quantum coin. The transition matrix is given by U =
(2Q1QT

1 −I )(2Q2QT
2 −I )whereQ1 andQ2 represent twopartitions of the underlying

graph G, one based on the head of the arcs and the other based on the tails of the arcs
[41]. As has been noted in [41, 56], these partitions can come from different graph
structures, e.g. orientable embeddings. The important observation is that to share the
operator U , it is enough the share the doubly stochastic matrix M and the partition
of the arcs as classical secrets to be protected in a quantum environment via the
semi-quantum threshold SSS (Share(n,k), Rec(n,k)). One may use this U directly in
Sect. 4.1.

4.5 Correctness and privacy

We first describe the share generation and reconstruction algorithms and then proceed
to argue correctness and privacy of the scheme.
Procedure 5: In the SHARE3 algorithm, the secrets are the initial state |φ1〉, the length
of the random walk X and the transition operatorsU1,U2. The state |φ1〉 is shared by
a fully quantum threshold SSS. To share X and the transitions operators U1,U2 (or
their proper encodings), we use semi-quantum threshold SS.
Procedure 6: The RECON3 procedure consists of recovering |φ1〉, the length of the
random walk X and the transition operatorsU1,U2 by applying the respective recon-
struction procedures of the underlying quantum threshold schemes. To reconstruct the
remaining secrets, one considers the binary expansion of X = (x1, x2, . . . , xlogX )2.

If x2 = 0, then |φ2〉 = U0 |φ1〉, otherwise |φ2〉 = U1 |φ1〉 . Again if x3 = 0, then
|φ3〉 = U0 |φ2〉, otherwise |φ3〉 = U1 |φ2〉 .This process is continued to finally recover
all the states until

∣∣φlogX
〉
.

We now have the following theorem.

Theorem 5 The constructed scheme satisfies the correctness property, i.e. k partic-
ipants combining their share can reconstruct all the secrets |φ1〉 , |φ2〉 , |φ3〉 , . . . ,∣∣φlogX

〉
. Also, the scheme satisfies privacy property, in particular, forbidden sets con-

taining less than k of the participants cannot reconstruct any secret state.

Proof The correctness property easily follows from the correctness of the underlying
schemes viz. (ShTh(n, k), RecTh(n, k)), and (Share1(n,k), Rec

1
(n,k)) and (Share3(n,k),

Rec3(n,k)). To reconstruct all the secret states in the state, it is necessary to reconstruct
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|φ1〉, X , U0 and U1. By the privacy of the underlying quantum threshold SSSs, any
forbidden set of participants which contains less than k participants cannot reconstruct
any of |φ1〉, X , U0 and U1. Moreover, the semi-quantum threshold schemes use a
variant of Shamir’s polynomial-based secret sharing and, therefore, k − 1 or less
number of shares statistically hides the secrets, viz.U0 andU1. Hence, forbidden sets
of participants cannot reconstruct any secret state. The reconstruction ofX is necessary
as the bit pattern of X determines the further secret states |φ2〉 , . . .

∣∣φlogX
〉
. Hence, to

exactly reconstruct all the secret quantum states, it is necessary to reconstruct all of
|φ1〉, X , U0 and U1 which a forbidden set of participants cannot. ��

4.6 On the dimension of share states and possibility of reduction

The analysis is similar as in Sect. 4.3. We have an exponential reduction from Kr .
However, the dimension of share states is more as compared to Sect. 4.3 due to more
information to be shared among participants. Note that, depending on the model, one
can even makeU0,U1 public and even then the forbidden states cannot reconstruct the
set of secrets. Assuming for ease of computation that the dimensions of the states due
to |φ1〉, X ,U0 andU1 are bounded by DS , then the over dimension of the share states
becomes D4

S . Depending on the model, one may make the operatorsU0 andU1 public
and in that the dimension becomes D2

S . From the above discussion, we conclude that
the steps 2 and 4 of procedure 5 are necessary.

For the practicality of implementation of quantum SSSs, the lesser the dimension
of the share states, the easier it is to implement the scheme. To reduce the dimension,
one can consider the possibility of making some of the steps of procedure 5 optional.
Another instance where the dimension can be reduced is if we consider an interactive
model. In this case, the dealer retainsX and shares |φ1〉,U0 andU1. The reconstruction
procedure consists of logX rounds of interaction. In every round of interaction, the
dealer tells the participants one bit in the binary expansion of X . If the value is 0,
participants apply U0 and if the value is 1, participants apply U1.

4.7 Generality of the construction

We have considered multi-SSSs where the quantum states are related to each other
and this results in a major reduction in the dimension of the states. It may appear that
it makes our construction restrictive in nature. We point out that by making a small
modification, our construction can be applied to the case where there is no known
relation between the secret states and still it is possible to reduce the dimension of the
share states. Using the shunt decomposition model, we show that it is possible. Let
the graph be chosen to be the complete graph Kn . The coin operator S is equivalent
to the block diagonal matrix

S =

⎛
⎜⎜⎜⎝

P1
P2

. . .

Pd

⎞
⎟⎟⎟⎠
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The blocks are obtained from the linear orders defined for each vertices on the set
of their neighbours. We randomize these orders and equivalently we choose random
permutation matrices as the blocks in the matrix S. The final effect is that after one
step of the random walk, the probability of going from one state to any of the other
states is equal. Hence, we can treat this case as sharing multiple secret states which
have no relation between them since the states are reached with equal probability.

5 Generalization and applications

5.1 General access structures

Our schemes use threshold quantum SSSs as basic building blocks, and as a result,
they inherit the threshold property. We can think of our construction as a compiler
which takes as input two QSSSs (one fully quantum, one semi-quantum) realizing the
same threshold access structure and outputs an MSSS. A natural question is to ask
whether we can generalize our methodology to construct MSSSs to realize general
access structures. Intuitively, it seems that given any general access structure (with the
monotonicity property), if we use a QSSS realizing the given general access structure
as a basic building block, then our proposed compiler construction can be extended to
MSSS for general access structures. Constructions for QSSSs realizing general access
structures exist in the literature [57, 58].

However, the existing schemes have certain limitations which make them difficult
to be used in our case. For example, the scheme of [58] shares a classical secret in
a quantum environment and hence cannot be used in our case to share the initial
quantum secret. Also, our goal in this paper is to make our construction entanglement-
free which we have been able to achieve in our construction. In [58], secret keys
are encoded in the entangled GHZ states. While using quantum SSSs for general
access structures, one should be careful to avoid the consequences of the “no-cloning
theorem” so that no two disjoint groups of participants can reconstruct the secret hence
violating the “no-cloning theorem” [17]. To summarize, instead of using a threshold
QSSS as the underlying scheme, one may use a quantum scheme realizing a general
access structure provided it can share a quantum secret in a quantum environment,
satisfies the no-cloning theorem and does not use entanglement (or uses minimal
amount of entanglement). The scheme of [57] discusses the concept of quantum access
structures where along with monotonicity, any two qualified sets must have a non-
empty intersection. There the authors also discuss decomposition of quantum access
structures, improved maximal quantum access structures and present QSSSs realizing
these access structures. So these QSSSs can be used in our construction but again these
QSSSs use entanglement to a large extent and hence impose practical problems.

To the best of our knowledge, such a QSSS which completely fits the above-
mentioned constraints of our construction and realizes any general access structure
is still not available in the literature. We note that our compiler construction can be
extended to realize general access structures when a general fully quantum secret shar-
ing comes into existence. In this paper, we focus on threshold access structures and
leave general access structures as a future work.
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Another practical situation may arise. Since we can think of our construction as a
compiler, let us suppose that a fully quantum threshold SSS is available to share the
initial quantum secret and a semi-quantum SSS realizing a general access structure is
available to share the natural numberX . A natural question can be put forward: can the
constructed compiler work when two different QSSSs realizing two different access
structures are presented ? We can definitely use the scheme of [58] which works for
a general access structure. However, it may happen that a qualified set of participants
(for threshold) reconstruct the initial state but this set is not qualified in other SSS that
is being used to share the natural number. Hence, the natural number is not recovered,
and as the result, the remaining secret quantum states are not reconstructed. This
defeats the purpose of the of paper as the goal is to reconstruct the full set of secret
quantum states. So a clarification regarding which subsets of participants are qualified
when two different access structures are used simultaneously is required. This restricts
the usage of QSSSs which realize arbitrary general access structures. This however
does not rule out the possibility of using any other access structure instead of threshold
access structures.

In [59], the authors have introduced the notions of improvable access structures and
realizable restrictions of access structures which we think can be used in a situation
where a mix of threshold access structure and a different access structure is required.
We have only considered threshold QSSSs for our purpose and do not explore this
possibility of this mix in this current work.We leave this interesting avenue for a future
work.

5.2 Modifications for themulti-threshold variant

The above MSSS based on the discrete quantum walk model can be generalized to
handle multi-threshold scenario as in the Procedures 1 and 2. Instead of sharing X by
a one-shot threshold scheme, one may split the binary expansion of X into partitions
and share the partitions among the participants in a similar manner as we have done in
the case of procedure 1. This simple modification makes our scheme a multi-threshold
SSS.

5.3 Application in the progressive setting

Let us suppose that the set of secrets be of the form |φini tial〉 = |φ1〉 , |φ2〉 , . . . , |φn〉 =∣∣φ f inal
〉
. Let us also suppose that there is predefined notion of distance d. Examples

of such distances can be found in [60]. In the progressive setting, it is required that for
(1 ≤ i ≤ n − 1),

d(|φi 〉 , |φn〉) > d(|φi+1〉 , |φn〉).

In this model, our constructions in procedures 1 and 2 can be directly applied to
the effect that as more and more participants arrive, the reconstructed secret states
get closer with respect to d to the final state |φn〉 . As we have noted in the sections
following procedures 1 and 2 that existing relations between the states help in reducing
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the dimensions of the share states, if there exists some known relations between the
states (which is usually the case in visual secret sharing), the dimension of the share
states can also be reduced in this case. In addition, we canmake the scheme progressive
by considering the methods in Sect. 4.7.

6 Security against adversarial attacks

Sincewehave assumed the existenceof theunderlying thresholdquantumschemes(fully
quantum and semi-quantum) [20, 21], our constructed scheme inherits the security
provided by those schemes for example the intercept and resend attack, entangle and
measure attack, man-in-the-middle attack, Trojan horse attack. The scheme of [21]
is also a verifiable SSS, and hence, the participants can judge whether the recovered
secret is the original one and check whether some dishonest participants provide the
fake shadows in the reconstruction. Also, the use of trap code provides (2/3)d/2 secu-
rity against Pauli attacks [51, 52], where d is the distance of the underlying quantum
error-correcting code used.

7 Comparison with existing schemes

The main difference of our scheme with the existing ones is that our scheme is a fully
quantum MSSS. This means that the secrets are quantum states as opposed to semi-
quantum schemes which share classical data. The achieved privacy, security and the
dimension of the shares are unconditional, meaning that the results do not depend on
the security of computationally hard problems like the lattice-based problems [13].
Our scheme works for discrete-time quantum walks for general graphs, as opposed to
the construction in [33] which uses quantum walk over the circle graph and also the
construction in [32] where the quantumwalk is on a lattice folded into a torus. We also
note that the schemes of [32] and [33] are not multi-SSSs and also are semi-quantum
schemes. Also note that using the shunt decomposition model, one can construct
multi-SSSs with potentially unbounded number of secrets.

In [59], the authors demonstrate a way to improve quantum SSSs by encrypting a

quantum state |S〉 using a classical key K to obtain
∣∣∣S̃〉

and sharing
∣∣∣S̃〉

to only some

selected participants and sharing the classical key K to some other participants via
a classical SSS. For reconstruction, some participants recover K and the remaining

participants using this key reconstruct |S〉 from
∣∣∣S̃〉

. So one has to share less number

of quantum states to the participants. This work was improved in [61] so that even
more number of participants can carry classical shares. However, it was shown in [59]
that this technique is not possible to be applied to various cases of quantum threshold
schemes for example the 2-out-of-3 quantum threshold scheme. In this case, quantum
states have to be shared to all three participants. The authors introduced the notion
of an improvable QSSS which is a QSSS realizing an access structure � on a set of
n participants and less than n quantum shares are sufficient to implement it. They
proved that if a (n, k)-threshold scheme does not violate the no-cloning theorem, its
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minimal access structure is equal to the optimal one and is given by the expression
(k − γ, n − γ ) where γ = 2k − n − 1. By this formula, the minimal restriction [59]
of a (99, 100) QTSS is a (2, 3) QTSS and only three quantum shares are required to
implement a hybrid quantum secret sharing scheme realizing a quantum (99, 100)-
threshold scheme.

We can similarly use this technique in our scheme to reduce the number of quantum
shares given to the participants and decrease implementation costs. We can reduce the
dimension of the shares given to each of the participants who only receive the classical
shares. But for the participants who receive the quantum shares, the dimension does
not reduce any further than our method. We have essentially reduced an MSSS to
a single-SSS utilizing quantum walks. The role of the secret key K in [59] is very
much different from the role of X . We do not use X to recover the initial state |φ〉
but rather to recover the remaining quantum secrets. The secret key K is comparable
to the keys k1 and k2 corresponding to the permutation and the Pauli operator being
used, respectively (See Definition 9). So for some of the participants receiving only
these keys, the dimension of these participants can reduce to a some extent.

Also, this technique reduces the robustness of the construction. Since less number
of quantum states are shared, the system is more susceptible to failure in case of errors
arising from decoherence as compared to the case where all the participants have
quantum shares.

8 Discussions

The main advantage of our construction is its generality. We are able to share multiple
quantum secrets. Additionally, we have incorporated multi-threshold properties in the
scheme, and our scheme is flexible enough to be used in a progressive model of secret
sharing. All the schemes have been constructed keeping in mind the practical and
implementation issues, and to this end, we have paid attention to the dimension of
the share states in each of constructions. Table 1 compares the dimensions in each
procedure and we see that assuming relations between the secret states is indeed
advantageous. Our schemes inherit properties of the underlying threshold schemes
[20, 21] both fully quantum and semi-quantum as they have been used without any
modifications. This means that we get their security against adversarial attacks. Also,
the scheme in [21] is a verifiable scheme, and hence, in our scheme also, we can verify
if some participant presents wrong shares. The authors are unaware of any quantum
schemewhich assumes relation between secrets and suitablymodifies the trap code. In
the classical domain also while the technique of splitting the shares is quite prevalent
[54], however, splitting the multiple secrets is not known to the authors.

9 Conclusion

We have given a compiler construction of an entanglement-free fully quantum multi-
SSSwhich can accommodate a large number of participants into the system as opposed
to entanglement-basedmethods.Wehave further showed that dimension of share states
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Table 1 Comparison between dimensions

Procedure Relation between quantum states Dimension of share states

1 and 2 No relation Kr , where K = DS × Pr × μ × M .

3 and 4 Single unitary operator D2
S (� Kr )

5 and 6 Quantum walk arc reversal D4
S or D2

S (depending on model)

5 and 6 Quantum walk shunt decomposition D4
S or D2

S (depending on model)

can be significantly reduced if we assumemultiple secrets are related through quantum
walk. In this paper, we have focussed on the threshold SSS and pointed out possible
extensions to multi-threshold version of it. We leave open the interesting problems of
extending the work to the case of multi-secret sharing in a mix of threshold and other
access structures.
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