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Abstract
Although the researchers have proposed many arbitrator quantum signature (AQS)
for various applications in practice, the security proof of most AQSs was not strictly
presented.Many results have shown that theAQS schemeswithout strict security proof
may be broken by various measurement and forgery attacks. Therefore, a secure AQS
should strictly put its security on the quantum theorems and principles. Based on the
non-orthogonal entangled-triple sequence, anAQSwith provable security is proposed.
First, the theoretical security proof of our AQS is presented. Second, we prove the non-
cloning theorem for the entangled-triple sequence. Third, by using the non-cloning
property of the entangled-triple particle, we prove the new AQS signature cannot be
forged. At last, the non-repudiation of the proposed AQS is analyzed. We showed that
if an adversary can break the signature, his/her actions will violate some quantum
principles. The security proof of the proposed signature scheme also shows the idea of
provable security for a quantum signature. On the other hand, in the proposed scheme,
the partners need not perform the probabilistic quantum state comparison test. It has
better qubit efficiency. Therefore, compared with the other similar schemes, ours has
the better merits in security and efficiency.

Keywords Quantum signature · Provable security · Unforgeability · Non-repudiation

1 Introduction

Now, the world is a digital word. Every day, many digital messages are exchanged
by the internet. And most often, the transmitted messages have to be authenticated by
the message receivers. That is, the receivers need to check where the messages come
from, and whether they have been eavesdropped or disturbed by an adversary before
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receiving them. To address the need of authenticating digital messages, Diffie et al.
[1] proposed the idea of digital signature. Generally, in a digital signature system, the
signatory creates his/her signature by encrypting the message with some secret key,
and the signature receiver can verifies its validity with the public key of the signer. By
the digital signature technologies, one can efficiently authenticate the received digital
messages.

Since the introduction of the digital signature, the researchers proposed many dif-
ferent classical signature schemes for the applications in different environments [2–6].
However, the security of all these classical digital signatures is heavily dependent on
the mathematic computation problems [7, 8], which may be efficiently solved with
the help of the modern quantum computer [9–12].

To make the digital signature be secure against the quantum computer, Gottesman
and Chuang [13] introduced the concept of quantum digital signature, whose security
was found on some physical theorems and quantum properties of the particles instead
of the unproved mathematical assumptions. Therefore, the quantum signature has the
good merit of physical security. Based on the work in [13], many novel quantum
signature schemes were proposed [14–47]. In the schemes [13, 40–42], the signers’
signing keys and public keys can only be used one time. Tomake the quantum signature
more secure and practical, Zeng and Christoph developed the AQS [14], in which the
signing key can be reused. In the AQS, an arbitrator, which is a party trusted by all
participants, is introduced. The arbitrator takes part in the key generation phase so
that the participants can share some private keys, which are used to sign and verify
a message. During the signature verification phase, the arbitrator can securely help
the signature verifier verify the quantum signature. What is more, the arbitrator is
very helpful in solving the disputations between the signer and the verifier. Therefore,
compared with the quantum signature in [13, 40–42], Zeng and Christoph’s AQS was
more efficient and practicable. Based on the Zeng et al.’s idea, many AQSs schemes
[15–21, 23–39, 43–51] were proposed. For example, Yang et al. presented the weak
arbitrator-basedAQSs [15, 16, 44, 45] so as to improve the security of theAQS scheme.
Jiang’s AQS [17] was based on the product states with local indistinguishability so that
the AQS could be more practicable. Although there were lots of AQSs, their security
was not strictly proved. That is, there was not strictly proof to support the security
of the proposed AQS schemes. In fact, many AQS schemes have been proven to be
insecure against various attacks duo to two main reasons as follows.

First, according to Kerckhofs’s principle, the security of the modern cryptogra-
phy systems should depend on the secrecy of the users’ private keys rather than the
cryptography algorithm. Especially, in a signing system, if the signer’s private key is
broken, anyone can produce the forgery of the quantum signature by using the broken
key. Generally, in an AQS scheme, the signer’s private key is created by performing
the unconditionally secure quantum key distribution protocol (e.g., BB84 Protocol
[52]) such that the private key cannot be broken during the key generation phase of
the scheme. However, it should be noted that in a quantum signature scheme, the sig-
nature is generated by performing the quantum encryption with the signer’s private
key. Therefore, the quantum signature also includes the information of the private
key. To guarantee the security of the private key, the quantum signature ciphertext
should be information-theoretically secure [53–55]. That is, the quantum signature
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should be theoretically indistinguishable such that the adversary cannot derive any
useful information about the private key from the quantum signature. However, the
information-theoretical security of most existing quantum signature schemes can-
not be strictly proved. This means that for these schemes, the adversaries may get
some information about the private keys by performing some measurement attacks
or other unknown attacks to the quantum signatures. For example, in 2019, Chen
et al. [56] proved the private keys of the quantum signature systems based on quan-
tum one-time pad (QOTP) [57] could be broken by performing the controlled SWAP
attack. This means the adversary can get some information about the private keys
of the signers in the QOTP-based quantum signature systems (e.g., [14, 25–28, 36,
39, 43]) by the controlled SWAP attack. Therefore, the quantum signature ciphertext
should be theoretically indistinguishable and the quantum signature scheme should
be information-theoretically secure.

Second, can a quantum signature with unconditionally secure signing key (private
key) be secure against forgery? The answer is no due to much strong proof. For
example, under the man-in-the-middle attack, Luo’s AQS [16] can be forged [22].
Although Jiang presented some security analysis in [17], his AQS can still be forged
by a quantum adversary [23]. In [29], Zhou et al. showed that the quantum signature
in [30] could be forged by adaptively performing some Hadamard gates on the signed
message without knowing the private key of the signer. Similarly, Ding et al. [31]
demonstrated that the quantum signature in [32] was not secure, because the signature
receiver could generate a forgery by adaptively performing NOT gate to the received
signature without knowing the signer’s private key as well. He et al. [33] proved that
in [34], the adversary could create a forgery by performing the NOT and Hadamard
operators on the received signature, because he/she knew the structure of the original
message. Gao et al.’s research results showed that some AQS schemes using Pauli
operators were insecure against the participant’s forgery [24]. Some other results
[35–38] also showed various forgery attacks to the quantum signatures [36, 48–51]
without knowing the signers’ private keys. Why many quantum signatures can be
forged? In fact, in these quantum signature schemes, there are two common features.
First, in these schemes, the authors analyzed that their quantum signatures were secure
against forgery because the forger could not master the private keys. Then, this kind
of security analysis is not comprehensive, because many quantum signatures with
unconditionally secure private keys can still be forged. On the other hand, their security
against forgery cannot be proved with strict formal mathematical proof. No formal
proof can sufficiently support that the unforgeability of these quantum signatures
strictly depends on the basic principles of the quantum mechanics such as the non-
cloning theorem and the theoretical indistinguishability of the quantum states. How
can we guarantee the security of a quantum signature such that its unforgeability is
strictly dependent on the basic principles of the quantummechanics? A general idea is
that the unforgeability of the quantum signature should be proved with the strict proof
based on the principles of the quantum mechanics. That is, we should mathematically
prove that if an adversary can generate a forgery for the quantum signature, his/her
actions will violate some quantum principles. This is the idea of provable security for
a quantum signature.
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In this paper, the main contribution is that we propose the first provably secure AQS
with strictly security proof. Different from most of the AQSs, the proposed scheme
can be proved to be information-theoretically secure, and its security against forgery
can be proved under the basic principle of quantum mechanics as well. In this ASQ,
the signature is produced with the controlled particles such that the signed particles
have the same states, which can be used to prove the theoretical indistinguishability
of the proposed AQS. Thus, the secrecy of the signatory’s private key can be proved.
On the other hand, we prove that the unforgeability of the proposed AQS with the
non-cloning principle. That is, for the proposed scheme, if an adversary can produce
a forgery of the signature, his/her actions will violate the non-cloning principle. This
means it is impossible for the adversary to generate a forgery for our signature under
the basic principle of quantum mechanics. On the other hand, compared with the
similar schemes, our AQS has the better merits in security and efficiency as well.

The following contents of our paper include: AQS scheme in Sect. 2, AQS security
proof, security and efficiency comparisons in Sect. 3, and paper conclusion in Sect. 4.
On the other hand, in appendix A and appendix B, a simple simulation of our scheme
is presented.

2 The proposed AQS

In the proposed AQS scheme, the operators H �
(|0〉〈0| + |1〉〈0| + |0〉〈1| − |1〉〈1|)/√2 and X � |0〉〈1|+|1〉〈0| are used. We
define the operator H0 � X0 � I , in which I is the identity map. Assume that
f : {0, 1}∗ → {0, 1}n is a public one-way hash function, which has the uniform
output. On the other hand, we assume Alice is the message signatory. Bob acts as the
receiver. On the other hand, Trent is employed as the arbitrator, who is trusted by all
of the other parties.

Our AQS includes the following three phases: initialization, signature generation
phase and message verification phase.

2.1 Initializing phase

In this phase, the partners share the private key and entangled particle sequence. The
following are the initializing steps.

IS-1: By performing Bennett and Brassard’s quantum key distribution proto-
col (BB84 Protocol) [52], Trent and Alice share a random n-bit private key k �
(k1, k2, ..., kn).

IS-2: In this step, the private key k is used. Trent prepares n entangled-
triple particles φ1, φ2,…, φn . The state of each particle φi is |φi 〉 �
1√
2

(∣∣∣0(T 1)i 0(T 2)i 0Ai

〉
+

∣∣∣1(T 1)i 1(T 2)i 1Ai

〉)
, where i � 1, 2, . . . , n. According to the pri-

vate key k � (k1, k2,…, kn), for each φi , if ki � 0, Trent performs the operator I ⊗ I ⊗ I
on the particle φi , or he performs the operator H ⊗ H ⊗ H on the particle φi . Thus,
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the state of each entangled φi (i � 1, 2, . . . , n) is changed into.

|φi 〉 �

⎧
⎪⎪⎨
⎪⎪⎩

1√
2

(∣∣∣0(T 1)i 0(T 2)i 0Ai
〉
+

∣∣∣1(T 1)i 1(T 2)i 1Ai
〉 )

, if ki � 0

1√
2

(∣∣∣+(T 1)i +(T 2)i +A
i

〉
+

∣∣∣−(T 1)
i −(T 2)

i −A
i

〉)
, if ki � 1

, (1)

where |+〉 � (|0〉 + |1〉)/√2 and |−〉 � (|0〉 − |1〉)/√2. According to the entan-
gled particles φ1, φ2, . . . , φn , Trent composes three particle sequences GT 1 �
{t (T1)1 , t (T 1)2 , . . . , t (T1)n }, GT 2 � {t (T2)1 , t (T2)2 , . . . , t (T 2)n } and GA � {a1, a2,…, an},

in which t (T1)i ,t (T 2)i , and ai (i � 1, 2, . . . , n) represent the first, the second and the
third particle of φi , respectively.

IS-3: Trent randomly produces sufficient decoy particles whose states come from
the non-orthogonal set {|0〉, |1〉, |+〉, |−〉}. Then, Trent mixes them withGA at random
and gets the newnon-orthogonal sequenceG ′

A. After that, Trent transmits the sequence
G ′

A to Alice.
IS-4:AfterAlice receivesG ′

A, Trent publishes the information of the decoyparticles
including their positions and correct states. Then,Alicemeasures all the decoyparticles
in G ′

A and checks whether the measurement results are the same as those published
by Trent. Once the error rate is above the established standards set by the system, the
partners restart the protocol. Or Alice gets GA from the sequence G ′

A by deleting the
decoy particles. GA is kept by Alice as her private sequence.

2.2 Signing phase

Suppose that Alice will sign a classical message c ∈ {0, 1}*. Alice generates the
signature by the steps as follows.

SS-1: Alice computes the message digest f (k||c) � m � (m1, m2,…, mn) with her
key k and the hash function f , where the symbol “||” denotes the connection of the bit
strings. After that, Alice prepares a particle sequence S � {s1, s2,…, sn}, and the state
of the i-th particle si of the sequence S is |si 〉 � |mi 〉.

SS-2: According to the private key k, the private sequence GA � {a1, a2,…, an}
and the sequence S � {s1, s2,…, sn}, Alice performs n controlled unitary operations
as follows.

For the ith operation (i � 1, 2, . . . , n), if ki � 0, Alice executes the controlled
NOT operator on ai and si, where ai is operated as the controlled particle, while si as
the target particle. Thus, the particles t (T 1)i , t (T 2)i , ai and si are entangled together with
the state

∣∣∣χt (T 1)i ,t (T 2)i ,ai ,si

〉
�

⎧⎪⎪⎨
⎪⎪⎩

1√
2

(∣∣∣0(T 1)i 0(T 2)i 0Ai 0
S
i

〉
+

∣∣∣1(T 1)i 1(T 2)i 1Ai 1
S
i

〉)
, if mi � 0

1√
2

(∣∣∣0(T 1)i 0(T 2)i 0Ai 1
S
i

〉
+

∣∣∣1(T 1)i 1(T 2)i 1Ai 0
S
i

〉)
, if mi � 1

. (2)
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For the ith operation (i � 1, 2, . . . , n), if ki � 1, Alice executes the operator H
on ai. Then, she performs the controlled NOT operation on ai and si, where ai is
operated as the controlled particle, while si the target particle. Next, Alice performs
the H operations on the particles ai and si, respectively. Thus, the entangled state of
t (T 1)i , t (T2)i , ai and si is changed into

∣∣∣χt (T 1)i ,t (T 2)i ,ai ,si

〉
�

⎧⎪⎪⎨
⎪⎪⎩

1√
2

(∣∣∣+(T 1)i +(T 2)i +A
i +

S
i

〉
+

∣∣∣−(T 1)
i −(T 2)

i −A
i −S

i

〉)
, if mi � 0

1√
2

(∣∣∣+(T 1)i +(T 2)i +A
i −S

i

〉
+

∣∣∣−(T 1)
i −(T 2)

i −A
i +

S
i

〉)
, if mi � 1

.

(3)

After that, Alice sends c and S to Bob. Bob keeps the particle sequence S as the
quantum signature on c.

The simple schematic diagram of the signing process is shown in Fig. 1.

2.3 Verifying phase

In our scheme, Alice is the signer. In this phase, the quantum signature S signed by
Alice is verified. This phase includes three verification steps:

VS-1: Bob publishes c. Then, by the decoy particles and the methods in steps IS-3
and IS-4, Bob sends Trent the sequence S.

VS-2: According to k, the private sequence GT 1 � {t (T1)1 , t (T1)2 , . . . , t (T1)n } and
the sequence S � {s1, s2,…, sn}, Trent performs n controlled unitary operations as
follows.

For the ith operation (i � 1, 2, . . . , n), if ki � 0, Trent executes the controlled
NOT operator on the controlled t (T1)i and the target particle si. Then, the entangled

state of t (T 1)i , t (T2)i , ai and si evolves into

∣∣∣χt (T 1)i ,t (T 2)i ,ai ,si

〉
�

⎧⎪⎪⎨
⎪⎪⎩

1√
2

(∣∣∣0(T 1)i 0(T 2)i 0Ai
〉
+

∣∣∣1(T 1)i 1(T 2)i 1Ai
〉)∣∣∣0Si

〉
, if mi � 0

1√
2

(∣∣∣0(T 1)i 0(T 2)i 0Ai
〉
+

∣∣∣1(T 1)i 1(T 2)i 1Ai
〉)∣∣∣1Si

〉
, if mi � 1

. (4)

For the ith operation (i � 1, 2,…, n), if ki � 1, Trent performs the H operations on
the particles t (T 1)i and si, respectively. Then, he performs the controlled NOT operator

on t (T1)i and si so that t (T 1)i is operated as the controlled particle, while si the target

particle. At last, he applies operatorH to t (T1)i . Then, the entangled state of t (T 1)i , t (T2)i ,
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Fig. 1 Schematic diagram of the signing process
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ai and si evolves into

∣∣∣χt (T 1)i ,t (T 2)i ,si

〉
�

⎧⎪⎪⎨
⎪⎪⎩

1√
2

(∣∣∣+(T 1)i +(T 2)i +A
i

〉
+

∣∣∣−(T 1)
i −(T 2)

i −A
i

〉)∣∣∣0Si
〉
, if mi � 0

1√
2

(∣∣∣+(T 1)i +(T 2)i +A
i

〉
+

∣∣∣−(T 1)
i −(T 2)

i −A
i

〉)∣∣∣1Si
〉
, if mi � 1

.

(5)

VS-3: Trent measures each particle si (i � 1, 2,…, n) with z-basis {|0〉, |1〉}. By the
measurement result of si, Trent sets

m′
i �

{
0, if |si 〉 � |0〉
1, if |si 〉 � |1〉 , i � 1, 2, . . . , n. (6)

Thus, Trent gets m′ � (
m′

1,m
′
2, . . . ,m

′
n

)
. Then, by the shared k and the message

c published by Bob, Trent computes the message digest m � f (k||c). Next, he checks
whetherm � m′. Ifm � m′(m �� m′), Trent publishes “Yes” (“No”), and Bob accepts
(denies) the validity of the quantum signature. If the signature is valid, Trent also keeps
(c, m, Bob) as the “proof” of the quantum signature so as to solve the disputation that
may occur between Alice and Bob in the future.

3 Analysis of the security

The correctness of the AQS can be easily verified. This section first showed the theo-
retical security proof for the proposed AQS. Then, the unforgeability of the quantum
signature is proved. At last, the no-repudiation of the signature is analyzed.

3.1 Information-theoretical security

In this section, first, by analyzing the density operator of the quantum signature, it is
found that all the quantum signatures have the same state. What is more, any unitary
operator attack to the quantumsignature cannot change its density operator. Thismeans
that the adversary cannot get useful information about the private key by performing
the unitary operator attack. Second, we analyze information-theoretical security of the
proposed scheme. In [55], Yang et al. proved that for a quantum signature scheme, its
information-theoretical security relies on the trace distance of the different quantum
signatures. Then, by analyzing the trace distance of different quantum signatures, we
prove that the trace distance of different quantum signatures is zero. Then, the proposed
AQS can be proved to be information-theoretically secure.

Theorem 1. The quantum signatures on all the messages have the same density oper-
ator.
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Proof. Note that any c and its signature S satisfies Eqs. (2) and (3). Hence, the density
operator of si is.

ρsi �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(∣∣∣0Si
〉〈
0Si

∣∣∣ +
∣∣∣1Si

〉〈
1Si

∣∣∣
)

� I

2
, if mi � 0, ki � 0

1

2

(∣∣∣1Si
〉〈
1Si

∣∣∣ +
∣∣∣0Si

〉〈
0Si

∣∣∣
)

� I

2
, if mi � 1, ki � 0

1

2

(∣∣∣+S
i

〉〈
+S
i

∣∣∣ +
∣∣∣−S

i

〉〈
−S

i

∣∣∣
)

� I

2
, if mi � 0, ki � 1

1

2

(∣∣∣−S
i

〉〈
−S

i

∣∣∣ +
∣∣∣+S

i

〉〈
+S
i

∣∣∣
)

� I

2
, if mi � 1, ki � 1

. (7)

Therefore, for any message c, the corresponding density operator of signature S is

always ρs � ⊗n
i�1 I
2n . Therefore, the quantum signatures on all the messages have the

same density operator. �
Suppose that an adversary Eve attempts to get some information on the signer’s

secret k by performing some unitary operator U � ⊗n
i�1Ui on the signature S. How-

ever, we can prove that the operationU cannot change the density operator of the state
of the signatures S.

Theorem 2. If an adversary Eve performs some unitary operator U � ⊗n
i�1Ui on the

signature S, the density operator of the signature will not have any change. That is,
for each message-signature pair (c, S), after the unitary operator attack U � ⊗n

i�1Ui

on S, the density operator of the state of the disturbed quantum signature S is always

ρs � ⊗n
i�1 I
2n .

Proof. Note the signature S and the message c satisfy Eqs. (2) and (3). If an adversary
Eve applies some unitary operatorU � ⊗n

i�1Ui to S, the density operator of si can be
computed as follows.

ρsi �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
Ui

(∣∣∣0Si
〉〈
0Si

∣∣∣ +
∣∣∣1Si

〉〈
1Si

∣∣∣
)
U+
i � I

2
, if mi � 0, ki � 0

1

2
Ui

(∣∣∣1Si
〉〈
1Si

∣∣∣ +
∣∣∣0Si

〉〈
0Si

∣∣∣
)
U+
i � I

2
, if mi � 1, ki � 0

1

2
Ui

(∣∣∣+S
i

〉〈
+S
i

∣∣∣ +
∣∣∣−S

i

〉〈
−S

i

∣∣∣
)
U+
i � I

2
, if mi � 0, ki � 1

1

2
Ui

(∣∣∣−S
i

〉〈
−S

i

∣∣∣ +
∣∣∣+S

i

〉〈
+S
i

∣∣∣
)
U+
i � I

2
, if mi � 1, ki � 1

. (8)

Therefore, if an adversary Eve applies some unitary operator U � ⊗n
i�1Ui to S,

the density operator of the state of the disturbed quantum signatures S is ρs � ⊗n
i�1 I
2n .

Therefore, for any unitary operator attack, the signature density operator will not have
any change. �

The following theorem shows that the AQS’s information-theoretical security can
also be proved. This means that the adversary can get no information about the secret
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key of the signatory from the published quantum signature by the unitary operation
attack.

Theorem 3. For any message c and unitary operator attack U � ⊗n
i�1Ui on the

signature S, the mutual information between private key space K and the probabilistic
polynomial-time quantum adversary Eve is zero. That is,

I (K ; Eve|c, S, U ) � 0. (9)

Proof. Note that the mutual information.

I (K ; Eve|c, S, U ) � H (K |c, S, U ) − H (K |c, S, U ,Eve). (10)

Because H (K |c, S, U ) ≤ H (K ), we can get

I (K ; Eve|c, S, U ) ≤ H (K ) − H (K |c, S, U ,Eve). (11)

Because the private k is randomly generated by performing the unconditional secure
quantum protocol on key sharing [52], the private key space K has a uniform distri-
bution. Therefore, the entropy of K is

H(K ) � n. (12)

Now, we consider the probability of Eve’s successfully guessing the private key k
under the unitary operator attack with the public message c and the quantum signature
S. By Theorem 2 and Eq. (8), we can get that for any c, k and unitary operator attack
U, the signature S has the same density operator. Therefore, According to Theorem 2
and Eq. (8), Eve can guess the private key k from c, S and the unitary operation attack
U with a probability

Pr(k|c, S, U , Eve ) � 1

2n
. (13)

Hence, the conditional entropy

H (K |c, S, U ,Eve) � −
∑
k

Pr(k|c, S, U ,Eve) log Pr(k|c, S, U ,Eve)

� −
∑
k

(
1

2n
log

1

2n

)

� n. (14)

Therefore, by Eqs. (11, 12, 14), we can get I (K ; Eve|c, S, U ) � 0. �
Theorem 3 shows that if an adversary Eve tries to perform some unitary opera-

tor attack, he will get nothing about the signatory’s secret key from the published
information.
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Now, for the proposed scheme, we prove that there exists no polynomial algorithm
Cn such that the signatures on different messages can be efficiently distinguished.

It should be noted that the quantum signature is generated by encrypting themessage
c. Then, our scheme can be viewed as one quantum encryption scheme. In [53–55],
for the quantum signature, its information-theoretical security is defined as follows.

Definition 1. We call a quantum signature is information-theoretically secure, if there
exists no polynomial distinguishing algorithm Dn such that it can distinguish the
quantum signatures S and S* with a non-negligible probability, where S and S* are
the quantum signatures on any two different messages c and c* in the message space
{0, 1}n, respectively. That is, for any positive polynomial p(·) and sufficient large n, a
quantum signature scheme with information-theoretical security should satisfy

∣∣Pr[Dn
(
S∗) � 1

] − Pr[Dn(S) � 1]
∣∣ < 1/p(n). (15)

The results in [55] show that for a quantum signature scheme, its information-
theoretical security relies on the trace distance of the different quantum signatures.

Theorem 4 [55] . A quantum signature has information-theoretical security only if,
for each polynomial p and different messages c and c*, the trace distance.

D(ρc, ρc∗) < 1/p(n), (16)

where ρc(ρc∗) denotes the density operator of the signature S (S*) on c(c*).

Theorem 5. Our new AQS has the information-theoretical security.

Proof. Let c and c* be any two different messages. Let S and S* be the quantum
signatures on the messages c and c*, respectively. We use ρc and ρc∗ which denote
the density operators of the states of the quantum signatures S and S*, respectively.
According to Theorem 1, it follows that

ρc � ρc∗ � ⊗n
i�1 I

2n
. (17)

According to Eq. (17), we can get

D(ρc, ρc∗) � 0. (18)

It is clear that Eq. (18) satisfies the result of Theorem 4. Therefore, our scheme can
be of information-theoretical security. �

The result of Theorem 5 means that no distinguishing algorithmDn can distinguish
the signatures S and S* efficiently. This means that for our quantum signature scheme,
no efficient distinguishing algorithm Dn can break the signer’s key. Otherwise, given
any two quantum signatures S and S* on different messages c and c*, respectively, the
quantum adversary can use the private key to accurately generate the corresponding
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quantum signatures on c and c* such that S and S* can be distinguished by performing
the quantum swap test algorithm [58], which contradicts the theoretical security of
our AQS that proved in Theorem 5. Therefore, there is no efficient distinguishing
algorithm that can break the signatory’s private key. The proposed AQS can guarantee
the secrecy of signatory’s private key.

3.2 Unforgeability

In this section, we prove that it is infeasible to generate a forgery for the proposed
quantum signature without knowing the private of the signer. First, based on the

non-orthogonality of
{

1√
2
(|000〉 + |111〉), 1√

2
(|+ + +〉 + |− − −〉)

}
, the non-cloning

theorem for the non-orthogonal entangled-triple sequence � � {π1, π2, . . . , πk} is
proved, in which each πi ∈

{
1√
2
(|000〉 + |111〉), 1√

2
(|+ + +〉 + |− − −〉)

}
. Then, we

prove that if an adversary can forge the quantum signature, his forgery action will
violate the non-cloning theorem for the non-orthogonal entangled-triple sequence �.
This means it is infeasible for the adversary to forge the quantum signature of the
signer.

Theorem 6. Given an entangled-triple sequence � � {π1, π2, . . . , πk}, in
which each entangled πi (1 ≤ i ≤ k) is randomly selected in the set{

1√
2
(|000〉 + |111〉), 1√

2
(|+ + +〉 + |− − −〉)

}
, there is not any unitary operator W so

that the sub-system of each πi can be cloned. That is, there is not any unitary operator
W so that.

W

(
1√
2
(|000〉 + |111〉)|ε〉

)
� 1√

2
(|0000〉 + |1111〉) (19)

and

W

(
1√
2
(|+ + +〉 + |− − −〉)|ε〉

)
� 1√

2
(|+ + ++〉 + |− − −−〉). (20)

where ε is an auxiliary particle.

Proof. Let � � {π1, π2, . . . , πk} be an entangled-triple sequence, in
which each entangled πi (1 ≤ i ≤ k) is randomly selected in the set{

1√
2
(|000〉 + |111〉), 1√

2
(|+ + +〉 + |− − −〉)

}
. Note that the states 1√

2
(|000〉 + |111〉)

and 1√
2
(|+ + +〉 + |− − −〉) are non-orthogonal. Therefore, the entangled-triple

sequence � is a non-orthogonal sequence, which cannot be accurately distinguished.
Suppose there is some unitary operator W so that Eqs. (19, 20) hold. From Eqs. (19,
20), we can get.

(〈000| + 〈111|)(|+ + +〉 + |− − −〉) � (〈0000| + 〈1111|)(|+ + ++〉 + |− − −−〉),
(21)
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from which we can get a conflict equation 1 � √
2. Therefore, there is not any unitary

operator W so that the sub-system of each πi can be cloned.

Theorem 7. Without the knowledge of the signer’s private key, it is not feasible for
the adversary Eve to produce a forged quantum signature.

Proof. Suppose Eve is a quantum adversary, who plays the role of the forger. Note
that Sect. 3.1 has proved the information-theoretical security for the proposed AQS,
which can ensure the secrecy of signatory’s key. For our scheme, to forge the quantum
signature, Eve has to query the oracle f for its output. Suppose that Eve can successfully
forge a signature S on some message c without knowing the signatory’s key k. And
the answer for the output of the query on the oracle f about the message c is m � (m1,
m2,…, mn) ∈ {0, 1}n. Note that the quantum signature S satisfies Eqs. (2, 3). This
means that the state sequence of entangled particle sequence including the forged
quantum signature S is.

χT 1,T 2,A,S �
{∣∣∣χt (T 1)1 ,t (T 2)1 ,a1,s1

〉
,

∣∣∣χt (T 1)2 ,t (T 2)2 ,a2,s2

〉
, . . . ,

∣∣∣χt (T 1)n ,t (T 2)n ,an ,sn

〉}
, (22)

in which each
∣∣∣χt (T 1)i ,t (T 2)i ,ai ,si

〉

∈

⎧⎪⎪⎨
⎪⎪⎩

1√
2

(|0000〉 + |1111〉) ,
1√
2

(|0001〉 + |1110〉) ,

1√
2

(|+ + ++〉 + |− − −−〉) ,
1√
2

(|+ + +−〉 + |− − −+〉)

⎫⎪⎪⎬
⎪⎪⎭

(i � 1, 2, . . . , n) .

(23)

According to m � (m1, m2,…, mn) and the forged quantum signature S, Eve com-
poses a new particle sequence S|mi j �0. That is, for each particle si (1 ≤ i ≤ n) of the
particle sequence S, if mi � 0, Eve puts the particle si into the set S|mi j �0. Assume
that

S|mi j �0�
{
si1 , si2 , . . . , sil

}
, (24)

where i1, i2,…,il ∈ {1, 2,…, n} and the corresponding mi1 � mi2 � · · · � mil � 0.
According to Eq. (1), it follows that

�|mi j �0 � {∣∣φi1

〉
,
∣∣φi2

〉
, . . . ,

∣∣φil

〉} ∈
{

1√
2
(|000〉 + |111〉), 1√

2
(|+ + +〉 + |− − −〉)

}l

,

(25)

which is corresponding to Eq. (24). After the successful forgery, Eve queries about
the private particles indexed by i1, i2,…,il, the signing system outputs the particle
sequence �|mi j �0 for Eve. Because �|mi j �0 is a non-orthogonal particle sequence,
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the particles in�|mi j �0 cannot be accurately distinguished from each other. Therefore,

for Eve, �|mi j �0 is an unknown quantum sequence.

On the other hand, according to Eq. (22) and i1, i2,…,il, the signing system outputs
a sequence

χT 1,T 2,A,S|mi j �0�
{∣∣∣∣χt (T 1)i1

,t (T 2)i1
,ai1 ,si1

〉
,

∣∣∣∣χt (T 1)i2
,t (T 2)i2

,ai2 ,si2

〉
, . . . ,

∣∣∣∣χt (T 1)il
,t (T 2)il

,ail ,sil

〉}
.

(26)

Now, we compare the form of each particle of the particle sequence �|mi j �0 with

that of the particle sequence χT 1,T 2,A,S|mi j �0. According to Eqs. (2, 3, 24–26), it
follows that if ki j � 0 (j � 1, 2,…, l)

⎧⎪⎨
⎪⎩

∣∣φi j

〉 � 1√
2

(∣∣∣0(T 1)i j
0(T 2)i j

0Ai j

〉
+

∣∣∣1(T 1)i j
1(T 2)i j

1Ai j

〉 )
∣∣∣∣χt (T 1)i j

,t (T 2)i j
,ai j ,si j

〉
� 1√

2

(∣∣∣0(T 1)i j
0(T 2)i j

0Ai j 0
S
i j

〉
+

∣∣∣1(T 1)i j
1(T 2)i j

1Ai j 1
S
i j

〉) . (27)

If ki j � 1 (j � 1, 2,…, l)

⎧⎪⎨
⎪⎩

∣∣φi j

〉 � 1√
2

(∣∣∣+(T 1)i j
+(T 2)i j

+A
i j

〉
+

∣∣∣−(T 1)
i j

−(T 2)
i j

−A
i j

〉 )
∣∣∣∣χt (T 1)i j

,t (T 2)i j
,ai j ,si j

〉
� 1√

2

(∣∣∣+(T 1)i j
+(T 2)i j

+A
i j
+S
i j

〉
+

∣∣∣−(T 1)
i j

−(T 2)
i j

−A
i j
−S

i j

〉) . (28)

According to Eqs. (24, 25, 27, 28), we can get that if Eve can produce a valid forged
signature S, he can clone a particle sequence S|mi j �0�

{
si1, si2 , . . . , sil

}
from the

unknown entangled-triple sequence �|mi j �0 � {
φi1 , φi2 , . . . , φil

}
, which is conflict

to the non-cloning theorem (proved inTheorem6) for the sub-systemof each entangled
φi j . Therefore, it will be infeasible for Eve to forge the quantum signature of the signer.

3.3 Non-repudiation

In Sect. 3.2, for the proposed AQS, we have proved its unforgeability. Therefore, once
the verification shows the validity of the signature, both the signer and the signature
receiver cannot refuse its validity due to the unforgeability of the quantum signature.

For the signature, when the partners finish checking its validity, either the signatory
or the signature receiver will lose the state of signature, because it has been changed
after the signature verification. The signatory may deny her signature generation for
the signature receiver. And the signature receiver may refuse his participation of the
signature verification. In this case, Trent can solve the disputation between the signer
and the signature receiver. Note that in the proposed scheme, the message digest of c
is computed by m � f (k||c). That is, to compute the digest m, the private key k has to
be used as the input of the one-way function f . Therefore, without k, it is not feasible
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for the adversary to compute the digest m. At the same time, without the input k of f ,
the adversary can guess the message digestm by the negligible probability 1

2n because
of the uniform distribution of f . This means that only the signatory can generate m
by her key k. Note that in the new AQS, when verifying a signature, Trent keeps the
triple (c, m, Bob) as the “proof” of the quantum signature. If the signatory denies
her signature generation for the signature receiver, Trent can recover the proof (c, m,
Bob) to prove that signer has ever produced the valid signature S, because only the
signer can produce the message digestm � f (k||c) with the private key k. On the other
hand, it is infeasible for Bob to deny the truth of the signature verification due to the
verification proof (c, m, Bob), in which c was announced by Bob.

According to the analysis above, it follows that both the signature receiver and
the signer cannot refuse a valid signature. At the same time, the signer cannot deny
her signature generation for the signature receiver, and the signature receiver cannot
refuse his participation of the signature verification. Therefore, we can get the non-
repudiation of the proposed AQS.

3.4 Security and efficiency comparisons

In this section, the security and efficiency of the similar schemes are compared. Here,
we ignore the AQSs which have been proved to be insecure against forgery attacks
and disavowal attacks.

First, although the private keys of most quantum signature systems were created
with the unconditionally secure quantum key distribution protocol (e.g., BB84 Pro-
tocol), they still could be broken by some novel attacks or some unknown unitary
operator attacks to the quantum signatures, which include the information of the pri-
vate keys. For example, Chen et al. [56] found that the private keys of the QOTP
[57]-based quantum signature schemes could be broken by performing the controlled
SWAP attacks to the quantum signatures. This means the QOTP-based signatures in
[14, 25–28, 36, 39, 43] is not immune to the controlled SWAP attacks. Therefore,
to guarantee the security of private keys of the quantum signing systems, the quan-
tum signature ciphertexts should be information-theoretically secure such that there
is not any unitary operator attack or polynomial distinguishing algorithm which can
distinguish the quantum signature ciphertexts with a non-negligible probability. In
Sect. 3.1, we have proved the information-theoretical security of the proposed AQS
scheme. However, in the similar schemes, the information-theoretical security of the
quantum signatures was not proved.

Second, to our knowledge, in most of the quantum signature schemes including the
schemes in [18, 23, 36, 44–47], the unforgeability of the signature was analyzed by
emphasizing the secrecy of the private keys of the signers. However, according to the
review of the quantum signature in Sect. 1, we know that many quantum signatures
can be forged by various forgery attacks without knowing the private keys of the
signers. No sufficient formal proof can mathematically prove that the unforgeability
of these schemes relies on the basic the quantum theories. In this paper, we prove
that the unforgeability of the proposed scheme depends on the non-cloning theorem.
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Table 1 Security and efficiency comparisons

Schemes Information-theoretical
security

Provable security
proof for
unforgeability

Need quantum
state comparison

Qubit efficiency
(%)

[18] No No Yes 50

[23] No No No 60

[36] No No No 33

[43] No No Yes 5

[44] No No No 50

[45] No No Yes 14

[46] No No Yes 14

[47] No No Yes 20

Ours Yes Yes No 50

That is, if the adversary can forge the signature, his/her actions will violate the non-
cloning theorem. This means that it is infeasible for the adversary to forge the quantum
signature. However, in the similar schemes, no sufficient formal security proof can
mathematically prove that the unforgeability of these schemes is strictly dependent on
the basic principles of the quantum mechanics.

Third, we compare the qubit efficiency of the similar AQSs. In [59], the qubit
efficiency is defined as η�δ1/δ2, where δ1(δ2) denotes the number of transmitted bits
(qubits) in the quantum protocol. In our AQS, 2n qubits are transmitted during the
signature generation and verification phases, while n bits classical message bits are
authenticated. Therefore, the qubit efficiency of the proposed AQS is about 50%(the
decoy particles which are used to check the quantum channel are ignored). In Table
1, the qubit efficiency of the other similar schemes is computed as well.

Fourth, in the schemes of [18, 43, 45–47], the arbitrators or the signature receivers
had to perform the quantum state comparison algorithm [58] so as to verify the signa-
ture. Note that the quantum state comparison test may fail with probability

(
1 + θ2

)
/2,

where θ � |〈α | β〉| ∈ (0, 1) dependents on the compared states. Then, the signa-
ture can be successfully verified by the quantum state comparison algorithm with

probability p � 1 −
(
1+θ2

2

)t
, where t denotes the count of performing the quan-

tum state comparison. Therefore, in [18, 43, 45–47], to make the comparison result
be reliable, the verifiers should perform the state comparison many times so that

p � 1 −
(
1+θ2

2

)t → 1(t → +∞). What is more, the signers should produce many

copies of the quantum signature and transmit them to the receivers for the use of quan-
tum state comparison. All of thesewill greatly decrease the computation efficiency and
the qubit efficiency of the AQSs. In our AQS, the quantum signature is verified without
performing any quantum state comparison algorithm. Therefore, compared with the
similar AQSs [18, 43, 45–47], our scheme has the better computation efficiency.
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4 Conclusions

First, in most of the existing AQSs, the signers’ private keys were created with the
unconditionally secure quantum key distribution protocol so that the private keys can-
not be broken during the key generation phase. However, the adversary may break the
private keys by performing some novel attacks (e.g., the controlled SWAP attacks) or
some unknown attacks to the quantum signatures, which include the information of the
private keys. Therefore, the quantum signature ciphertext should be theoretically indis-
tinguishable and the quantum signature scheme should be information-theoretically
secure such that the adversary can get no useful information about the private key of
the signer from the quantum signatures.

Second, in most of the quantum signature schemes, the unforgeability of the sig-
natures was analyzed by emphasizing the secrecy of the private keys of the signers.
This kind of security analysis is not comprehensive. According to the review of the
quantum signature schemes, we found many quantum signatures could still be forged,
even if the private keys of the signers were unconditionally secure. Therefore, the
unforgeablity of an AQS should be provably secure. The unforgeability of the quan-
tum signature should be proved with the strict proof based on the principles of the
quantum mechanics. We can prove that if an adversary can generate a forgery for the
quantum signature, his/her actions will violate some quantum principles.

Third, we proposed such an AQS with provable security. The proposed AQS was
different from the other existing AQS schemes. Its security can be supported by the
information-theoretical indistinguishability of the non-orthogonal quantum states and
the non-cloning theorem. In the proposed scheme, we proved the non-cloning theorem
for the sub-system of the entangled-triple particles with non-orthogonal states. The
unforgeability of the proposed scheme was proved as well. Theorem 7 shows that the
unforgeability of the proposed AQS was put on the quantum mechanics. That is, the
adversary forgery will lead to some conflict actions on the quantum principles. The
security proof of our AQS also showed the idea of provable security for a quantum
signature.

On the other hand, in the proposed AQS, the participants need not perform the
probabilistic quantum state comparison test. The proposed scheme has better qubit
efficiency.

Therefore, compared with the other similar schemes, ours has the better security
and efficiency.
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Appendix A: A simple simulation of the proposed scheme

To simplify the example, we suppose the parameter n� 4. Assume that f : {0, 1}∗ →
{0, 1}4 is a public one-way hash function, and it has the uniform output.
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Appendix A.1: Initializing phase

IS-1: By performing Bennett and Brassard’s BB84 Protocol, Trent and Alice share a
random private key k. Assume k � (1001). Thus, k1 � k4 � 1, k2 � k3 � 0.

IS-2: Trent prepares four entangled-triple particles φ1, φ2, φ3 and φ4. The state

of each particle φi (i � 1, 2, 3, 4) is |φi 〉 � 1√
2

(∣∣∣0(T 1)i 0(T 2)i 0Ai

〉
+

∣∣∣1(T 1)i 1(T 2)i 1Ai

〉)
.

According to k, for each φi (i � 1, 2, 3, 4), if ki � 0, Trent performs the operator
I ⊗ I ⊗ I on φi , or he performs the operator H ⊗ H ⊗ H on φi . Thus, the states of
φ1, φ2, φ3 and φ4 are changed into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|φ1〉 � 1√
2

(∣∣∣+(T 1)1 +(T 2)1 +A
1

〉
+

∣∣∣−(T 1)
1 −(T 2)

1 −A
1

〉)

|φ2〉 � 1√
2

(∣∣∣0(T 1)2 0(T 2)2 0A2

〉
+

∣∣∣1(T 1)2 1(T 2)2 1A2

〉 )

|φ3〉 � 1√
2

(∣∣∣0(T 1)3 0(T 2)3 0A3

〉
+

∣∣∣1(T 1)3 1(T 2)3 1A3

〉 )

|φ4〉 � 1√
2

(∣∣∣+(T 1)4 +(T 2)4 +A
4

〉
+

∣∣∣−(T 1)
4 −(T 2)

4 −A
4

〉)

, (A1)

where |+〉 � (|0〉 + |1〉)/√2 and |−〉 � (|0〉 − |1〉)/√2. According to φ1, φ2, φ3

and φ4, Trent composes three particle sequences GT 1 � {t (T1)1 , t (T1)2 , t (T 1)3 , t (T 1)4 },
GT 2 � {t (T2)1 , t (T 2)2 , t (T 2)3 , t (T2)4 } and GA � {a1, a2, a3, a4}, in which t

(T1)
i ,t (T 2)i , and

ai represent the 1st, the 2nd and the 3rd particle of φi , respectively, where i � 1, 2, 3,
4.

IS-3: Trent randomly produces sufficient decoy particles whose states come from
the non-orthogonal set {|0〉, |1〉, |+〉, |−〉}. Then, Trent mixes them withGA at random
and gets the newnon-orthogonal sequenceG ′

A. After that, Trent transmits the sequence
G ′

A to Alice.
IS-4:AfterAlice receivesG ′

A, Trent publishes the information of the decoyparticles
including their positions and correct states. Then,Alicemeasures all the decoyparticles
in G ′

A and checks whether the measurement results are the same as those published
by Trent. Once the error rate is above the established standards set by the system, the
partners restart the protocol. Or Alice gets GA from the sequence G ′

A by deleting the
decoy particles. GA is kept by Alice as her private sequence.

Appendix A.2: Signing phase

Suppose that Alice will sign a classical message c � (0100101).
SS-1: Alice computes the message digest f (k||c) � m with her key k and the hash

function f . Suppose m � (1100). Then m1 � m2 � 1 and m3 � m4 � 0. After that,
Alice prepares a particle sequence where the symbol “||” denotes the connection of
the bit strings. After that, Alice prepares a particle sequence S � {s1, s2, s3, s4}, and
the state of the i-th particle si of the sequence S is |si 〉 � |mi 〉. That is,

|s1〉 � |s2〉 � |1〉 and |s3〉 � |s4〉 � |0〉.
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SS-2: For the ith(i � 1, 2, 3, 4) operation, if ki � 0, Alice executes the controlled
NOT operator on ai and si, where ai is operated as the controlled particle, while si as
the target particle.

For the ith(i � 1, 2, 3, 4) operation, if ki � 1, Alice executes the operator H on ai.
Then, she performs the controlled NOT operation on ai and si, where ai is operated
as the controlled particle, while si the target particle. Next, Alice performs the H
operations on the particles ai and si, respectively.

After that, the particles t (T 1)i , t (T 2)i , ai and si are entangled together with the state
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣χt (T 1)1 ,t (T 2)1 ,a1,s1

〉
� 1√

2

(∣∣∣+(T 1)1 +(T 2)1 +A
1 −S

1

〉
+

∣∣∣−(T 1)
1 −(T 2)

1 −A
1 + S

1

〉)

∣∣∣χt (T 1)2 ,t (T 2)2 ,a2,s2

〉
� 1√

2

(∣∣∣0(T 1)2 0(T 2)2 0A2 1
S
2

〉
+

∣∣∣1(T 1)2 1(T 2)2 1A2 0
S
2

〉 )

∣∣∣χt (T 1)3 ,t (T 2)3 ,a3,s3

〉
� 1√

2

(∣∣∣0(T 1)3 0(T 2)3 0A3 0
S
3

〉
+

∣∣∣1(T 1)3 1(T 2)3 1A3 1
S
3

〉 )

∣∣∣χt (T 1)4 ,t (T 2)4 ,a4,s4

〉
� 1√

2

(∣∣∣+(T 1)4 +(T 2)4 +A
4 +

S
4

〉
+

∣∣∣−(T 1)
4 −(T 2)

4 −A
4 −S

4

〉)

, (A2)

After that, Alice sends c and the particle sequence S to Bob. Bob keeps the particle
sequence S as the quantum signature on c.

Appendix A.3: Verifying phase

VS-1: Bob publishes c � (0100101). Then, by the decoy particles and the methods in
steps IS-3 and IS-4, Bob sends Trent the sequence S.

VS-2: According to the shared key k � (k1, k2, k3, k4) � (1001), the particle
sequences GT 1 � {t (T1)1 , t (T1)2 , t (T 1)3 , t (T 1)4 } and S � {s1, s2, s3, s4}, Trent performs
four controlled unitary operations as follows.

For the ith(i � 1, 2, 3, 4) operation, if ki � 0, Trent executes the controlled NOT
operator on the controlled t (T1)i and the target particle si.

For the ith (i � 1, 2, 3, 4) operation, if ki � 1, Trent performs the H operations on
the particles t (T 1)i and si, respectively. Then, he performs the controlled NOT operator

on t (T1)i and si so that t (T1)i is operated as the controlled particle while si the target

particle. At last, he applies operator H to t (T 1)i .

After that, the entangled state of t (T1)i , t (T2)i , ai and si (i � 1, 2, 3, 4) evolves into
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣χt (T 1)1 ,t (T 2)1 ,a1,s1

〉
� 1√

2

(∣∣∣+(T 1)1 +(T 2)1 +A
1

〉
+

∣∣∣−(T 1)
1 −(T 2)

1 −A
1

〉)∣∣∣1S1
〉

∣∣∣χt (T 1)2 ,t (T 2)2 ,a2,s2

〉
� 1√

2

(∣∣∣0(T 1)2 0(T 2)2 0A2
〉
+

∣∣∣1(T 1)2 1(T 2)2 1A2
〉 )∣∣∣1S2

〉

∣∣∣χt (T 1)3 ,t (T 2)3 ,a3,s3

〉
� 1√

2

(∣∣∣0(T 1)3 0(T 2)3 0A3
〉
+

∣∣∣1(T 1)3 1(T 2)3 1A3
〉 )∣∣∣0S3

〉

∣∣∣χt (T 1)4 ,t (T 2)4 ,a4,s4

〉
� 1√

2

(∣∣∣+(T 1)4 +(T 2)4 +A
4

〉
+

∣∣∣−(T 1)
4 −(T 2)

4 −A
4

〉)∣∣∣0S4
〉

. (A3)

VS-3: Trent measures each particle si (i � 1, 2, 3, 4) with z-basis {|0〉, |1〉}. By the
measurement result of si, Trent sets m′ � (

m′
1,m

′
2,m

′
3,m

′
4

)
, where.

m′
i �

{
0, if |si 〉 � |0〉
1, if |si 〉 � |1〉 . (A4)

According to Eq. (A3), it is clear that |s1〉 � |s2〉 � |1〉 and |s3〉 � |s4〉 � |0〉.
Therefore, Trent gets m′ � (1, 1, 0, 0). Then, by the shared k and the message c
published by Bob, Trent can compute the message digest f (k||c) � m � (1100). Next,
he checks whether m � m′. If m � m′ (m �� m′) Trent publishes “Yes”(“No”), and
Bob accepts (denies) the validity of the quantum signature. If the signature is valid,
Trent also keeps (c, m, Bob) as the “proof” of the quantum signature so as to solve the
disputation that may occur between Alice and Bob in the future.

For this example, it is obvious that m � m′. Then, the signature is valid. Thus,
Trent keeps (c, m, Bob) as the “proof” of the quantum signature so as to solve the
disputation that may occur between Alice and Bob in the future.

Appendix B: Analysis of the security

In this section, the example in Appendix A is used.

Appendix B.1: Information-theoretical security

Theorem 1. The quantum signatures on all the messages have the same density oper-
ator.

According to the proposed scheme in Appendix A, we know that the quantum
signature S on message c satisfies Eq. (A2). By Eq. (A2), we can get
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρs1 � 1

2

(∣∣∣−S
1

〉〈
−S

1

∣∣∣ +
∣∣∣+S

1

〉〈
+S
1

∣∣∣
)

� I

2

ρs2 � 1

2

(∣∣∣1S2
〉〈
1S2

∣∣∣ +
∣∣∣0S2

〉〈
0S2

∣∣∣
)

� I

2

ρs2 � 1

2

(∣∣∣0S3
〉〈
0S3

∣∣∣ +
∣∣∣1S3

〉〈
1S3

∣∣∣
)

� I

2

ρs4 � 1

2

(∣∣∣+S
4

〉〈
+S
4

∣∣∣ +
∣∣∣−S

4

〉〈
−S

4

∣∣∣
)

� I

2

, (A5)

Therefore, for the message c, the corresponding density operator of the signature

S is ρs � ⊗4
i�1 I
24

. Similarly, for any signature S on the message c, we can compute

the same density operator ρs � ⊗4
i�1 I
24

. Then, the correctness of Theorem 1 can be
verified.

Theorem 2. If an adversary Eve performs some unitary operator U � ⊗n
i�1Ui on the

signature S, the density operator of the signature will have not any change. That is,
for each message–signature pair (c, S), after the unitary operator attack U � ⊗n

i�1Ui

on S, the density operator of the state of the disturbed quantum signature S is always

ρs � ⊗n
i�1 I
2n .

For the example, the signature S and the message c satisfy Eq. (A2). If an adversary
Eve applies some unitary operatorU � ⊗4

i�1Ui to S, the density operator of si can be
computed as follow.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρs1 � 1

2
U1

(∣∣∣−S
1

〉〈
−S

1

∣∣∣ +
∣∣∣+S

1

〉〈
+S
1

∣∣∣
)
U+
1 � I

2

ρs2 � 1

2
U2

(∣∣∣1S2
〉〈
1S2

∣∣∣ +
∣∣∣0S2

〉〈
0S2

∣∣∣
)
U+
2 � I

2

ρs2 � 1

2
U3

(∣∣∣0S3
〉〈
0S3

∣∣∣ +
∣∣∣1S3

〉〈
1S3

∣∣∣
)
U+
3 � I

2

ρs4 � 1

2
U4

(∣∣∣+S
4

〉〈
+S
4

∣∣∣ +
∣∣∣−S

4

〉〈
−S

4

∣∣∣
)
U+
4 � I

2

.

Therefore, if an adversary Eve applies some unitary operator U � ⊗4
i�1Ui to

S, the density operator of the state of the disturbed quantum signatures S keeps as

ρs � ⊗4
i�1 I
24

. Therefore, for any unitary operator attack, the signature density operator
will not have any change. Then, the correctness of Theorem 2 can be verified.

Theorem 3. For any message c and unitary operator attack U � ⊗n
i�1Ui on the

signature S, the mutual information between private key space K and the probabilistic
polynomial-time quantum adversary Eve is zero. That is,

I (K ; Eve|c, S, U ) � 0. (A6)

Theorem 3 depends on the result of Theorem 2, Eq. (8) and the distribution of the
key space for the key generated by the unconditional secure BB84 protocol. For the
proof of Theorem 3, please refer to Sect. 3.1
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Theorem4 [55]. A quantum signature has information-theoretical security only if, for
each polynomial p and different messages c and c*, the trace distance.

D(ρc, ρc∗) < 1/p(n), (A7)

where ρc(ρc∗) denotes the density operator of the signature S (S*) on c(c*).

Theorem 5. Our new AQS has the information-theoretical security.
Let c and c* be any two different messages. Let S and S* be the quantum signatures

on the messages c and c*, respectively. We use ρc and ρc∗ denote the density operators
of the states of the quantum signatures S and S*, respectively. According to Theorem 1,

it follows that ρc � ρc∗ � ⊗4
i�1 I
24

. Therefore,

D(ρc, ρc∗) � 0. (A8)

It is clear that Eq. (A8) satisfies the result of Theorem 4. Therefore, our scheme
can be of information-theoretical security.

Appendix B.2: Unforgeability

Theorem 6. Given an entangled-triple sequence � � {π1, π2, . . . , πk}, in
which each entangled πi (1 ≤ i ≤ k) is randomly selected in the set{

1√
2
(|000〉 + |111〉), 1√

2
(|+ + +〉 + |− − −〉)

}
, there is not any unitary operator W so

that the sub-system of each πi can be cloned. That is, there is not any unitary operator
W so that.

W

(
1√
2
(|000〉 + |111〉)|ε〉

)
� 1√

2
(|0000〉 + |1111〉)

and

W

(
1√
2
(|+ + +〉 + |− − −〉)|ε〉

)
� 1√

2
(|+ + ++〉 + |− − −−〉),

where ε is an auxiliary particle.
The proof the Theorem 3 depends on the non-orthogonality of the states

1√
2
(|000〉 + |111〉) and 1√

2
(|+ + +〉 + |− − −〉). For more detail proof of Theorem 3,

please refer to Sect. 3.2.

Theorem 7. Without the knowledge of the signer’s private key, it is not feasible for
adversary Eve to produce a forged quantum signature.

For this example, the parameter n� 4 and the signer’s private key k � (k1, k2, k3 k4)
� (1001). Thus, k1 � k4 � 1, k2 � k3 � 0. Suppose Eve is a quantum adversary, who
plays the role of the forger. Note that Sect. 3.1has proved the information-theoretical
security for the proposed AQS, which can ensure the secrecy of signatory’s key. For
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our scheme, to forge the quantum signature, Eve has to query the oracle f for its output.
Suppose that Eve can successfully forge a signature S on somemessage c� (0101100)
without knowing the signatory’s key k. And the answer for the output of the query on
the oracle f about the message c is m � (0101). Note that if S is a valid forgery. Then,
the forgery S must satisfy Eq. (A9) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∣∣∣χt (T 1)1 ,t (T 2)1 ,a1,s1

〉
� 1√

2

(∣∣∣+(T 1)1 +(T 2)1 +A
1 + S

1

〉
+

∣∣∣−(T 1)
1 −(T 2)

1 −A
1 −S

1

〉)
∣∣∣χt (T 1)2 ,t (T 2)2 ,a2,s2

〉
� 1√

2

(∣∣∣0(T 1)2 0(T 2)2 0A2 1
S
2

〉
+

∣∣∣1(T 1)2 1(T 2)2 1A2 0
S
2

〉 )
∣∣∣χt (T 1)3 ,t (T 2)3 ,a3,s3

〉
� 1√

2

(∣∣∣0(T 1)3 0(T 2)3 0A3 0
S
3

〉
+

∣∣∣1(T 1)3 1(T 2)3 1A3 1
S
3

〉 )
∣∣∣χt (T 1)4 ,t (T 2)4 ,a4,s4

〉
� 1√

2

(∣∣∣+(T 1)4 +(T 2)4 +A
4 −S

4

〉
+

∣∣∣−(T 1)
4 −(T 2)

4 −A
4 +

S
4

〉)
. (A9)

According to m � (0, 1, 0, 1) and the forged quantum signature S, Eve composes a
new particle sequence S|mi j �0. That is, for each particle si (1 ≤ i ≤ 4) of the particle
sequence S, if mi � 0, Eve puts the particle si into the set S|mi j �0. Then,

S|mi j �0� {s1, s3} (A10)

According to Eq. (A1), it follows that

�|mi j �0 �
⎧⎨
⎩

|φ1〉 = 1√
2

(∣∣∣+(T 1)1 +(T 2)1 +A
1

〉
+

∣∣∣−(T 1)
1 −(T 2)

1 −A
1

〉)

|φ3〉 = 1√
2

(∣∣∣0(T 1)3 0(T 2)3 0A3

〉
+

∣∣∣1(T 1)3 1(T 2)3 1A3

〉 )
⎫⎬
⎭. (A11)

After the successful forgery, Eve queries about the private particles indexed by 1
and 3, the signing system outputs the particle sequence �|mi j �0 for Eve.

On the other hand, according to Eq. (A10) and the indexes 1 and 3, the signing
system outputs a sequence

χT 1,T 2,A,S|mi j �0�
{∣∣∣χt (T 1)1 ,t (T 2)1 ,a1,s1

〉
,

∣∣∣χt (T 1)3 ,t (T 2)3 ,a3,s3

〉}
. (A12)

Now, we compare the form of each particle of the particle sequence �|mi j �0 with

that of the particle sequence χT 1,T 2,A,S|mi j �0. According to Eqs. (A9–A12), it follows
that

⎧⎨
⎩

|φ1〉 � 1√
2

(∣∣∣+(T 1)1 +(T 2)1 +A
1

〉
+

∣∣∣−(T 1)
1 −(T 2)

1 −A
1

〉)
∣∣∣χt (T 1)1 ,t (T 2)1 ,a1,s1

〉
� 1√

2

(∣∣∣+(T 1)1 +(T 2)1 +A
1 +

S
1

〉
+

∣∣∣−(T 1)
1 −(T 2)

1 −A
1 −S

1

〉) . (A13)

⎧⎨
⎩

|φ3〉 � 1√
2

(∣∣∣0(T 1)3 0(T 2)3 0A3

〉
+

∣∣∣1(T 1)3 1(T 2)3 1A3

〉 )
∣∣∣χt (T 1)3 ,t (T 2)3 ,a3,s3

〉
� 1√

2

(∣∣∣0(T 1)3 0(T 2)3 0A3 0
S
3

〉
+

∣∣∣1(T 1)3 1(T 2)3 1A3 1
S
3

〉) . (A14)
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According to Eqs. (A10, A11, A13, A14), we can get that if Eve can produce a
valid forged signature S, he can clone a particle sequence S|mi j �0� {s1, s3} from
the entangled-triple sequence {φ1, φ3}, which is conflict to the non-cloning theorem
(proved in Theorem 6) for the sub-system of each entangled φi j of {φ1, φ3}. Therefore,
it will be not feasible for Eve to forge the quantum signature of the signer.
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