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Abstract
An effective two-spin densitymatrix (TSDM) for a pair of spin-1/2 degree of freedom,
residing at a distance of R in a spinfull Fermi sea, can be obtained from the two-
electron density matrix following the framework prescribed in Oh and Kim (Phys
Rev A 69:054305, 2004. https://doi.org/10.1103/PhysRevA.69.054305). We note that
the single-spin density matrix (SSDM) obtained from this TSDM for generic spin-
degenerate systems of free fermions is always pinned to the maximally mixed state,
i.e. (1/2) I, independent of the distance R, while the TSDM confirms to the form for
the set of maximally entangled mixed state (the so-called X-state) at finite R. The
X-state reduces to a pure state (a singlet) in the R → 0 limit, while it saturates to an
X-state with the largest allowed value of von-Neumann entropy of 2 ln 2 as R → ∞
independent of the value of chemical potential. However, once an external magnetic
field is applied to lift the spin-degeneracy, we find that the von-Neumann entropy of
SSDM becomes a function of the distance R between the two spins. We also show that
the von-Neumann entropy of TSDM in the R → ∞ limit becomes a function of the
chemical potential and it saturates to 2 ln 2 only when the band in completely filled
unlike the spin-degenerate case. Finally, we extend our study to include spin–orbit
coupling and show that it does effect these asymptotic results. Our findings are in
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sharp contrast to previous works, which were based on continuum models owing to
physics which stem from the lattice model.

Keywords Spin entanglement · Two-spin density matrix · Von-Neumann entropy ·
Rashba spin–orbit coupling

1 Introduction

In recent years, significant effort has gone into developing understanding of quantum
condensed matter system from a quantum information perspective [1–6]. One of the
key ingredients that has been used to characterize quantum many-body systems is
quantum “entanglement" which has no classical counterpart [7–14], and a variety
of idea involving von-Neumann entropy, concurrence [15], and mutual information
[16, 17] have been introduced to quantify the amount of entanglement in them. In
particular, quantummany-body systems comprising of indistinguishable particles have
been studied extensively using such tools [18–28] and the phenomenon of quantum
phase transition in such system has all been characterized using these ideas [12, 29–
31].

However, finding exact many-body states in case of fermions is a formidable task
in general except for mean field theories where an exact Green’s function approach
can be used for systematic investigation. The framework of probing non-interacting
fermionic systems in terms of density matrices was laid down by Dirac [32], Lowdin
[33, 34]. Vederal [35] studied spin correlation of two electrons, located at different
positions in terms of entanglement in a system of non-interacting fermions, which
Kim et al. [36] then explored further. It was shown in [36] that for a continuum model
of free fermions in three-dimensions, the entropy of two spin degrees of freedom
(TSDM) varies with the distance R between them and it saturates to its maximum
value of 2 ln 2 as R → ∞. However, the single-spin density matrix (SSDM) obtained
by partial tracing the TSDM is always found to be maximally mixed (von-Neumann
entropy being ln 2) and hence is independent of the distance R between the two spins.
We show that, once the fermions are placed on a lattice and an external magnetic field
is applied to break the spin degeneracy, the entropy of SSDM starts to depend upon the
distance R between the two spins. Moreover, the saturation value of entropy of TSDM
in the R → ∞ limit is no longer 2 ln 2 rather it depends upon the chemical potential of
the system. These features are indicative of physics beyond what is studied in 36, i.e.
effects that can not be captured by a spin degenerate Fermi sea for a continuummodel.
Motivated from this fact we study a spin correlation encoded in TSDM and SSDM
using this framework given in Ref. [36] for a one-dimensional spinfull Fermionic
chain, which is subjected both Zeeman field and spin–orbit field, as a function of the
chemical potential.

The remainder of this article is organized as follows: In Sect. 2, we introduce our
1D lattice model and define TSDM including both Zeeman and Rashba spin–orbit
coupling (RSOC) interaction terms and analyse the TSDM entropy for the case where
both terms are zero. In Sect. 3, we study the case where only the Zeeman coupling
(B �= 0 and λ = 0) is present.We examine the variation of entropy of TSDMaswell as
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SSDM as a function of the chemical potential. In Sect. 4, we first study entanglement
in the presence of the RSOC term alone followed by the case where both terms are
present (B, λ �= 0). Finally, Sect. 5 is dedicated to conclusion and discussion.

2 Model andmethod

We begin with the 1D tight-binding model Hamiltonian in real space, which takes the
following form:

H = −t
M∑

i

(
c†i ci+1 + h.c.

)
+ B

M∑

i

c†i σx ci

+ i λ

M∑

i

(
c†i σyci+1 + h.c

)
,

(1)

while ci s and c
†
i s at site ‘i’ are the creation and annihilation operators, t is the hopping

parameter, B and λ are the Zeeman and RSOC strengths, respectively. Within our
analysis, the value of B and λ has been chosen in terms of the hopping parameter t ,
which is fixed to t = 1. Also, the distance scale R is set in terms of the lattice spacing
a, throughout our analysis.

We consider periodic boundary condition (PBC) and work in momentum space to
obtain the single-particle spectrum. The corresponding dispersion relation E±(k) =
−2t cos(ka) ±

√
B2 + 4λ2 sin2(ka) defines two bands with the following eigen-

functions,

φ−,k(r) = e−ikr

√
2L

(−e−iθk

1

)
; φ+,k(r) = e−ikr

√
2L

(
e−iθk

1

)
, (2)

with L = Ma. Here a is the lattice constant. Also, e−iθk = |Z |/Z , where Z is defined
as Z = B + 2iλ sin(ka).

In an earlier work, Löwdin proposed the idea of fundamental invariant [34] employ-
ing which density matrix of any order for a given many-body wave-function can be
obtained and written as follows:

ρ(x1, x2) =
∑

kl

φ∗±,k(r1, σ1) φ±,l(r2, σ2), (3)

where x = (r , σ ) denotes position and spin quantum number of electron, and σ = (↑
/ ↓) represents up and down components of φ±,k(r). Using the fundamental invariant,
one can write elements of two particle density matrix as [33, 34]

ρ(2)(x1, x
′
1, x

′
2, x2) = 1

2

∣∣∣∣
ρ(1)(x ′

1, x1) ρ(1)(x ′
1, x2)

ρ(1)(x ′
2, x1) ρ(1)(x ′

2, x2)

∣∣∣∣ . (4)
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Here, superscripts (1) and (2) denote one- and two-particle densitymatrix elements,
respectively. Since our model consists of two bands and therefore have two different
Fermimomenta k−

f (for lower band) and k
+
f (for upper band), for any arbitrary chemical

potential denoted as δ. The single particle density matrix elements in Eq. (4), namely
ρ(1)(x, x ′), can then be defined as:

ρ(1)(x, x ′) =
k−
f∑

|k|=ki

φ∗−,k(r , σ ) φ−,k(r
′, σ ′)

+
k+
f∑

|k|=0

φ∗+,k(r , σ ) φ+,k(r
′, σ ′)

, (5)

where Fermi momenta k−
f and ki can be obtained from the relation μ = E−(k) and

momentum k+
f from the relation μ = E+(k). Temperature is assumed to be zero in

our entire analysis. Therefore, the mean occupation number at each momentum below
the Fermi level is unity. Since our objective in this article is to study the entanglement
of the spin degrees of freedom, we obtain TSDM using Eq. (4). We also consider
diagonal elements of space density matrix: r1 = r ′

1 and r2 = r ′
2 to compare with the

earlier results [35, 36] and have physical interpretation of elements with σ = σ ′ as
probabilities [32, 34]. Hence, we define generic element of TSDM ρ

(2)
σ1,σ2;σ ′

1,σ
′
2
using

Eq. (4) as

ρ
(2)
σ1,σ2;σ ′

1,σ
′
2

= 1

2
[ ρ(1)(r1σ1, r1σ

′
1) ρ(1)(r2σ2, r2σ

′
2)

− ρ(1)(r1σ1, r2σ
′
2) ρ(1)(r2σ2, r1σ

′
1) ]

, (6)

where each single particle density matrix can be written in terms of spin–orbital wave
function φ±,k(r) using Eq. (5). We thus obtain the full TSDM in basis {|↑↑〉, |↑↓
〉, |↓↑〉, |↓↓〉} using Eqs. (5) and (6) as,

ρ
(2)
12 =

⎡

⎢⎢⎢⎢⎣

ρ
(2)
↑↑;↑↑ ρ

(2)
↑↑;↑↓ ρ

(2)
↑↑;↓↑ ρ

(2)
↑↑;↓↓

ρ
(2)
↑↓;↑↑ ρ

(2)
↑↓;↑↓ ρ

(2)
↑↓;↓↑ ρ

(2)
↑↓;↓↓

ρ
(2)
↓↑;↑↑ ρ

(2)
↓↑;↑↓ ρ

(2)
↓↑;↓↑ ρ

(2)
↓↑;↓↓

ρ
(2)
↓↓;↑↑ ρ

(2)
↓↓;↑↓ ρ

(2)
↓↓;↓↑ ρ

(2)
↓↓;↓↓

⎤

⎥⎥⎥⎥⎦

= N

⎡

⎢⎢⎣

m2 − G2
r −mA + Gr Hr −mA + Gr Kr A2 − Hr Kr

−mA + Gr H∗
r m2 − Hr H∗

r A2 − G2
r −mA + Gr Hr

−mA + Gr K ∗
r A2 − G2

r m2 − Kr K ∗
r −mA + Gr Kr

A2 − H∗
r K

∗
r −mA + Gr Hr −mA + Gr K ∗

r m2 − G2
r

⎤

⎥⎥⎦ . (7)

In Eq. (7), N is the normalization constant and is equal to inverse of sum
of the diagonal elements, i.e. 1/N = 4m2 − 2G2

r − Hr H∗
r − Kr K ∗

r . Also,

m = ∑k−
f

|k|=ki
1 + ∑k+

f
|k|=0 1; A = ∑k−

f
|k|=ki

eiθk − ∑k+
f

|k|=0 e
iθk and the functions
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Gr = ∑k−
f ,k+

f
|k|=ki ,0

eik(r1−r2), Hr = ∑k−
f

|k|=ki
eiθk eik(r1−r2) − ∑k+

f
|k|=0 eiθk eik(r1−r2)

and Kr = ∑k−
f

|k|=ki
eiθk eik(r2−r1) − ∑k+

f
|k|=0 eiθk eik(r2−r1). It can be checked that the

model parameters Gr , Kr and Hr are functions of distance scale R = |r1 − r2| where
R defines the distance between the two electrons located at sites r1 and r2. It should
be noted that the functions A, Kr and Hr are such that they are zero when there is no
spin-distinguishing terms, i.e. B = λ = 0. Henceforth, we use the term “spin-pair"
to denote the pair of spins in the TSDM. We now define the filling of the system by
imposing the following constraint equation in the mean field level given by:

< ni,↑ > + < ni,↓ >= δ, (8)

where δ carries the information about average filling at each lattice site i and fixes the
chemical potential.

We first consider the case when both B = 0 and λ = 0. This corresponds to
k−
f = k+

f and ki = 0. This in turn leads to double degeneracy of the eigenspectrum.
As a result, the spin-distinguishing functions in the expression of TSDM (Eq. (7))
reduce to A = Hr = Kr = 0. Hence, the TSDM in Eq. (7) reads as:

ρ
(2)
12 = 1

2(2m2 − G2
r )

⎡

⎢⎢⎣

m2 − G2
r 0 0 0

0 m2 −G2
r 0

0 −G2
r m2 0

0 0 0 m2 − G2
r

⎤

⎥⎥⎦ . (9)

The TSDM, given by Eq. (9), only represents a pair of spin-1/2 degrees of freedom
residing at a distance R from each other and the entropy corresponding to this density
matrix indicates the entanglement of two spins with the rest of the Fermi sea. The two
spin states in Eq. (9) are known as maximally entangled mixed states or popularly
known as “X- states" [37]. In Fig. 1, we illustrate the behaviour of entropy Sab, cor-
responding to the TSDM ρ

(2)
12 , as a function of distance R between them for various

fillings δ ranging from (0.1–0.6). For R → 0 entropy Sab → 0 implying a complete
decoupling of the spin-pair from the rest of the Fermi sea. In fact, the TSDM reduces
to a spin-singlet. However, in the large R limit entropy Sab approaches the asymptotic
value of 2 ln 2 independent of δ though the rate (dSab/dR ) at which it reaches asymp-
totic value is greater for larger value of δ. Note that 2 ln 2 is the maximum value of
allowed entropy for a pair of spin-1/2 and corresponding states having this maximum
value are known as “2-entangled states" [38–41].

3 Zeeman field and entropy reduction

In this section, we analyse the case where only B �= 0. This lifts the spin degeneracy
and breaks the time reversal symmetry. We find that when B �= 0 and RSOC term
λ = 0, then the factor eiθk = 1, which results in following constraints on the functions
in TSDM (Eq. (7)): Hr = Kr = H∗

r = K ∗
r . The un-normalized TSDM ρ

(2)
12 then

reduces to:
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Fig. 1 (Color online) The
variation of entropy (in the units
of ln 2) for the case B = λ = 0
is depicted as a function of
distance R = |r1 − r2| for
different filling δ, starting from
δ = 0.1 (yellow) to δ = 0.6
(cyan). The number of sites has
been taken to be M = 500 for
this plot as well as all the plots
that follow

⎡

⎢⎢⎣

m2 − G2
r −mA + Gr Hr −mA + Gr Hr A2 − H2

r
−mA + Gr Hr m2 − H2

r A2 − G2
r −mA + Gr Hr

−mA + Gr Hr A2 − G2
r m2 − H2

r −mA + Gr Hr

A2 − H2
r −mA + Gr Hr −mA + Gr Hr m2 − G2

r

⎤

⎥⎥⎦ , (10)

where we have left the factor 1/(2L)2. We now compute the entropy corresponding to
this TSDM for different chemical potentials.We begin by filling the lower energy band
represented by the dispersion relation E−(k) = −2t cos(ka) −

√
B2 + 4λ2 sin2(ka).

In this case, the functions in TSDM can be further simplified as:Gr = Hr and A = m.
Therefore, the TSDM is a pure state given by the triplet |ψt1〉 = |00〉 (where |0〉 is one
of the eigenstate of Pauli-x matrix) and is independent of R as expected.

However, when we fill the upper band E+(k) with electrons having opposite spin
polarization w.r.t. the lower band, then the above-mentioned relations, namely Gr =
Hr and A = m, do not hold, leading to a TSDM which is a mixed state (Fig. 2a).
This implies that now the spin-pair is entangled with the rest of the Fermi sea. We
analyse this entanglement as a function of distance R and chemical potentialμ, where
μ is tuned by varying the filling fraction δ. It is interesting to note that even when we
add a single electron in the upper band (δ ≈ 0.3) while the lower band is partially
filled, TSDM undergoes a triplet |ψt1〉 = |00〉 to singlet |ψs〉 = (1/

√
2) (|10〉 − |01〉)

transition in case R = 0 as clear fromFig. 3a–d,where the four fidelities Fs and Fti s are

defined as: Fs = 〈ψs |ρ(2)
12 |ψs〉 and Fti = 〈ψti |ρ(2)

12 |ψti 〉. Here, the density matrix ρ
(2)
12

is the TSDM (normalized) in Eq. (10) and |ψt1〉 = |00〉, |ψt2〉 = (1/
√
2) (|10〉+ |01〉)

and |ψt3〉 = |11〉. This transition exemplifies remarkable sensitivity of the entropy to
the degeneracy of fermionic states with opposite spins. Moreover, in sharp contrast
to the study of spin degenerate-free fermionic continuum model in [36] and the spin-
degenerate case on the lattice model here (B, λ = 0), the saturating value of entropy of
TSDM in large R limit has strong dependence on the filling fraction δ. This saturating
value can never reach the maximum entropy value of 2 ln 2, unless all the states in the
two bands are filled, i.e. δ = 2 (Fig. 2a). In this case, all four states, namely singlet
and triplets, have equal occupancy, i .e four fidelities Fs and Fti s are equal to 1/4
independent of the value of the distance R, other than when R = 0 (i.e. two spins at
the same site).
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(a) (b)

(c) (d)

Fig. 2 (Color online) a This diagram demonstrates the variation of entropy (denoted as Sab/ ln 2) of the

TSDM ρ
(2)
12 (Eq. (10)) as a function of distance R = |r1 − r2| for different filling δ, starting from δ = 0.1

(yellow) to δ = 0.6 (cyan). Here we choose B = 0.4 and RSOC term λ = 0. B is chosen in terms of
the hopping parameter t . b Variation of entropy of SSDM is shown. c Corresponding fillings in the band
structure are included. d MI for different fillings δ as a function of the distance between the two spins

(a) (b)

(c) (d)

Fig. 3 (Color online) Fidelities of TSDM in Eq. (10) with the spin- singlet |ψs 〉 and three triplets |ψt1 〉,|ψt2 〉 and |ψt3 〉 are illustrated, respectively, in a, b, c and d for varying chemical potential μ. The vertical
red dashed line represents the value of chemical potential μ (δ ≈ 0.3) for which the fermions start to fill
the upper band. Value of magnetic field is B = 0.4 and of RSOC parameter is λ = 0
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Another feature, which is in contrast to the results in [36], is the tunability of
the entropy of a single spin with the rest of the Fermi sea by the chemical potential
and distance R, in the presence of magnetic field. In order to examine this, we again
consider a situationwhere the lower band is partially filled and the upper band is empty.
In this case, the normalized reduced SSDM ρ1 turns out to be a pure state and reads as
ρ1 = (1/2) (I− σx ), where σx is a Pauli-x matrix. To explore the single-spin entropy
behaviour as the upper band E+(k) is filled, we first note that the constraints on the
functions in the TSDM change as: Hr = Kr = H∗

r = K ∗
r , though the factor e

iθk = 1
remains unchanged. These constraints, in turn, simplify the normalized SSDM ρ1,
which acquires the following form:

1/(2L)2

Tr(ρ(2)
12 )

[
2m2 − G2

r − H2
r −2mA + 2Gr Hr

−2mA + 2Gr Hr 2m2 − G2
r − H2

r

]
. (11)

It is evident that the SSDM ρ1 (Eq. (11)) above, depends upon the distance between
the two spins via TSDM ρ

(2)
12 .More interestingly, ρ1 is not a pure state anymore rather a

maximallymixed statewhen the distance between the spins is zero i.e., R = |r1−r2| =
0. The off-diagonal elements in the expression of ρ1 in this case, turns out to be zero as
Gr = m and Hr = A, relations still hold when two spins are located at the same site
within the chain. Also, since the Tr(æ(2)) = 2(m2 − A2)/(2L)2, each of the diagonal
elements becomes 1/2.We now focus on the profile of entropy in the large R limit and
is depicted in Fig. 2b. Note that when the chemical potential μ lies in the lower band
E−(k), the entropy corresponding to SSDM is zero and independent of the distance
R (see Fig. 2b with filling values δ = 0.1 and δ = 0.2). However, when we start to fill
the upper band E+(k) as well, we observe that entropy of SSDM saturates to nonzero
value which increases upon increasing the filling values from δ = 0.3 to δ = 0.6 and
finally saturates to the maximum value of ln 2 when both the bands are completely
filled. The corresponding fillings in the band structure are indicated in Fig. 2c.

Now we investigate the degree of correlation between the two spins in TSDM
by studying mutual information (MI), which is defined as MI = 2S(æ1) − S(æ(2)

12 ).
Here S(X) denotes the entropy of a given density matrix X . Note that MI is zero
for the product state of two spins (hence uncorrelated), but it can also be zero while
S(ρ1) = 1/2 S(ρ

(2)
12 ), i.e. when the total entropy follows an addition law of individual

entropies and in this case also spins are uncorrelated. In Fig. 2d, we demonstrate the
MI variation as a function of distance R for various fillings ranging from δ = 0.1 to
δ = 0.6. We find that MI is a monotonically decreasing function of distance R for the
fillings δ = 0.3–0.6 and identically zero for δ = 0.1−0.2. Note that the corresponding
behaviour of the entropies is non-monotonic with respect to the filling factor δ. As
before, when we fill only the lower energy band E−(k), MI is zero as TSDM is a pure
statewhich is also a product state in this case. However, oncewe put a single electron in
the upper band E+(k), MI attains the maximum value of 2 ln 2 at R = 0. Interestingly,
as the distance between the two spins R is increased, MI decays monotonically to
zero again in large R limit. Although both the single spin (represented by SSDM) and
two spins (represented by TSDM), that have been taken into consideration, are highly
entangled with the rest of the Fermi sea and are maximally entangled in case δ = 2,
there is no correlation between the two spins in the spin-pair for large distance R.
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(a)
(b)

(c) (d)

Fig. 4 (Color online) In a we depict the variation of entropy of the TSDM as a function of distance for
various filling starting from yellow (δ = 0.1) to the cyan (δ = 0.6). In b, we show the variation of SSDM as
a function of distance R for fillings (δ = 0.1–0.6), respectively. c The spectrum of our 1D chain along with
different fillings δ is shown in c. The spatial dependence of MI is sketched in the d. See text for discussion.
We choose λ = 1.0, B = 0.4 for all the panels

4 Rashba SOC and Zeeman field

In this section, we first turn off the Zeeman term i.e., B = 0 and assumes only RSOC
λ �= 0. This implies that there is a double degeneracy owing to the time-reversal
symmetry at k = 0. The factor e±iθk = ±i for B = 0 implies eiθ−k = e−iθk . Hence,
the constraints on the functions within the TSDM are: A = 0; Hr = −Kr = H∗

r =
−K ∗

r = 0. Moreover, the functions m and Gr remain invariant, leading to TSDM,
which has exactly the same functional form as given in Eq. (9), i.e. retains the same
functional form of “X-state", which is not the case for B �= 0 and λ = 0 as discussed
in Sect. 3. Moreover, as discussed the entropy of a single spin is again reduced to
its maximum value of ln 2 independent of R and chemical potential. Therefore, it
is apparent that even in presence of nonzero λ, the entropy of TSDM as well as
SSDM remains unchanged, i.e. are matching with the case where both B = 0, λ = 0.
However, once we switch on the Zeeman term B �= 0 as well, the resulting TSDM do
not confine to the formof “X-states" and is given byEq. (7). The entropy corresponding
to TSDM is depicted in Fig. 4a. In the limiting case R = 0, TSDM is yet a pure state
independent of filling fraction δ. In order to find which pure state TSDM is in when
R = 0 we write the entropy of a single spin in the presence of both B and λ. The
SSDM ρ1 (un-normalized) for this case can be written as:

[
2m2 − G2

r − H2
r −2mA + Gr (Kr + Hr )

−2mA + Gr (Kr + Hr ) 2m2 − G2
r − K 2

r

]
, (12)
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(a) (b) (c)

Fig. 5 (Color online) Entropy of SSDM Sa/ ln 2 demonstrated in the plane of magnetic field B and RSOC
λ in the three panels a, b and c, where the distance R has been set to 0, 2 and 10, respectively. Here blue
colour corresponds to a SSDM which is a pure state, whereas red denotes a SSDM which is a maximally
mixed state (ln 2) state. We choose the filling fraction δ to be δ = 0.3 in all the three panels

the entropy reaches maximum value of ln 2 when distance R = |r1 − r2| = 0. This
confirms the fact that TSDM not a product state, rather a maximally entangled state.
It should be noted that when the chemical potential is such that only the lower band
is filled, i.e. δ ranging from 0.1to0.5, still the TSDM is not a triplet |ψt1〉, unlike
the case where only B �= 0 and λ = 0 in Sect. 3. In fact, we find that TSDM
turns out to be a singlet state |ψs〉. Another interesting observation to note is that the
entropy of SSDM oscillates with a decaying envelope, as a function of distance R,
owing to the competition of Zeeman term B and the RSOC term λ. Finally, in Fig. 4d
we demonstrate the behaviour of MI as a function of distance R for various fillings
ranging from δ = 0.1 to δ = 0.6. We observe that for filling δ = 0.1–0.5, i.e. when
the chemical potential lies in the lower band, MI is maximum at R = 0 and gradually
suppressed over distance in a monotonic decaying fashion unlike the case discussed
in Sect. 3 where MI is identically zero independent of R when only the lower band
is filled. Moreover, as we increase the filling gradually, MI exhibits faster decay rate
over distance, which implies that the correlations between the individual spin in the
spin-pair and the rest of Fermi sea grow stronger as the depth of the Fermi sea is
increasing and hence the faster decay.

5 Conclusion and discussion

To conclude, we employ spin density matrix approach proposed by Kim et al. ([36])
to analyse the many-body fermionic states of a 1-D lattice model in the presence of
magnetic field and RSOC. In contrast to their study, we find that SSDM is a function of
the distance between the two spins in the spin-pair once themagnetic field is turned on.
Moreover, TSDM cannot get maximally entangled, i .e entropy is 2 ln 2 with the rest
of the Fermi sea in the large R limit (R → ∞), unless both the bands are completely
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filled. Note that this is also in sharp contrast to the case in [36], where the energy
spectrum is unbounded above and has no well-defined sense of filling fraction and
hence the related physics does not exist in their continuummodel. Finally, for the case
where only magnetic field is present, we also note the fact that even when we add
a single electron in the upper band, while the lower band is partially filled, SSDM
entropy undergoes a sharp transition (corresponds to triplet to singlet transition of
TSDM ) in the limit R = 0 (see Fig. 5a). This entropy transition persists for small
distance corresponding to few lattice sites and for large R aswell, though the sharpness
is reduced (see Fig. 5b, c). It is also evident from Fig. 5 that when B = 0, SSDM
entropy Sa is independent of the strength of RSOC like it was in the case studied in
[36].

We should also point out that main interest in our article is prominently restricted
to the examination of entanglement of the spin degrees of freedom of two electrons
living on a lattice under the influence of rest of the Fermi sea and subsequently to
briefly discuss the correlations in the form ofmutual information as well. Sincemutual
information is not a complete quantification of all possible correlations, which might
exist in bipartite systems, complete analysis of correlation requires further analysis
of full correlation matrices [42]. As far as practical realization of our system is con-
cerned RSOC λ between the nearest neighbour sites in one-dimensional lattice can be
engineered in an optical lattice system [43]. In the fermionic system, entanglement
negativity and Rényi entanglement entropy [44] recently proposed as an excellent tool
for measuring entanglement between two subsystems connected to an environment.
For a direct experimental measurement, we also propose a spin-polarized STM tip at
each site of the lattice and measure the spin orientation and population as a function
of the magnetic field B and λ. Based on this, it is very convenient to realize the (B-λ)
phase diagram in the one-dimensional lattice, engineered on optical systems.
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