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Abstract

Entanglement-assisted quantum error-correcting codes as a generalization of stabilizer
quantum error-correcting (QEC) codes can improve the performance of stabilizer QEC
codes and can be constructed from arbitrary classical linear codes by relaxing the dual-
containing condition and using pre-shared entanglement states between the sender
and the receiver. In this paper, we construct some families of entanglement-assisted

2 2
quantum maximum distance separable codes with parameters [[’171, ‘171—2 d-1+
¢, d; clly, where ¢ is an odd prime power with the form g = am £ 1, a = ? -1

2 . . . o
ora = %, [ is an odd integer, and m is a positive integer. Most of these codes are

new in the sense that their parameters are not covered by the codes available in the
literature.

Keywords Entanglement-assisted quantum error-correcting code - Negacyclic code -
Cyclotomic coset - Defining set

1 Introduction

Quantum error-correcting (QEC) codes were introduced to overcome decoherence
during quantum communications and quantum computations. A g-ary QEC code of
length n and size K is a K-dimensional subspace of a ¢”-dimensional Hilbert space
(C7)®"_ If a QEC code has minimum distance d, then it can detect up to d quantum
errors and correct up to L‘%J quantum errors. Let k = loqu. We use [[n, k, d]],
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to denote a g-ary QEC code of length n with size g¥ and minimum distance d. It is
well-known that the construction of QEC codes can be reduced to that of classical
linear codes with certain dual-containing properties [2]. However, the dual-containing
constraint forms an obstacle in the construction of QEC codes. In 2006, a signifi-
cant breakthrough was made by Brun et al. [1], in which a more general framework
named entanglement-assisted stabilizer formalism was introduced. The related codes
are called entanglement-assisted quantum error-correcting (EAQEC) codes which can
be possibly constructed from any classical codes by relaxing the duality condition and
utilizing pre-shared entanglement between the sender and the receiver. After that,
many families of EAQEC codes with good parameters have been constructed from
classical linear codes. (See, for example, [7, 8, 10, 1618, 22-24, 40, 43, 44] and the
relevant references therein).

Let g be a prime power. A g-ary EAQEC code, denoted by [[n, k, d; c]],, encodes
k information qudits into n channel qudits with the help of ¢ pairs of maximally
entangled states and can correct up to L%J errors, where d is the minimum distance
of the code. Actually, if ¢ = 0, it is the standard [[n, k, d]]; QEC code. Hence, QEC
codes can be seen as a special case of EAQEC codes. In this paper, we regard QEC
codes as EAQEC codes. Similar to classical codes, the parameters of EAQEC codes
are mutually restricted, and there is a so-called entanglement-assisted (EA) quantum
Singleton bound for EAQEC codes.

Theorem 1.1 (EA-quantum Singleton bound)[1, 22, 42] For any [[n,k,d;cll,
EAQEC code with d < #, its parameters satisfy

2d—1)<n—k+c,

where 0 <c <n-—1.

An EAQEC code achieving this bound is called an EAQMDS code. If ¢ = 0, it is
the quantum Singleton bound and a code achieving such bound is called a quantum
MBDS code. Recently, for d > "ziz, Grassl [12] gave some examples of EAQEC codes
beating such bound. As we know, EAQEC codes can be constructed from any classical
codes without dual-containing condition. However, it is still hard to construct such
codes, since it is difficult to determine the number of maximally entangled states during
the construction. In 2018, a relationship between the number of maximally entangled
states required to construct an EAQEC code from a classical code and the hull of
classical code was obtained in [15], and some EAQEC codes with flexible parameters
were also constructed. After that, many families of EAQMDS codes were constructed
via the computation of the hull dimension of linear codes such as generalized Reed-
Solomon codes and Goppa codes [3, 8, 11, 14, 25, 33, 34].

In 2014, Lu et al. [29] utilized the decomposition of the defining set of cyclic
codes to determine the number of maximally entangled states, which transmitted the
determination of ¢ into determining a subset of the defining set of the underlying
codes, and they also constructed some EAQMDS codes with large minimum distance.
Later, Lu et al. [30] and Chen et al. [4] generalized the concept of the decomposition
of the defining set of cyclic codes to that of constacyclic codes, respectively, and some
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new EAQMDS codes were also constructed. Since then, many families of EAQMDS
codes with lengths divide g2 & 1 have been constructed via the decomposition of the
defining set of constacyclic codes (including cyclic codes and negacyclic codes) due
to their excellent algebraic structure. (See [4-6, 19, 21, 26, 28, 30-32, 36-39, 41, 42]
and the relevant references therein).

Actually, EAQEC codes can be directly derived from QEC codes. Lai and Brun
[23] first showed that any (nondegenerate) standard [[n, k, d]] stabilizer code can be
transformed into an [[n — ¢, k, d; c¢]] EAQEC code, where 0 < ¢ < n — k, and the
obtained EAQEC codes are equivalent to standard stabilizer codes. Furthermore, the
decoding techniques of standard stabilizer codes are also suitable for EAQEC codes.
Recently, Galindo et al [10] generalized [23] to arbitrary finite fields, and some new
EAQEC codes were constructed through QEC codes by considering the symplectic,
Hermitian and Euclidean duality, respectively. Very recently, Grassl, Huber and Winter
[13] showed that any pure QEC code yields an EAQEC code with the same distance
and dimension, but of shorter block length, i.e. if there is a pure QEC code with
parameters [[n, k, d]]4, then an EAQEC code with parameters [[n —c, k, d; c]], exists
forallc <d.

In this paper, based on the decomposition of the defining set of negacyclic codes,

2 2
we construct some families of EAQMDS codes with parameters [[qTfl, qa—*l —2d +
2+c, d; c]], by exploiting less pre-shared maximally entangled states ¢, where g, [, m
are in the following cases:

(1) g is a prime power with the form g = am 41, a = [*> — 1, [ is an odd integer, and
m is a positive integer;
(2) g is a prime power with the form g = am +1,a = %,l =1 mod4orl=3

mod 4, and m is a positive integer.

In Table 1, we list the concrete parameters of the EAQMDS codes constructed in
this paper.

The paper is organized as follows. In Sect. 2, some notations and basic results
of negacyclic codes and EAQEC codes are presented. In Sects. 3 and 4, some new
families of EAQMDS codes with small pre-shared entangled states are derived from
negacyclic codes. The conclusion is given in Sect. 5.

2 Preliminaries

Let g be a prime power and F > be the Galois field with g elements. A g>-ary linear
code C of length n with dimension k and minimum distance d, denoted by [n, k, d] g%
is a linear subspace of ]FZZ' The parameters of C satisfy the well-known Singleton
bound: d < n —k + 1, and the code C withd = n — k + 1 is called a maximum
distance separable (MDS) code.

Given two vectors X = (xg, X1, ..., X,—1) andy = (Yo, Y1, ..., Yn—1) € IFZ2, their
Hermitian inner product is defined as

X, Y)n = xoyg +x1y] + -+ xa1yl .
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The vectors x and y are orthogonal with respect to the Hermitian inner product if
(X, ¥)n = 0. For a g2-ary linear code C of length 7, the Hermitian dual code of C is
defined as

Cthi={xe Fzz |(x,y), =O0forally € C}.

IfC1* C C,thenC is said to be Hermitian dual-containing, and C is said to be Hermitian
self-dual if C = C1.

A g’-ary linear code of length n is called negacyclic if it is invariant under the
negacyclic shift of IFZz, ie.

(COa C], ey cl‘l*l) = (_Cnflv C(), ey Cn72)‘
For a negacyclic code C, each codeword ¢ = (¢, ¢y, - .., c4,—1) is customarily iden-
tified with its polynomial representation c(x) := co + c1x + -+ + ¢p— 1x* 1 and

the code C is in turn identified with the set of all polynomial representations of its
codewords. Then we can see that xc(x) corresponds to a negacyclic shift of ¢(x) in
the quotient ring R := F2[x]/(x" + 1). It is well-known that a linear code C over
2 is negacyclic if and only if C is an ideal of the ring R. In fact, every ideal of
Fg2[x]/(x" + 1) is a principal ideal, so each negacyclic code C can be generated by a
monic divisor g(x) of x"” + 1, which has the minimal degree in C.

Suppose that ged(n, g) = 1. Let B € F o be a primitive 2n-th root of unity and
&= ,32, where m is the multiplicative order of q2 modulo 2n, i.e. m = ordy, (qz). It
follows that & is a primitive n-th root of unity. Hence, the roots of x" + 1 are g!+2/,
where 0 < j <n —1.LetZy, ={0,1,...,2n — 1} and 2 be the set of the elements
with the form 1 + 2j in Z,. For any s € Zj,, the qz-cyclotomic coset modulo 2n
constains s is given by

Cy = {s, sqz, sq4, e sqz(ml_l)},

where m; is the smallest positive integer such that s¢>”s = s mod 2n, and it is also
called the size of Cs, i.e. |Cs| = my. For a negacyclic code C = (g(x)) of length n
over F 2, its defining set is the set 7 = {s € Q2 |g(B*) = 0}. It is easy to see that the
set T is a union of some g>-cyclotomic cosets modulo 27 and dimC = n — |T|. The
minimum distance of C also has the following well-known bound.

Lemma 2.1 [20, 351(BCH bound for negacyclic codes ) Let C be a q*-ary negacyclic
code of length n. If the generator polynomial g(x) of C has the elements (B2 b <
i < b+6§—2}asits roots, where B is a primitive 2n-th root of unity, then the minimum
distance of C is at least 8.

Let C be anegacyclic code with defining set Ugeq Cs. Denoting T~7 = {2n—gs|s €
T}, then we can deduce that the defining set of C# is T1# = Z,\T 9. A cyclotomic
coset Cs is skew-symmetric if 2n — gs mod 2n € C; and otherwise it is skew-
asymmetric. If skew-asymmetric cosets Cy and Cz,_4s come in pair, then we use
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(Cs, Cay—gs) to denote such a pair. Based on these definitions, we have the following
result.

Lemma 2.2 [27] If C is a negacyclic code of length n over F 2> with defining set T,

then C C C if and only if one of the following holds:

() TNT 9 =0, whereT~1 ={2n —qs|s € T}.

(2) Ifi, j, k € T, then C; is not a skew-symmetric coset and (Cj, Cy) is not a skew-
asymmetric cosets pair.

According to Lemma 2.2, Ct* C C can be obtained by the relationship of its
cyclotomic coset Cy. Assume that C is a g2-ary negacyclic code of length n with
defining set T. Let Ty = TNT 9 and Tyqy = T\Tys, where T™7 = {2n—gsl|s € T}.
Then, T = T3 U Ty, is called a decomposition of the defining set of C. Especially,
Tss and Ty, can be characterized by the following method.

Lemma 2.3 [30] Let C be a negacyclic code of length n over qu, and T = T U Tyus
be the decomposition of T.

(1) Ifi, j € Tsas, then C; is a skew-asymmetric coset, and C; and C; cannot form a
skew-asymmetric cosets pair.

2) Ifi € Tgs, then either C; is a skew-symmetric coset, or C; is a skew-asymmetric
coset and there is a j € T such that C; and C;j form a skew-asymmetric cosets
pair.

Lemma 2.4 [30] Let C be anegacyclic code of length n over F 2, where ged(n, q) = 1.
Suppose that T is the defining set of C and T = Ts3 U Tyys is a decomposition of T.
Then, the number of maximally entangled states required is ¢ = |Tys]|.

According to [30], one can construct EAQEC codes from negacyclic codes by
decomposing its defining set in the following theorem.

Theorem 2.1 Let C be an [n, k, d] > negacyclic code with defining set T, and the
decomposition of T be T = Tg3 U Tgys. Then there exists an EAQEC code with
parameters [[n,n — 2|T| + Ty, d; |Tw|]]q

Especially, if | 755 | = 0, then there exists a QEC code with parameters [[n, 2k —n, >
d]l,. If C is a negacyclic code with defining set T = Uj:aClJrzj, where s > a, then

T can be also denoted as T (§) = U‘}:z_zCsz, where § = s — a + 2. According
to Theorem 2.1, there exists an EAQEC code with parameters [[n,n — 2|T ()| +
|T5s ()|, d > &;|Ts5(8)]]ly. In the following two sections, we will discuss how to
determine |75s(8)| and construct EAQMDS codes from negacyclic codes of length

2y 2
n:quwnha:lz—landa:%.

3 New EAQMDS codes of length n = g1 witha = /% — 1

a

In this section, we will construct some new classes of g-ary EAQMDS codes of length
n= qza—4 by negacyclic codes, where ¢ = am +1,a = 1> — 1 and [ is a positive odd
integer. Since ¢ = 1 mod 2n, the g2-cyclotomic coset C, modulo 27 is C, = {x}
for each odd x in the range 1 < x < 2n.
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3.1 Thecaseq =am + |

In this subsection, we assume that ¢ is an odd prime power of the form g = am + [,
where a = [> — 1, and [ is a positive odd integer. We will construct some new g-ary

EAQMDS codes of length n = ’fza;l from negacyclic codes. We first give a useful
lemma in the following which will play an important role in our construction.

2
Lemma3.1 Letn = qu—_l, where q is an odd prime power of the form g = am + [,
a =1 — 1, and | is a positive odd integer. If C is a q*-ary negacyclic code of length
n with defining set

N
[+5
T = U Ciy2j, %m-l-]SSS

j=rm

31+3

m,

then C+h C C.

Proof According to Lemma 2.2, one obtains that C** C C if and only if there is
no skew-symmetric cyclotomic coset and any two cyclotomic cosets do not form a
skew-asymmetric pair in the defining set 7.

Dividing Ip = [({ + 5)m + 3, (3] + 3)m + 1] into the following [ parts

I+5 31— 1
Ioi = [im 43,20+ Dm+1], =2 <i=>

{3l + m + 3},
Iy =[G+ Dm +5, 31+ 3)m + 11.

Suppose that there exist odd integers x,y € Ip, such that Cy = —qgC,, that is
x + gy = 0 mod 2n.
Since

2
-1
a=12-1, g=am+1=0C-m+1, n=1 =(®=1m?>+2ml + 1.
a

Then,if x, y € Ip;, then2in < 2i (1> — 1)m*42iml +2im +3(1> — 1)m+314+3 <
x+qy <26+ D)2 =Dm> 423+ Dml +2( +Dm+ (1> = Dm+1+1 < 2(i + Dn,
a contradiction.

Ifx, y € I a1, then(3l+Dn < B+ D2 = Dm?+ GBI+ Dmi+Gl+D)m+5(%—

Dm+5145 < x+qy < GI+3) (> = 1)m>+@Bl+3)ml+GBl+3)m+P—Dm+1+1 <
(31 4 3)n, a contradiction.

Ifx € Iy, j,y € Ipi,and j < i,then0 < 260+ Dml+242i—(*=Dm—1 < 2n—
gy(mod 2n) < 2n+2iml +2i — 3% = )m — 31 < 2nand 2n —gy(mod 2n) > x,
a contradiction.

Finally, note that —q[ (3] + 11)1751 +3]l=((+3)m+1mod2n,and (I +3)m+1 ¢

+

T = Uj‘—ﬂmﬂclﬂj’ where =5°>m +1 <5 < #m
- 2
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Therefore, we can deduce that x + gy # 0 mod 2n for any odd integers x, y € .
Hence, Ct* C C holds. O

2
Lemma3.2 Letn = qT_l, where q is a positive odd prime power of the form q =

am+1La=12—1andl is a positive odd integer.

(1) For1 <i <2, Cit14i42ilym+1+2i IS skew-symmetric, and

(Cai+sym+3, Csi+dm+5) »  (Carsvym+7, Casym+1)

are skew-asymmetric pairs.

©))

2<8<(—-1Dm+1;
(I—Dm+2<8<@2—m+2;
QRl—1m+3<8=<2m+2;

, 2lm+3<8<@Bl—-2)m+3.

|sz (8)| =

W= O

Proof (1) Since g[2i +1+14+2ilym+14+2i]=Qi+1+1+2ih)n— Qi+ 1+
142ilml — i +1414+2il) + (1 +2i) (% — Dm + (1 +2i)l, where 1 <i < 2.
Then, we have

—qRi+1+1+2im+1+2i]= Qi+ 1+1+2il)m+ 1+ 2i mod 2n.

Hence, for 1 <i <2, Coit14+142ilm+1+2i 1s skew-symmetric.
Similarly, g[(3] +5)m +3] = 3l +5)n— Bl +5)ml — Bl +5)+3(*> - )m+3l,
then

—q[Bl+5m+3]=GBl+3)m+5 mod 2n,

andg[(7l+1m+T7]= T+ )n— T+ Dml — T+ 1) + 7(% = DHm + 71,
then

—q(Ml+1)m+7=1+Tm+1 mod 2n.

Hence, (C@i+sym+3: Csiedmss) and  (Carenymsr, Casmyms1) are  skew-
asymmetric pairs.
(2) According to Lemma 3.1, if the defining set T = U;_l+5m+1 C142j, where #m +
=7

1 <s < 3Em, then ¢ C C. Hence, |Tys(8)] =0for2 <8 < (I — Hm + 1.
Now let

I =[(Bl+3)m+5, (5] +3)m + 3],
L =[5l+3m+7,5l+5m+ 3],
I =[5l+5m+7, 71+ )ym+5].
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31+3 1
Supposethat 77 = U 2,:? C1+2] Let the definingset T = U3l+3 C1+2jUT1,

where 31;'3;11 +2<s< 5H_?’m + 1. If |Ts4(8)| = 1 holds for (I — l)m +2<4§<
(2l — 1)m + 2, then accordlng to Lemma 2.3, we only need to testify that for any odd
integers x € Iop U I1 and y € I such that x # —gy mod 2n.

To divide I; into the following [ 4 1 parts

[+3 5[-3
I = [2im + 5,26 + Dm + 3], T+—i <=
(51 — 1ym +5),
11,¥ =[5l —-1)m+17,5+ 1)m + 3],

{(5] + hm + 5},
I s =[50+ Dm +7, (51 + 3)ym + 3.

If x,y € I,;, where % <i< %, then 2in < 2i (12 — Dm? + 2iml + 2im +
52 = 1m +50+5<x+qy <2+ D@ — Dm? + 23 + Dml + 2@ + Dm +
312 — Dm 431+ 3 < 2(i + Dn.

Ifx,y €I s_1,then (5] — n < (5] - D2 = Dm?+ (51 — Dml + (5 — )m +
T2 —=Dm+T714+7 < x~+qy < G+ D% = Dm? + 51 + Dml + (51 + DHm +
3(12 = )m 4+ 3143 < (51 + Dn.

Ifx,y € Iy st then (SI+ n < (51 + D(? — Dym? + (51 + Dml + (51 + Dm +
TI> = Dm+T71+7 < x +qy < 51 +3)1> = Dm?* + 5] + 3)ml + (5] + 3)m +
31> = )m 4+ 314+ 3 < (51 + 3)n.

Ifx € I1,;Uly,y € I;, where 3l+3 <j<i<>5= 3 then0 < 2(i + Dml +2(i +
H—=3(>—1m—-3l < Zn—qy(mod 2n) < 2n+21ml+21 5% =1)m—>5I < 2n,
and 2n — gy(mod 2n) > x.

Ifx € lgUl .y € Iy 51, Where I < i < 23 then0 < (SI+Dml+(51+1)—
32— 1)m—31 <2n— qy(mod 2n) < 2n+(51—1)m1+(51—1)—7(12—1)m—71 <
2n, and 2n — gy(mod 2n) > x.

Ifx € IpUI1;.y € Iy syr. where 332 < i < 354 then 0 < (5+3)ml+(5/+3)
3(12—=1)ym—31 < 2n—qy(mod 2n) < 2n+ I+ Dml+Gl+1) =702 —Dm =71 <
2n, and 2n — gy(mod 2n) > x.

Finally, note that

—ql(8] —1)m + 5] = (=l +5)m — 1 mod 2n,
—q[(5l+1)ym+5]=({+5m+ 1 mod 2n,
and (=[+5m -1, (I +5m+1¢T.
In conclusion, we have x +¢gy # 0 mod 2n for any odd integers x € IpUI, y € I;.

Hence, there is no skew-symmetric cyclotomic coset and skew-asymmetric pair in the
defining set T'. Therefore,

Ty =TNT 1 = Cai43yms3 = {3l + 3)m + 3},
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which implies that | T (5)| = 1.
The remaining cases can be proved similarly, so we omit it here for simplification.
O
Theorem 3.1 Letn = ‘Iil;l, where q is an odd prime power of the form q = am + 1,
a = 1> —1, and is a positive odd integer. Then there exist q-ary EAQMDS codes with
parameters as follows:
2 2
() N2, 28 —2d 4 3,d; 1], where (I — D)m 42 <d < 2l — Dm +2;
2
@ (L1 £ —2d +5,d; 3]), where 21 — Dym +3 < d < 2Im +2;

@) (L=, =1 24 46, d; 41), where 2lm +3 < d < (31 — 2)m + 3.

Proof Let ¢ be an odd prime power of the form ¢ = am +1, a = [*> — 1. Consider the

negacyclic code C of length n = qza—q over F > with defining set

N

T = U Ci+2j,
j_l+5 +1

where l+5m +1<s< 7Z'Hm + 2.

Accordmg to Lemma 3.2, wehave c = | Ty, (8)| = 1if LEm+1 <5 < LEm+1,
¢ = |T@® =3if Em+2 <5 < TEm+ 1, and ¢ = |T5(®)| = 4 if
%m—i—ZszﬂTHm—i—Z.

Since each ¢2-cyclotomic coset C; = {x} and x is an odd integer then we can
obtain that T consists of s — l+5m integers {({ +5)m 43, ( +5)m+5,---,2s + 1},
which implies that C has minimum distance at least s — L +5 B35, 4-1. Hence, C is a g*-ary
negacyclic code with parameters [n,n — s + HTSm >5 — 155 m + 1].

Then the theorem is proved by using Theorem 2.1 and the EA-quantum Singleton
bound. O

Remark 3.1 For the proof of the cases |7 (8)| = 1, 3,4, we give Lemma 3.1.

Actually, similar to the proof of Lemma 3.1, one can see that if the defining set

T = U§,+3m+2C1+2./, where 3H'3m +2<s< 51+3m + 1. Then C** C C, and there
2

exists a g-ary quantum MDS code with parameters [[”a—_l, qT_l —2d +2, d]], where
2<d<Ilm+1

2
Example 3.1 In Table 2, we list some new EAQMDS codes of length "a—_l obtained

from Theorem 3.1, where ¢ is an odd prime power of the formg = am+1,a = 12—1,
and / is a positive odd integer.

3.2 Thecaseq =am — |

In this subsection, we assume that ¢ is an odd prime power of the form g = am — [,
where @ = [> — 1, and [ is a positive odd integer. We will construct some new g-ary

2
EAQMDS codes of length n = q771 from negacylic codes.
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318 Page 12 of 37 L. Wang et al.

2
Table2 New EAQMDS codes of length n = 4 —! with a =12 — 1

a

1 m qg=am+1 [[n, k, d; cllq d
3 1 11 [[15,18 —2d,d; 11111 4<d<1
[[15,20 —2d, d; 31111 8§<d<8
[[15,21 — 2d, d; 4111 9<d<10
2 19 [[45,48 —2d, d; 1]]19 6<d<12
(145, 50 — 2d, d; 31119 B<d<l4
[[45,51 —2d, d; 41119 15<d <17
3 27 [[91,94 — 2d, d; 11]27 8§<d<17
[[91,96 — 2d, d; 31127 18 <d <20
(91,97 — 2d, d; 411x7 20<d<24
5 1 29 [[35,38 —2d, d; 1]]29 6<d<l1l1
[[35,40 —2d, d; 3]]29 12<d <12
[[35,41 —2d, d; 4]]9 13<d <16
2 53 [[117, 120 — 2d, d; 1]]s3 10<d <20
[[117,122 —2d, d; 3]]53 21 <d <22
[[117,123 —2d, d; 41153 23<d <29
Lemma3.3 Letn = qza—_l where q is an odd prime power of the form g = am — I,

a = 1% — 1, and | is a positive odd integer. If C is a q*-ary negacyclic code of length
n with defining set

)
-3 [—1
T = C i, — < < — —2,
U Cuaje —5m=s<—m
. 1-3
J=—7m

then Cth C C.

Proof According to Lemma 2.2, one obtains that Ctn c Cif and only if there is
no skew-symmetric cyclotomic coset and any two cyclotomic cosets do not form a
skew-asymmetric pair in the defining set 7.

Suppose that there exist odd integers x,y € Ip = [ —3)m + 1, ( — 1)m — 3],
such that C, = —¢Cy, thatis x 4+ gy = 0 mod 2n.

Since

-1 21
—. n=T"" " >~ ym®—2ml+1.
a

q=am—1, a=

Ifx, y € Ip,then (I—3)n < (=3)(I2=D)m2—(=3)ml+(—=3)m+*>—1)m—I+1 <
x+qgy <(A—DP-Dm? =A—-Dml+(—Dm—=3*>—1)m+31—3 < (—1n.
Therefore, we have x +gy # 0 mod 2n for any odd integers x, y € I, a contradiction.

Consequently, there is no skew-symmetric cyclotomic coset and skew-asymmetric
pair in the defining set 7', which means that C» C C holds. O

@ Springer



Some new families of entanglement-assisted quantum MDS codes ... Page 130f37 318

2
Lemma3.4 Letn = qa—_l, where q is an odd prime power of the form g = am — [,
a =12 — 1, and | is a positive odd integer.

(1) For0 <i <3, Ci+1)(—1m—i+1) is skew-symmetric, and (C(51-3ym—5, C(31—5)m—3)
forms a skew-asymmetric pair.

(@)

2<68<m;
m+1<é§<im-—1;
Im<§<Ql—1)m-2;
QRlL—1ym—-1<8<2lm—2;
2lm —1 <686 < (Bl —2)m — 3.

|Tsx (8)| =

wn LW = O

Proof (1) Since ¢[(2i + 1)(I — Dm — (2i +1)] = Qi + D[ — Dn + (2i + D —
Dml — i + (I — 1) — 2i + D(I® — m + (2i + 1)1, then

—q[QRi+ DI —Dm— Qi+ D= Qi+ 1)(I—-Dm—Qi+1) mod 2n.

Hence, for 0 <i <3, Ci+1)(—1)m—(2i+1) 1s skew-symmetric.
Since g[(3] — S)ym — 3] = 31 — S)n + (31 — 5)ml — 3(I*> — 1)m + 5, then

—ql(3l —=5m —3]= (5] —3)ym —5 mod 2n.

So (C51-3ym—5, C31-5ym—3) forms a skew-asymmetric pair.
(2) According to Lemma 3.3, if the defining set 7 = U‘;_,,3mC1+2j, where %m <
=7

s < %m — 2, then C1" C C. Hence, | Ty (8)| = 0 for2 < § < m. Now let
L=[-3m+1,(0—-1m=3], L=[l-Dm+1,31—-1)m-35],
L=0B(-1m-1,5(1-1m-="7], Ii=[5I—-1m-—3,5l-3)m—"17],
Iy =[5 —3)m —3,7(1 — 1)m — 9].

Sl .
Suppose that 77 = sz_lr:mCsz. Let the defining set T = UiflmCsz u T,
=7 =
where Slm < s < 33 m — 3.1f | Ty, (8)| = 1 holds form + 1 < § < Im — 1, then
according to Lemma 2.3, we need to testify that for any odd integers x € Ip U I; and
y € Ij such that x # —gy mod 2n.
Assume that there exist odd integers x € Iy U I} and y € [Ij such that x =

—qy mod 2n. Dividing /; into the following [ — 1 parts

11’% =[(—-Dm+1,(+1m—3],

I+1 3—7
I = [2im —1,2G+1)ym — 3], _J; <ist

11’¥ =[] -5m—1,3l—-3)m —5].
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318 Page 14 of 37 L. Wang et al.

Ifx,y € Iy 11, then (I—Dn < (=D —=Dm>—(I—Dml+({—Dm+(*—1)m—
I+1 < x+qy < (+D)P=Dm*> =+ Dml+I+1D)m=3*>—1)m+3[-3 < (I+1)n,
a contradiction.

If x,y € I,;, where HTI <i< 31_7 , then 21n < 21(12 — 1)m —2iml +2im —
P—Dm+l—1<x+qy<2(+ 1)(12 Dm? =2 + Dml +2(@ + Hm —3(1% —
m + 31 — 3 < 2(i + 1)n, a contradiction.

Ifx,ye Il’%, then (3] — 5)n < (31 —5)(I*> — )m? — (31 — 5)ml + (3 — S)m —
P—Dm+1—1<x+qy <31—1)(1*—-1)m?*— @Bl —3)ml + (3] —3)ym —5(1*> —
1)m + 51 — 5 < 3(I — 1)n, a contradiction.

Ifxelyye Ily%,theno <(I+1)QR2I—-3m—-2l+1<2n—gqy mod 2n <

2n— (1 —-1DQRI+1)ym+2l—1<2n and 2n — qy mod 2n > x, a contradiction.

Ifx € lgUl 1.y € 1. where Bl <i <37 then 0 < [31% —2(i + 1) —

3lm + 2(i +1)—3l §2n—qyrn0d2n < 2n—(211—l2+1)m+21 — 1 < 2n and
2n — gy mod 2n > x, a contradiction.

IfxeloUlyel s, where 51 <i < 37 then 0 < (1 — 1)(2l + 5)m —
2l -3 < 2n—qymod2n < 2n—(212—51+1)m+21—5 < 2n and 2n — qy
mod 2n > x, a contradiction.

In conclusion, we have x +¢y # 0 mod 2n for any odd integers x € IpU[l, y € 1.
Hence, we have

Ty =TNT™ ¥ =Cy_tym—1 =1{U = DHm — 1},

which implies that | T, (5)| = 1.
The other cases can be proved by using the same method, so we omit it here for
simplification. O

2
_q°—1 . . _
Theorem 3.2 Let n = “——, where q is an odd prime power of the form g = am — 1,
a = [*>— 1, and l is a positive odd integer. Then there exist g-ary EAQMDS codes with
parameters as follows:

¢?=1 ¢>—1

@)) ([, —2d +3,d;1]], wherem +1 <d <Im — 1;
2

@) [ £ —2d +4,d:2]), where Im <d < (2 — 1)m —2;

@) (L1, =1 — 24 45, d; 311, where (21 — Dm — 1 <d < 2m —2;

@) (L=, 21 24 47, d; 51), where 2lm — 1 <d < (31 — 2)m — 3.

‘I\)Q (S}

e

Proof Let ¢ be an odd prime power of the form ¢ = am — I, a = [*> — 1. Consider the

negacyclic code C of length n = qzu—_l over I > with the defining set

s

where%m§s< 5 m — 5.
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By Lemma 3.4, one obtains that ¢ = |7 ()| = 1 irSlm—1<s< 3¢ l)m 3,

¢ =1Ts®)| =2if G 0m -2 <5 < 3D —4,c = |Tm(6)| =3 f5<’2”m 3<
s <33 m—dand ¢ = Ty ()| = 5if L3m -3 <5 < 10w — 5.

Since every g’—cyclotomic coset C, = {x} and x is an odd integer we can get
that T consists of s — = 3m + 1 integers {(I — 3)m + 1 (l —3m+3,---,2s + 1},
which implies that C has minimum distance at least s—53m+ 2 Hence Cisagq?-ary
negacyclic code with parameters [n,n — s +53m - 1 > 5 — 2 3 42).

Then the theorem can be obtained by usmg Theorem 2.1 and the EA-quantum

Singleton bound.
O

Remark 3.2 For the proof of the cases |Ts(5)] = 1,2,3,5, we give Lemma 3.3.
Actually, similar to the proof of Lemma 3.3, one can see that if the defining set
T =V, nCH_zj, where l—lm <s < 312_3m — 3. Then C** C C and there exists
T}
2 2
a g-ary quantum MDS code with parameters [[‘7{1—_1, qa—_l —2d +2,d]], where 2 <
d<({—-—1)m-—1.

Example 3.2 In Table 3, we list some new EAQMDS codes of length — I obtained

from Theorem 3.2, where ¢ is an odd prime power of the form g = am —l a=1017-1,
and / is a positive odd integer.

4 New EAQMDS codes of length n = "27_1 witha = ’ZT“

In this section, we will construct some new classes of EAQMDS codes of length
2

n= "a—_l, whereq =am £1l,a = IZT_I and / is an odd positive integer. As a = IZT_I

should be an integer, then we can easily get/ = 1 mod 4 or / = 3 mod 4. Since

g*> = 1 mod 2n, then the g>-cyclotomic coset C, modulo 2n is C; = {x} for each

odd x in the range 1 < x < 2n.

4.1 Thecaseq =am + |

In this subsection, we assume that g is an odd prime power of the form ¢ = am + 1,

where a = lz%, Il =1 mod4or!/ =3 mod4, and / is a positive integer. We

will construct some new classes of g-ary EAQMDS codes of length n = qza—_l from
negacylic codes. We first consider the case / = 1 mod 4 and a useful lemma is given
in the following.
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2
Table3 New EAQMDS codes of length n = 4 ;l witha =12 — 1

1 m qg=am—1 [[n, k, d; cllq d
3 2 13 [[21,24 —2d,d; 1]]13 3<d<5
[[21,25 —2d,d; 2]]13 6<d<8
[[21,26 —2d,d; 3]]13 9<d<10
[[21,28 —2d,d; 51113 11<d<11
4 29 [[105, 108 — 2d, d; 1]]29 5<d<l1l
[[105, 109 — 2d, d; 21129 12<d <18
[[105, 110 — 2d, d; 31129 19<d<22
[[105, 112 — 2d, d; 5119 23<d <25
5 37 [[171, 174 — 2d, d; 1]]37 6<d<l14
[[171, 175 — 2d, d; 31137 15<d <23
[[171, 176 — 2d, d; 2]]37 24 <d <28
[[171, 178 — 2d, d; 51137 29 <d <32
5 2 43 [[77,80 —2d, d; 11143 3<d<9
[[77,81 —2d, d; 21143 10<d <16
[[77,82 —2d,d; 31143 17<d <18
[[77,84 —2d, d; 51143 19<d <23
3 67 [[187, 190 — 2d, d; 11167 4<d<l14
[[187, 191 — 2d, d; 2]1¢7 15<d <25
[[187, 192 — 2d, d; 31167 26 <d <28
[[187, 194 — 2d, d; 51167 29 <d <36

2
Lemma4.1 Letn = qu—_l, where q is an odd prime power of the form g = am + [,

a= 127_1 [ =1 mod 4, and  is a positive integer. If C is a q>-ary negacyclic code
of length n with defining set

N
1+7 51+3
T = U Ciy2j, %m—i—lgsf :m—}—l,

j=HIm+1

then C+h C C.

Proof According to Lemma 2.2, one obtains that Ctn c Cif and only if there is
no skew-symmetric cyclotomic coset and any two cyclotomic cosets do not form a
skew-asymmetric pair in the defining set 7.

Dividing Iy = [l+77m + 3, %m + 3] into the following / parts

. . 3l +1 . .
lo; =2im+3,2( + )m + 1], {Tm+3}’]0’j =[2jm+5,2(j + 1)m+ 3],

+7 _ [=3 3i+1 .
where == <i < T <Jj=<

511
i :

7
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Suppose that there exist odd integers x, y € Ip suchthat Cy = —qCy,ie.x+qy =
0 mod 2n. Since

-1 21 PP-1
, g=am+I, n:q
2 a

12

I=1 mod4, a= m? + 2ml + 2.

Ifx,y e Iol-,where# <i< 31— , then 2in < (2zm+3)(l _1m+l+1) <

X +qy < 26+ Dm + 11551 _lm+l+l)<2(l+l)n

If x,y € Ip,j, where 3”] <j< L ,then2jn < (2]m+5)(ﬂ%m+l+1)§
x+qy<[2(]+1)m+3](l _1m+l+1)<2(]+1)n

Ifx € lox, y € Ioi, where L < k < i < 33 then 0 < 2(i + yml + 4i +

4 21 —z<2n—qy(mod2n)<2n+2zm1+4z—@m—3l<2nand
2n — qy(mod 2n) > x.

If x € Iok,y € lo,j, where lf <k<j, % <j< 51—1 ,then0 < 2(i + 1)ml +
4i 44— 3Dy 31 < 2n— gy(mod 2n) < 2n+21ml+4l SCN 51 < 2n
and 2n — qy(mod 2n) > x.

Finally, note that

31+1 ?2-1 3 +1 143
(3+Tm>=—< > m+l)<3+ 5 m): > m-+1 mod 2n,

and BE3m+1¢ 7T = U 11,1 C1e2j, where Blm+l<s<2Bm41.
v

In conclusion, we can deduce thatx+gy # 0 mod 2n forany oddintegersx, y € Io,
a contradiction. Then we have C+h C C.
(]

2
Lemma4.2 Letn = qa—_l, where q is an odd prime power of the form q = am + [,

2
a= IT” I =1 mod 4, andl is a positive integer.

(1) For2 <i <3,

(C2i+l+(2i+l)é+2iflm, C2i71+(2i—1)é+2i+1m) , (C9+91;3m, C3+31;9m)

form skew-asymmetric pairs.

(@)

(=]

, 2=8=0U—-Dm+2
Tl =12, (—Dm+3<s=<Ltm+3;

, 3= 1m+4<5<(21—1)m+4

o~
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Proof (1) Sinceq[%m+2i+1] — (2i+l)é+2i—ln_ (2i+l)é+2i—lml_(2i+
D — (20 — 1) + 2HEC=D,, 4 (9 4 1)1, where 2 < i < 3. Then, we have

20 — DI+2i +1
m+2i+l]z(l )+ 20 + m+2i —1 mod 2n.

2

Qi+ 1) +2i—1
g -

Hence, for2 < i < 3, (C2i+l+(2i+l)l+2i71m, C2z 1+(2i71)l+2i+1m) forms a skew-
2 2

asymmetric pair. Similarly, ¢ (22m +9) = 2n — 2Bmi — (91 + 3) +

9(1 2Dy, + 9l. Then, we have

9+3 314+9
—q<T+m+9)=T+m+3 mod 2n.

Therefore, (C9+$m, C3Jr

(2) According to Lemma4.1, 1fthe defining set T = U;—ﬂmﬁ Ci42j,where l+7m +
=7

aipo,, ) also forms a skew-asymmetric pair.

1<s<2Bm+ 1, thenCH € C.So|Ty(8)] =0for2 <8 < (I — m+2.
Let

51+3 7+5 7 +5 9 +3
112[—;r +7, —;r m+5:| 12=[—;L m+9, ;m+7]

SI43,, 10

Assume that T} = U iM

j==m

Ty, where L2m +3 < 5 < 7l+5m + 2. If |Ts5(8)| = 2 holds for (1 —Dm+3<

8 < 3ZT_lm + 3, then according to Lemma 2.3, we only need to prove that for any odd
integers x € Ip U I} and y € I] such thatx ;é —qy mod 2n.

Firstly dividing /; into the f0110w1ng parts

C1+2/ Let the defining set 7 = U s +3C1+2J

71+1

3 m+9, ——m+5

Ii=[Rim+7.2( + m + 5], { .

71+ 1 T +5
m+7}, 117l+1=|: ]
S5 2

where 5123 <i< %.

Ifx,y € I, where 343 < i < 253 then 2in < (2im + T)(Zgtm +1+ 1)
x+qy<[2(t+1)m+5](l m+l+1)<2(l+1)n

Ifx,y € I1 7z+1,then 7l+1n < (7l+lm +9)(l _lm—}—l—i— 1) < x+gqy
(IS 4 5)(E5L m+l+1)<M

If x eIOUI1J,y € I],,WhereM <j<i< 71 then0<2(l+1)ml+4z+

4— 5”2—1>m 51 < 2n —gy(mod 2n) < 2n +21ml+4l 7(12—1>m —71 < 2nand
2n — gy(mod 2n) > x.

IftxeloUlyel Bt where% <i<?3 then0 < 7lJrSml—i—7l—i—5—
5(12—1)
Tm

IA

IA

— 50 < 2n — gy(mod 2n) < 2n + 7l+1ml F7 41— 20— op < 2p
and 2n — gy(mod 2n) > x.
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Finally, note that

71+ 1 1?2 -1 71+ 1 1+7
—q<7+T+m>E—< 5 m+l)(7+ ;_m) —;m+1 mod 2n

and Blm +1 ¢ T.

In conclusmn, we have x #% —gy mod 2n for any odd integers x € Iy U I} and
y € I1. Therefore, there is no skew-symmetric cyclotomic coset and skew-asymmetric
pair in the defining set 7'. Besides,

Iy =TNT™" =Csp s, UCy s,

which implies that |Tys(8)] = 2 for (I — m +3 <8 < 3tm 4 3.
The remaining case can be proved by using the same way, here we omit it.
]

2
Theorem 4.1 Letn = u where q is an odd prime power of the form ¢ = am + 1,
a="01=1 71 , I =1 mod 4, andl is a positive integer. Then there exist EAQMDS codes

with parameters as follows:

¢>—1 ¢>—1 3
M U=, —2d+4,d; 2]]q,where(l—1)m+3<d< m+3

a
@) (L=, 21 24 46, d: 41),, where 35im +4 < d < 21 — ym + 4,
Proof Let ¢ be an odd prime power of the form ¢ = am + 1, a = 12% Con-
sider the negacyclic code C of length n = ‘]za—_l over [ > with defining set 7 =

Uj,m ,Cl42j, where 1 + Hlm<s < 2Em+3.
="

By Lemma 4.2, one obtains that ¢ = |T(§)| = 2if 2 + SQTHm <s < 7QTJFSm +2,
andc = |Ty(8)| =4if 3+ 1Pm <5 < LEm + 3.
Since every ¢2-cyclotomic coset C;, = {x} and x is an odd integer, then we can

obtain that T consists of s — I“LT7m integers

147 1+7
{ 42— m+ 3, —}2_ m+5,-~-,1+2s},

which implies that C has minimum distance at least s — L Jr7m + 1. Hence, C is a g-ary
negacyclic code with parameters [n,n — s + l+—7m > 5 — lfm + 11.
Therefore, the theorem holds by Theorem 2.1 and the EA-quantum Singleton bound.

]

Remark 4.1 For the proof of the cases |Tss(8)| = 2, 4, we give Lemma 4.1. Actually,
it is easy to see that if the defining set T = UL; C1+2j, where %m +1<s<

3 l+3 25114 1. Then C+* C C and there exists a g-ary quantum MDS code with parameters

[[qa_*l, 47*1 —2d +2,d]], where 2 < d < Im + 2.
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Now we consider the case / = 3 mod 4 and a useful lemma is given in the following.

2
Lemma4.3 Letn = qa—_l, where q is an odd prime power of the form q = am + [,
a= lzT_l, [ =3 mod 4, and [ is a positive integer. If C is a q2-ary negacyclic code
of length n with defining set
N
[+5 343
T = C i, —m+1<s< m,
U 142 n +1<s=< n

j—£m+1

then Cth C C.

Proof According to Lemma 2.2, one obtains that Ctn c Cif and only if there is
no skew-symmetric cyclotomic coset and any two cyclotomic cosets do not form a
skew-asymmetric pair in the defining set 7.

Dividing Iy = [1 i+ 3, 3li3m + 1] into the followmg L parts

Io; =12im+3,2( + Dm + 1],
where l+5 <i< %. Suppose that there exist odd integers x, y € Iy such that
Cy = —qu, i.e. x + gy = 0 mod 2n. Since

?—1 -1 >-1

qg=am+I1l, a= > [=3 mod4, n= m? + 2ml + 2.

a

Ifx,y € Ip;, where &3 < i < 3L-L then

2 2

I~ -1 -1
2in<(2im+3)( m+l+1)§x+qy§[2(i+1)m+l]( m+l+1><2(i+1)n,

a contradiction.
Ifx € Ip,j,y € Ip,;, where j < i, then

2

0 <2Gi+ Dml+4i +4—

. 3P -1
§2n+21ml+41—Tm—3l<2n,

m —1 <2n — gy(mod 2n)

and 2n — gy(mod 2n) > x, a contradiction.
Consequently, there is no skew-symmetric cyclotomic coset and skew-asymmetric
pair in the defining set 7', which means that Cth C C holds.
O

2
Lemma4.4 Letn = qa—71 where q is an odd prime power of the form g = am + I,

2 . S
a= l%] !l =3 mod 4, and l is a positive integer.
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(1) For1 <i <3, C21.+1+<2i+1>£+2i+1m is skew-symmetric, and <C7+¥m, C3+3[T+7’")
forms a skew-asymmetric pair.

(2)
0, 2<6< B m+1;
1, Blmt+2<s<im+2
T(S — E) 2 — — E)
ITs5 9] 2, Im+3<8=<3Hm+3;
4, Blm+a<s<Hm43.

Proof (1) Sinceq(%m%—%—i—l) _ (2i+l)é+2i+1n_(2i+l)é+2i+]ml_(2i+

D — (2i + 1) + ZENE=D 4 (2 4 1)1, where | < i < 3. Then

2i + DI+ 2i+1 2i+DI+2i+1
_q((l+)+l+ 2+1) i+ DI +2i +

> 3 m+2i+1 mod 2n.

Hence, for 1 <i < 3, C2i+l+(2i+l)é+2i+lm is skew-symmetric.

Since ¢(Z43m +7) = 153n — 131 — (71 + 3) + 25 Dm + 71, then

7143 347
—q(T_Fm+7)—T+m+3 mod 2n.

Therefore, (C, TR/EE P G, IETES ) forms a skew-asymmetric pair.

(2) According to Lemma 4.3, if the defining set T = Uj‘—’+5m+1 Ci42j, where H'S L=m+
=7

1 <5 < 3B, then C1+ C C. So we have [Ty (8)| = 0for2 < § < %m +1.
Now let

[31+3 5[+5 1

I = I ;_ m+5, ;_ m + 3- s
(5145 7143 i

L = i ;_ m—+7, ; m+5],

I (71 +3 n 71417 L

= m , m
T2 2 ]
31+3 m+1
Assume that 77 = U 4,+5 +1C1+2j.Let the defining set 7 = U‘Y _a,, C1+2jU

Ty, where 2L8m +2 < 5 < 3m 4 1. If | Ty, ()| = 1 holds for Elm +2 <8<

Im + 2, then according to Lemma 2.3, we only need to demonstrate that for any odd
integers x € Ip U I} and y € [] such that x £ —gy mod 2n.
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Dividing I, into the following == b3 parts

31+3 51 -3

11,,»=[2im+5,2(i+1)m+3],T+5igT,

5l +1

{T+m+5},

50+1 5l+5
I, siq1 = + m+7, + m+3].
2 2
Ifx,y € I;, where 35 < i < 323 'then 2in < i(1> — ym? + 2iml + 2im +

52 Dy 45145 < x +qy G+ D% = Dm? 426 + Dml +2G + DHm +
32 _l)m+3l+3 <23 + Dn.

2 2
Ifx,y €l EER then M —(SIH)(Z D2 4 —Slel + —Slzrlm + —7(127])m +

N+T<x+qy < (51+5)(12 1} 2+Sl+5ml+51+5 Jr3(12—1) +3+3 < 51+5

IfxelpUl j,y € 11 ;, where 3’+3 <j<i<23 then0 <23 +1)ml+4l +
4— 22Dy 31 < 2n — gy(mod 2n) < 2n+2lml+4l SE=D
2n — qy(mod 2n) > x.

IfxelpUl;,ye€l 51+1,Where 315(3 <i< 51— ,then 0 < 51+5ml+51+5—

3Dy — 31 < 2n — gy(mod 2n) 52n+517+1mz+51+1—@m—71 <2n
and 2n — gy(mod 2n) > x.

Finally, note that —q (352 m + 5) = (Bt m 4+ DG+ XHm) = Bm + 1
mod 2n and 2m + 1 ¢ T.

Consequently, we have x # —gy mod 2n for any odd integers x € Ip U I and
y € I1. Hence

m — 5] < 2n and

_ 3143
Tys=TNT q=C3+# {3+T }

which means that | Ty (8) = 1 for 5lm +2 <8 < im +2.
The rest cases can be demonstrated in the same way, we omit them here. O

2
Theorem 4.2 Letn = u where q is an odd prime power of the form g = am + 1,

a="01=1 71 , 1 =3 mod 4, andl is a positive integer. Then there exist EAQMDS codes
with parameters as follows:

=1 ¢>—1 . -1
(D) [t~ = —2d +3,d; 1]l, where 5=—m +2 <d <lm+2;

a

@ L2, 1 24 4 4.d: 20),, where lm +3 < d < 351m +3;

a

S [[(11_—1qu 1_2d+6d4]]qywhere Il +4<d<3Hm+3.

a

2—1

Proof Let g be an odd prime power of the form ¢ = am + [, and a = ——.
2
Consider the negacyclic code C of length n = "a—_l over F > with defining set

T = Uj‘:#mﬂclﬂj’ where H'Sm +l<s< 7l+7m +2.
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By Lemma 4.4, one gets ¢ = |Ty,(8)| = 1if 1 + 2LBm <5 < LBm 41,
¢ = |T@®)| = 2if 2+ 3LPm <5 < LEm 42, and ¢ = |T,5()| = 4if
3+#m§s§ 7QTHm+2.

Since every g2-cyclotomic coset C, = {x} and x is an odd number, we can obtain

that 7" consists of s — %m integers

[+5 [+5
3, — S, 1+2s¢.
{ 2 m + > m + + s}
It implies that C has minimum distance at least s — IZS m + 1. Hence, C is a g>-ary

negacyclic code with parameters [n,n — s + @m >5 — IJQS m+ 1].

Then the theorem is proved by using Theorem 2.1 and the EA-quantum Singleton
bound.
O

Remark 4.2 For the proof of the cases | T;5(8)| = 1, 2, 4, we give Lemma 4.3. Actually,
it is easy to demonstrate that if the defining set 7 = U5, +3m+2C1+2 j» Where 3 +3m +
e

2<s< #m + 1. Then C** C C and there exists a g-ary quantum MDS code with
2
parameters [[‘IT_1 = _1 —2d +2,d]], where2 <d < l“m +1.

Example 4.1 In Table 4, we list some new EAQMDS codes of length qza—_l obtained
from Theorems 4.1 and 4.2, where g is an odd prime power of the form ¢ = am + 1,

2 . . .
a= IT_I, and [ is a positive odd integer.

4.2 Thecaseq = am — |

In this subsection, we assume that g is an odd prime power of the form ¢ = am — [,

where a = 12% Il =1 mod4or/ =3 mod4, and / is a positive integer We

will construct some new classes of g-ary EAQMDS codes of length n = -1 from
negacyclic codes. We first consider the case/ = 1 mod 4 and a useful lemma is given
in the following.

2
Lemma4.5 Letn = qu—_l, where q is an odd prime power of the form q = am — [,
a= ZQT_I, I =1 mod 4, and | is a positive integer. If C is a q*-ary negacyclic code
of length n with defining set

N

-1 3/ -3
= U Ciy2)s Tm<55 1 m —3,

then C+h C C.
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Table 4 New EAQMDS codes of length n = 4 —! anda = lszl
i m qg=am+1 [[n, k, d; cllq d
3 1 7 [[12,15 —2d,d; 1117 3<d<5
[[12, 16 —2d, d; 2117 6<d<7
[[12, 18 —2d, d; 4117 8<d<8
2 11 [[30,33 —2d,d; 11111 4<d<8
[[30,34 —2d,d; 2]111 9<d<1l
[[30,36 —2d,d; 41111 12<d<13
4 19 [[90,93 —2d, d; 1]]19 6<d<14
[[90,94 —2d, d; 2]]19 15<d <19
[[90,96 —2d, d; 41119 20<d <23
5 23 [[132, 135 —2d, d; 1]]23 7<d<17
[[132, 136 — 2d, d; 2]123 18<d <23
[[132, 138 — 2d, d; 41123 24 <d <28
5 1 17 [[24,28 —2d, d; 21117 7<d<10
[[24,30 —2d, d; 41117 11<d<13
2 29 [[70,74 —2d, d; 2]]29 11<d<17
[[70,76 —2d, d; 4]]29 18<d <22
3 41 [[140, 144 — 2d, d; 2]]41 15<d<?24
[[140, 146 — 2d, d; 41141 25 <d <31
4 53 [[234, 238 —2d, d; 2]]53 19 <d <31
[[234, 240 — 2d, d; 4153 32 <d <40
7 1 31 [[40,43 —2d, d; 11131 5<d<9
[[40, 44 —2d, d; 21131 10<d<13
[[40, 46 —2d, d; 41131 4<d<14
3 79 [[260, 263 — 2d, d; 1]]79 11<d <23
[[260, 264 — 2d, d; 2]]79 24 <d <33
[[260, 266 — 2d, d; 41179 34 <d <36

Proof According to Lemma 2.2, one gets that C» C C if and only if there is no
skew-symmetric cyclotomic coset and any two cyclotomic cosets do not form a skew-
asymmetric pair in the defining set 7T'.

Dividing Iy = [ Elp 41,3 3m 5] into the followmg L parts

-1 [+3
1 =|: m+1, + m—3i|,

-1
0,1

2 2
Io; = [2im — 1,23 + )m — 3],

31 -7 31 -3
12172 —m—l,—m—S,
0.53+ 2 2

I4+3 _ ; _ 3l—11
where T <i <
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Suppose that there exist odd integers x, y € Ip suchthat Cy = —qCy,ie.x+qy =
0 mod 2n. Since

2—1 -1 -1
=1 mod4, a= 7 qg=am—1, n:q

m? — 4ml + 4.
a

Ifx,y € I, then Sl < (Glm+ DS tm =14 1) = x +qy = (5

3)(17 —-1+1) < l+3n a contradiction.

If x,y € lo;, where ﬂ <i < 3 then 2in < (2im — )(EEtm — 1+ 1) <
x+qy <[2G+ m — 3](1 ~Lm — 14 1) < 2(i + )n, a contradiction.

Ifx,y € Iy, then 3 3= 7n < & m - = Sm—1+1) < x+gqy <
( —=m — 5)(12_1 —-I+1) < T3n a contradiction.

Ifx €lpj,ye€ Io,,where <] <i< 31—“ ,then 0 < 2(1 + Dml +4@ +
1) 4 3€=D Dm —31 <2n— qy(mod 2n) < 2n —2iml + 4i + Tm —1 < 2n and

2n — y(mod 2n) > x, a contradiction.
Ifx €loiy €l where 1 < i < 321 then0 < (1 — hm — 21 — 3 <

2n—gy(mod 2n) < 2n—3L 7m1+21 744 Tm < 2nand2n—gy(mod 2n) > x,
a contradiction.
Finally, note that

I — 31-3
—q (%m—?)) ETWL—3 mod 2n,

and 32m —3 ¢ T.
Therefore, we can deduce that x + gy % 0 mod 2n for any odd integers x, y € Iy.
Hence, Ct* C C holds.
O

2
Lemma4.6 Letn = £=L where q is an odd prime power of the form q = am — [,
a

_2 . o . .
=1 2_1, [l =1 mod 4, and | is a positive integer.

() For 1 <1i <3, C(z Lin—1)2i+1) is skew-symmetric, and (C71 3 C¥m73)

m—17’
forms a skew-asymmetric pair.

(2)
0, 2=8=<5tm—1;
= ’ 2 u - ,
|Tss(8)] 2, (l_l)m_1§8<3l;3m—3,
3, BPm-2<5<30m -3
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Proof (1) Since (55 m—1)Qi+1) = Qi+ D[Sn+Stmli— (1 -1)- £ SElm+n,
where 1 <i < 3. Then

-1 -1
—q(Tm -DQ2i+1)=Q2i+ 1)(Tm —1) mod 2n.

Hence, for1 <i <3, C(I—lm 1@i+1) is skew-symmetric.

Since q(7l m—"17) = —n + —ml +3 - T)m then
71 -3 31 -7
—g|———m—-7)=——m—3 mod 2n
2 2
Hence, (C7-3 1375 C 31 m—3) forms a skew-asymmetric pair.

(2) According to Lemma 4.5, if the defining set T = US L1, Ci42j, where %m <

s < 32 m — 3, then | Ty (8)| = 0 for2 < 6§ < —m—l Let

[3(1 -1 51 —1
L = ( )m—l, ( )m—7,
| 2 2
[5(—1) 710 —-1)
12:_ 3 m— 3, 3 m—9j|,
I__7(l—1) 571—3» 9
3= B m s 5 m .

3=, 5
Assumethat 7] = Uj 4],1”; Ci42;. Letthe definingset T = U° 5, 1C1+2jU
==t j=3

3(-1)
4

Ty, where m—1<s<>ZDm — 4.1 |T,,(8)] = 1 holds for Flm < 8 <
(I — 1)m — 2, then according to Lemma 2.3, we only need to prove that for any odd
integers x € [pU [j and y € [ such that x £ —qy mod 2n.

Dividing /; into the followmg L parts

3A-1) 31+ 1
11’3543—|: 5 m—l,Tm—S],

I =[2im—3,2(i + Dm — 5],

Lo _[sl=o si=s
e A T

31+1 . 5113
= <1 5—4 .

where
Ifx,y € 11’31_3, then Mn < (@m — 1)(127_1171 —I+1) <x+4+gqy <
(Lt m —5)(12—1 41y < iy,
Ifx,y € s, where 3L < i < 3513 then 2in < Q2im — 3)(5tm — 1+ 1)
x+qy <[2G+ m — 5](1 tm —1+ 1) < 2(i + Dn.

IA
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Ifxyelszg,then n<(519 —3)(127_1m—l+1)§x+qy§

(5m —7)(% —z+1)<M

Ifx€lo.y €l us then0 < 3l — 21+ 1+ 25D m < 2n — gy(mod

2n) < 2n — 343 l+l’]m+21 3<2nand2n—qy(m0d2n)>x.
Ifx € lpUl a3,y € Iy, where AL < i <38 then 0 < —2(i + Dml +

4(z+1)+5“ _l)m 51 < 2n—qy(mod 2n) < 2n—2iml +4i + 3C=1 m—31 < 2n
and 2n — qy(mod 2n) > x.
2
Ifx € Ul y € 1) so, where 3322 < i < %50 then0 < 2-2=tm—21 -5 <

2n—gy(mod 2n) < 2n— 312 ml+21 -9+ @m < 2nand2n—gy(mod 2n) >
X.

Consequently, we have x % —qgy mod 2n for any odd integers x € Ip U I; and
y € I1. Hence,

—q 31-3
T =TNT =C312—3m_3= Tm—3 ,
which means that |7, (8)| = 1 for %m <é<(—-1Dm-2.
The remaining cases can be proved in the same way, we omit them here.
]

2
Theorem 4.3 Letn = u where q is an odd prime power of the form g = am — I,

== _1 , =1 mod 4 and l is a positive integer. Then there exist EAQMDS codes
wzth parameters as follows:

?—1 ¢*—1 . -1 .

D II et —2d + 3,d; 111, where —-m <d<((-1m-—2;

@) ML=, £ 24 4 4, d; 2]),, where (1 — ym — 1 <d < 23m — 3;
2

@) (L=, £ 24 45, d: 31),, where 353m —2 < d < 35im — 3,

a

Proof Let g be an odd prime power of the form ¢ = am — [, a = lle Consider the

2
negacyclic code C of length n = qa—71 over I > with defining set 7' = Uj i mC 1425

—1
where L T

By Lemma 4.6, one obtains thatc = |Ty5(8)| = 11if #m—Z <s < #m—é
¢ = Tu® = 2if X0m -3 <5 < X0 5 and ¢ = |T55(8)| = 3 if
7(1;1)m 4<s< 7143 _s.

Since every g>—cyclotomic coset C;, = {x} and x is an odd number, we can obtain
that T consists of s — 5 1m + 1 integers

Ll <s < 13, =5,

L S R 1+2
2m , 2m Lo, St

It implies that C has minimum distance at least s — ITTlm + 2. Hence, C is a g>-ary

negacyclic code with parameters [n,n — s + %m —1,>s5— %m + 2].
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Then the theorem is proved by using Theorem 2.1 and the EA-quantum Singleton
bound.
O
Remark 4.3 According to Lemma 4.6 and Theorem 2.1, there exists a g-ary quantum
MDS code with parameters [[ —1 = _1 —2d +2,d]], where2 <d < I_Tlm —1.

Remark4 4 Let/ =5in Theorems 4, 1 and 4.3, we obtain some EAQMDS codes of

length 4 12 , where ¢ = 12m 4 5. Actually, EAQMDS codes of length < 5 ! under
the case ¢ = 12m + 5 had been already studied in [30]. Later, [19] improved their
results. It is easy to see that our results coincide with the results in [19] under the case
q = 12m + 5. However, our results are more general. We give Table 5 to indicate this
comparison.

Now we consider the case / = 3 mod 4 and a useful lemma is given in the follow-
ing.
2
Lemma4.7 Letn = u where q is an odd prime power of theform qg =am —1,
a="0Cx1 _1 , 1 =3 mod 4 and 1 is a positive integer. If C is a q>-ary negacyclic code
of length n with defining set

N

-3 51 -3
U Cit2j, —m§s§ Tm—4,
13

then C+h C C.

Proof According to Lemma 2.2, one obtains that C+n C Cif and only if there is
no skew-symmetric cyclotomic coset and any two cyclotomic cosets do not form a
skew-asymmetric pair in the defining set 7'.

Suppose that there exist odd integers x, y € Iy, suchthat Cy = —qCy,i.e. x+qy =
0 mod 2n.

Dividing Iy = [%m +1, %m — 7] into the following [ parts

P U SR £ B
0’%— 2m+»2m_ )

Ip; =[2im —1,2( + 1)m — 3],

3 -5 3l —1
10’317_5 = |:—2 m—l,—2 m—5i|,
lo,j =1[2jm —3,2(j + D)m = 5],

51 —17 51 —3
105177 =|—m-3,—m-—-17],
s

2 2

I+1 _ . _ 319 3I— . - .
Where4 SIS T, 5 5]5 7 . Since

2—1 g>—-1 1?-1

qgq=am—1, a= > [=3 mod4, n= m? —2ml + 2.
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Ifx,ye[og,thenﬂn< (l m+1)(l _1m—l—+—1)<x—i—qy<(lJrl
3)(12;1 —-1+1) < I'Hn a contradiction.

If x,y € lo;, where 1 < i < 32 ‘then 2in < (2im — l)(l m—1+1
x+qy <[2( 4+ )m — 3](1 L —l+ 1) < 2(i 4+ 1)n, a contradiction.

If x,y € I, ws,then 3 5n < (31 5m—l)(um—l—i—l) < x+4+gqy <

IA

( — 5)(’ Lm—1 + 1) < n a contradiction.

Ifx y € Io,j, where 2 < j < M ,then 2jn < (2jm — 3)(’ m—1+1)
x+qy <[2(j+1Dm — 5](1 “Lm —1+1) <2(j + )n, a contradiction.

If x,y € Iy sz, then %n < 5Im =3 Eftm —14+1) < x+qy <

IA

(¥m—7)(127_1 —1+1) < 2=3n, a contradiction.
Ifx € Ik, y € I(),,whereT3 <k<ic< M ,then 0 < —2(i + )yml + 4i +
44 3D ~Uim — 31 < 2n — gy(mod 2n) < 2n — 2iml + 4i + Z5m — 1 < 2n and

2n — qy(mod 2n) > x, a contradiction.
Ifx € fog, y € I s, where 122 < k = 322, then 0 < WALy 0] — 1 <

2n — gy(mod 2n) < 2n — %m 4+ 2l —5 < 2n and 2n — gy(mod 2n) > x, a
contradiction.

If x € Iox, yeloj,where% <k<j,b <j= M ,then 0 < —=2(j +
1)ml+4]+4+5(l D51 < 2n— —gy(mod 2n) <2n— 2]ml+4]+3(1 —1)
2n and 2n — qy(mod 2n) > x,a contradlctlon

Ifx € log.y € Iy ss. where 152 < k < 351 then 0 < WT 0] -3 <

m—3l <

2n — gy(mod 2n) < 2n — %m 42l —7 < 2n and 2n — gy(mod 2n) > x, a
contradiction.
Inconclusion, we candeduce thatx4-gy # 0 mod 2n for any odd integers x, y € Ij.
Hence, C1t* C C holds.
]

2
Lemma 4 8 Letn = u where q is an odd prime power of the form g = am — I,
a= 12 , I =3 mod 4 and l is a positive integer.

() For 1 < i < 3 (C(2i+1)é—2i—3m_(2i+l), C(2i+3)é—2i—1m_(2[+3)) forms a skew-
asymmeltric pair.

@)

=)

, 2<é6<Ilm-2;
|Tss(8)| =12, Im—1 <8<E —3;
3l lm 2<5<(21_1)m 4.

N
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Proof (1) Since [ @213y — (2i + 1)] = Q23 4 QD23
(2i +3) — QD where | < i < 3. Then

i+3) —2i—1
—_—m

5 — (2i4+3) mod 2n.

|:(2i+1)l—2i—3
B T

— (2i+1)i| =

Hence, for 1 < i < 3, (C(2i+1)£—2i—3m_(2i+1), C(2i+3)l2—2i—1m_(2i+3)) forms a skew-
asymmetric pair.
(2) According to Lemma 4.7, if the defining set 7 = U‘;_HmCsz, where %m <
=%
s < 23 m — 4, then CH# C C. Hence, | Ty, (8)| = 0 for2 <8 < Im — 2. Let

51-3 71 -5 -5 9 -7
L = m—3, m—-9|,L=——m—-5 ——m—11].
2 2 2 2

-3

Suppose that 77 = U 4,”; C142j. Let the defining set 7 = UY _si3,, 2C1+2j U
T m =Tm=

I —2 <5 < 3m — 5.1 | Tys (8)] = 2holdsf0rlm—1 <8<

=—m — 3, then according to Lemma 2.3, we only need to demonstrate that for any

odd integersx € [pU 1 and y € 11,x % —qy mod 2n.

Dividing /; into the followmg parts

51 -3 51+1
115;_3=|:—m—3,—+m—7j|,

Ty, where
31 1

g 2 2
L =12im—52@G+ 1)m—17],

1 -9 71 -5
N LEU E

51+1 71713

where <i<
If x,y € I, 513,then $3p <« B - H(EEm -+ 1) < x4gy <
(Hm —7)(17‘1 —l+1)<5’2in.
Ifx,y € Iy;, where 550 <i < 7213 "Then 2in < i(1* — 1)m? — 2iml + 2im
52 Dy 451 -5 < x+qy < G+ DU = Dm? = 2G + Dml + 2 + Dm

—7(12 m+T7—7 <2+ 1)n.
2
7[—9 < (71—9m 5)([ 2—1

Ifx,yellng,then m—I1+1) < x+gqy <
= m — 921 —1m—l+1)<—n
Ifxelo,yeIl¥,then0<—5”1ml 20+ 14 1Dy < 21 — gy(mod

2n) < 2n — %ml +21 -3+ @m < 2n. and 2n —qy(mod 2n) > x.

fx el ss.yeli where 255 < i < 7213 then 0 < —2(i+1)ml+4i+
44 1C=D D — 71 < 2n — gy(mod 2n) < 2n — 2iml + 4i + 5D — 51 < 2n.
and2n—qy(mod 2n) > x.
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IfxeloUly el ns, where 32 <i < 758 then 0 < —H32ml +71 —

5+@m—9l <2n—gy(mod 2n) < 2n— 1= 9ml—i—7l 9—1—5(1 _1)m—51 <2n
and 2n — gy(mod 2n) > x.

Consequently, we have x #% —qgy mod 2n for any odd integers x € Ip U I; and
y € I1. Hence, we have

T =TNT 1= C%zs UC%m—S’

which implies that |7y (8)] = 2 for Im — 1 < § < 3-tm — 3.
The remaining case can be proved in the same way, we omit it here.

2
Theorem 4.4 Letn = u where q is an odd prime power of the form g = am — I,

a=01 _l , 1 =3 mod 4, and l is a positive integer. Then there exist EAQMDS codes
with pammeters as follows:

(1 [ ¢
@) £ ¢

2_1

—2d +4,d; 2]y, wherelm — 1 <d < 3m —3;
—2d +6,d; 411, where Tm—2§d§ @2l —1)ym — 4.

2_1

a

Proof Let g be an odd prime power of the form g = am — [, a = 12% Consider the

negacyclic code C of length n = qza—_l over IF 2> with defining set 7' = Uj_z 3 mC 142

7
where ZTT3m <s < 9 7m 6.

By Lemma 4.8, we have c=|Tu@®| =2if L2m -3 <5 < 2m — 5 and
=T =4if LPm —4 <5 < LTm —6.

Since every g2-cyclotomic coset C;y = {x} and x is an odd number, we can obtain
that T consists of s — .5 3m + 1 integers

[-3 -3
{Tm+l,7m+3,~-~ ,1+2s}.
It implies that C has minimum distance at least s — l;m + 2. Hence, C is a g>-ary
negacyclic code with parameters [, n — s +8m—1,>s5- l—m + 2].
Then the theorem holds due to Theorem 2.1 and the EA- quantum Singleton bound.
O

Remark 4.5 According to Lemma 4.8 and Theorem 2.1, there exists a g-ary quantum
—L —2d+2,d)], where2 <d <Im —2.

MDS code with parameters [[#, 4

Remark 4.6 EAQMDS codes of length an_l under the case ¢ = 4m + 3 had been
already studied in [28]. Later, [39] improved their results. Plugging / = 3 into The-

2
orems 4.2 and 4.4, we also obtain some EAQMDS codes of length %, where
g = 4m £ 3. One can see that our results sometimes are not as good as theirs under

@ Springer



Page330f37 318

Some new families of entanglement-assisted quantum MDS codes ...

v+ uws>p >+ wg

CHuwp>p>¢c+uw

PHwe>p>p+ wp

CHuwp>p> ¢+ g

p—wg>p>7—uy
E—up>p>|—ug
CHuwg>p>y+uy
CHuwp>p> ¢+ g
THuwg>p>g+uw

by p o+ pr— L5 L511
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2_ 2
Table 7 New EAQMDS codes of length n = 4 ! with a = 1771

a

i m qg=am—1 [[n, k, d;cllq d
3 3 9 [[20,24 — 2d, d; 2]]9 8§8<d<9
[[20,26 —2d, d; 4]]9 10<d <11
4 13 [[42,46 —2d, d; 21113 11<d <13
[[42,48 —2d, d; 41113 14<d <16
5 17 [[72,76 — 2d, d: 21117 l4<d=<17
[[72,78 —2d, d; 41117 18 <d <21
7 25 [[156, 160 — 2d, d; 2]]»5 20<d <25
[[156,162 — 2d, d; 4]]25 26 <d <31
5 2 19 [[30,33 —2d,d; 11119 4<d<6
[130, 34 — 2d, d: 21110 7<d<9
[[30,35 —2d, d; 31119 10<d <11
3 31 [[80, 83 —2d, d; 11131 6<d<10
[[80, 84 — 2d, d; 2]]31 11<d<15
[[80, 85 —2d, d; 31131 16 <d <18
4 43 [[154,157 — 2d,d; 1]]43 8§<d<14
[[154, 158 — 2d, d: 21143 15<d <2l
[[154,159 — 2d, d; 31143 2 <d<25
6 67 [[374,377 — 2d, d; 11]e7 12<d <22
[[374, 378 — 2d, d; 211¢7 PB<d<3
[[374,379 — 2d, d; 31le7 34 <d <39
7 2 41 [[70, 74 — 2d, d: 2114, 13<d=<17
[[70, 76 — 2d, d: 4]la; 18<d=<22
4 89 [[330,334 — 2d, d; 2]lg9 27 <d <37
[[330,336 — 2d, d; 4]lg9 38 <d <48

2_ . .
the case ¢ = 4m + 3. However, EAQMDS codes of length % are just a special case
of our results. Hence, our results are more general. We give Table 6 to indicate this
comparison.

Example 4.2 In Table 7, we list some new EAQMDS codes of length (Iza;] obtained

from Theorems 4.3 and 4.4, where ¢ is an odd prime power of the form ¢ = am — [,

121 . .- .
a = ——, and [ is a positive odd integer.

5 Conclusion

In this paper, EAQMDS codes of length qza—_l witha = > —1landa = IZT_l have been
constructed from negacyclic codes by exploiting less pre-shared maximally entangled

2
states. Actually, EAQMDS codes of length qa—_l with a either divides ¢ + 1 or divides
g — 1 had been already constructed (See [9, 37] and the relevant references therein).
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However, our a either divides g 4/ or divides ¢ —/ and / > 1 is an odd integer. Hence,
EAQMDS codes obtained in this paper are new in the sense that their parameters are
not covered by the codes available in the literature, except EAQMDS codes of lengths

g1 ¢’~1 ;
*+— and 15— under some special cases.
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