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Abstract
In this paper, we present some monogamy relations of multiqubit quantum entan-
glement in terms of the βth power of concurrence, entanglement of formation and
convex-roof extended negativity. These monogamy relations are proved to be tighter
than the existing ones, together with detailed examples showing the tightness.

Keywords Monogamy relations · Concurrence · Entanglement of formation ·
Convex-roof extended negativity

1 Introduction

Quantum entanglement is widely used as a very important resource in quantum infor-
mation processing [1–4].With the emergence of quantum information theory, quantum
entanglement plays a very important role in quantum cryptography, quantum telepor-
tation and measurement-based quantum computing. An important issue related to
the entanglement metric is the limited shareability of the two-part entanglement in
a multipartite entangled qubit system, that is, the single duality of entanglement [5].
Monogamy of entanglement (MoE) plays a very important role in many quantum
information and communication processing tasks, such as security proof of quantum
cryptography schemes and security analysis of quantum key distribution [6, 7].

For a tripartite quantum state ρABC , MoE can be described as E(ρA|BC ) ≥
E(ρAB) + E(ρAC ), where ρAB = trC (ρABC ), ρAC = trB(ρABC ), E(ρA|BC ) denotes
the entanglement between systems A and BC. A remarkable result was established
by Coffman, Kundu and Wootters (CKW) [8] for three qubits that was the simulta-
neous squares satisfy monogamy inequality. Then, the so-called CKW inequality was
generalized to any N -qubit system [9]. Interestingly, it is further proved that similar

B Yanmin Yang
ym.yang@kust.edu.cn

1 Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China

2 School of Computer Science and Technology, Dongguan University of Technology, Dongguan
523808, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-022-03573-y&domain=pdf
http://orcid.org/0000-0002-3159-0133


224 Page 2 of 14 Y. Gu et al.

inequalities of polyqubit monogamy can be established for negativity and convex-roof
extended negativity (CREN) [10–12], the entanglement of formation (EoF) [13, 14],
Rényi-α entanglement [15, 16] and Tsallis-q entanglement [17].

Our paper is organized as follows. In Sect. 2, we present and prove two monogamy
inequalities for the βth (β ≥ 2) power of concurrence in N -qubit system. In Sect. 3, we
give a tighter monogamy relation for the βth (β ≥ √

2) power of EoF in 2⊗2⊗2N−2

system. Then, we extend the result to N -qubit system. In Sect. 4, the monogamy
relation for theβth (β ≥ 2) power ofCREN in N -qubit system is discussed. In addition,
detailed examples are given to illustrate the tightness. In Sect. 5, we summarize our
results.

2 Tighter monogamy relations using concurrence

Given a bipartite pure state |φ〉AB onHilbert space HA ⊗ HB , the concurrence is given
by [18–20]

C(|φ〉AB) =
√
2(1 − Tr(ρ2

A)), (1)

where ρA is the reduced density matrix by tracing over the subsystem B, ρA =
TrB(|φ〉AB〈φ|). For a bipartite mixed state ρAB , the concurrence is defined by the
convex-roof,

C(ρAB) = min{pi ,|φi 〉}
∑
i

piC(|φi 〉AB), (2)

where the minimum is taken over all possible pure state decompositions of ρAB =∑
i pi |φi 〉〈φi |, with ∑

i pi = 1 and pi ≥ 0.
For any N-qubit mixed state ρAB1···BN−1 , the concurrence C(ρA|B1···BN−1) of the

state ρAB1···BN−1 under bipartite partition A and B1 · · · BN−1 satisfies [21]

Cβ(ρA|B1···BN−1) ≥ Cβ(ρAB1) + Cβ(ρAB2) + · · · + Cβ(ρABN−1), (3)

for β ≥ 2. Furthermore, for an N-qubit mixed state, if CABi ≥ CA|Bi+1···BN−1 for
i = 1, 2, . . . ,m, andCABj ≤ CA|Bj+1···BN−1 for j = m + 1, . . . , N − 2, a generalized
monogamy relation for β ≥ 2 was presented as [22]:

Cβ(ρA|B1···BN−1)

≥ Cβ(ρAB1) + (2
β
2 − 1)Cβ(ρAB2) + · · · + (

2
β
2 − 1)m−1Cβ(ρABm )

+(
2

β
2 − 1)m+1[Cβ(ρABm+1) + · · · + Cβ(ρABN−2)] + (

2
β
2 − 1)mCβ(ρABN−1),

(4)
where 1 ≤ m ≤ N − 3, N ≥ 4.

In the following, we will show that these monogamy relations for concurrence can
be further tightened under some conditions. Before that, we first introduce two lemmas
as follows.
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Lemma 1 For any x ∈ [0, 1] and t ≥ 1, we have

(1 + x)t ≥ 1 + t

2
x + (t − 1)2

4
x2 + (2t − t

2
+ (t − 1)2

4
− 1)xt − (t − 1)2

2
xt+1

≥ 1 + t

2
x + (2t − t

2
− 1)xt ≥ 1 + (2t − 1)xt . (5)

Proof Let us consider the function f (t, x) = (1+x)t−1− t
2 x− (t−1)2

4 x2+ (t−1)2
2 xt+1

xt . Then,

∂ f (t,x)
∂x = t x t−1[1+ t−1

2 x+ (t−1)2(t−2)
4t x2+ (t−1)2

2t x t+1−(1+x)t−1]
x2t

. Next, we will prove that

1 + t − 1

2
x + (t − 1)2(t − 2)

4t
x2 + (t − 1)2

2t
x t+1 ≤ (1 + x)t−1, (6)

thus ∂ f (t,x)
∂x ≤ 0, f (t, x) is a decreasing function of x , i.e., f (t, x) ≥ f (t, 1) =

2t − t
2 + (t−1)2

4 −1. It follows that (1+ x)t ≥ 1+ t
2 x + (t−1)2

4 x2 + (2t − t
2 + (t−1)2

4 −
1)xt − (t−1)2

2 xt+1.

For the case 1 ≤ t ≤ 2, it is obvious that (1+ x)t−1 ≥ 1+ (t − 1)x + (t−1)(t−2)
2 x2.

Besides, we have

(t − 1)(t − 2)

2
x2 = t − 1

4t
2t(t − 2)x2

= t − 1

4t
[(t − 1)(t − 2)x2 + (t2 + t − 2)x2 − 2t x2]

≥ t − 1

4t
[(t − 1)(t − 2)x2 + (2t − 2)xt+1 − 2t x].

Thus, Eq. (6) is hold.
For the case t ≥ 2, it is obvious that (1 + x)t−1 ≥ 1 + (t − 1)x + (t−1)(t−2)

4 x2.
Besides, we have

(t − 1)(t − 2)

4
x2 = t − 1

4t
t(t − 2)x2 = t − 1

4t
[(t − 1)(t − 2)x2 + (2t − 2)x2 − t x2]

≥ t − 1

4t
[(t − 1)(t − 2)x2 + 2(t − 1)xt+1 − 2t x].

Thus, Eq. (6) is hold.

On the other hand, since x2 − 2xt+1 + xt ≥ 0 and (t−1)2

4 ≥ 0, for t ≥ 1 and

x ∈ [0, 1], we can get (1 + x)t ≥ 1 + t
2 x + (t−1)2

4 x2 + (2t − t
2 + (t−1)2

4 − 1)xt −
(t−1)2

2 xt+1 ≥ 1 + t
2 x + (2t − t

2 − 1)xt ≥ 1 + (2t − 1)xt . 	

Lemma 2 For any mixed state ρABC in a 2 ⊗ 2 ⊗ 2N−2 system, suppose that CAB ≥
CAC, we have

Cβ
A|BC ≥ Cβ

AB + hCβ
AC + β

4
C2

AC

(
Cβ−2

AB − Cβ−2
AC

)
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+ (β − 2)2

16
C4

AC

(
Cβ−4

AB + Cβ−4
AC − 2Cβ−2

AC C−2
AB

)
, (7)

for all β ≥ 2, where h = 2
β
2 −1, CA|BC = C(ρA|BC ), analogously for CAB and CAC .

Proof Since CAB ≥ CAC , we obtain

Cβ
A|BC ≥ (C2

AB + C2
AC )

β
2 = Cβ

AB

(
1 + C2

AC

C2
AB

) β
2

≥ Cβ
AB

[
1 + β

4

C2
AC

C2
AB

+ (β − 2)2

16

C4
AC

C4
AB

+
(
2

β
2 − β

4
+ (β − 2)2

16
− 1

)
Cβ

AC

Cβ
AB

− (β − 2)2

8

Cβ+2
AC

Cβ+2
AB

]

= Cβ
AB + hCβ

AC + β

4
C2

AC

(
Cβ−2

AB − Cβ−2
AC

)

+ (β − 2)2

16
C4

AC

(
Cβ−4

AB + Cβ−4
AC − 2Cβ−2

AC C−2
AB

)
, (8)

where the first inequality is due to the fact that C2
A|BC ≥ C2

AB +C2
AC for any 2⊗ 2⊗

2N−2 tripartite state ρA|BC [9, 23] and the second inequality is due to Lemma 1. 	

Theorem 1 For any N-qubit mixed state ρAB1···BN−1 , if CABi ≥ CA|Bi+1···BN−1 , for
i = 1, 2, . . . , N − 2, we have

Cβ
A|B1···BN−1

≥
N−2∑
i=1

hi−1
(
Cβ

ABi
+ PABi

)
+ hN−2Cβ

ABN−1
, (9)

for all N ≥ 3, β ≥ 2, where h = 2
β
2 − 1, PABi = β

4C
2
A|Bi+1···BN−1

(Cβ−2
ABi

−
Cβ−2

A|Bi+1···BN−1
)+ (β−2)2

16 C4
A|Bi+1···BN−1

(Cβ−4
ABi

+Cβ−4
A|Bi+1···BN−1

−2Cβ−2
A|Bi+1···BN−1

C−2
ABi

).

Proof Due to Eq. (7), we obtain

Cβ
A|B1···BN−1

≥ Cβ
AB1

+ hCβ
A|B2···BN−1

+ β

4
C2

A|B2···BN−1

(
Cβ−2

AB1
− Cβ−2

A|B2···BN−1

)

+ (β − 2)2

16
C4

A|B2···BN−1

(
Cβ−4

AB1
+ Cβ−4

A|B2···BN−1
− 2Cβ−2

A|B2···BN−1
C−2

AB1

)

≥ Cβ
AB1

+ h

[
Cβ

AB2
+ hCβ

A|B3···BN−1
+ β

4
C2

A|B3···BN−1
(Cβ−2

AB2
− Cβ−2

A|B3···BN−1
)

+ (β − 2)2

16
C4

A|B3···BN−1

(
Cβ−4

AB2
+ Cβ−4

A|B3···BN−1
− 2Cβ−2

A|B3···BN−1
C−2

AB2

)]
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+β

4
C2

A|B2···BN−1

(
Cβ−2

AB1
− Cβ−2

A|B2···BN−1

)

+ (β − 2)2

16
C4

A|B2···BN−1

(
Cβ−4

AB1
+ Cβ−4

A|B2···BN−1
− 2Cβ−2

A|B2···BN−1
C−2

AB1

)

≥ · · ·
≥ Cβ

AB1
+ hCβ

AB2
+ · · · + hN−2Cβ

ABN−1
+hN−3

[
β

4
C2

ABN−1

(
Cβ−2

ABN−2
−Cβ−2

ABN−1

)

+ (β − 2)2

16
C4

ABN−1

(
Cβ−4

ABN−2
+ Cβ−4

ABN−1
− 2Cβ−2

ABN−1
C−2

ABN−2

)]

+ · · · + h

[
β

4
C2

A|B3···BN−1

(
Cβ−2

AB2
− Cβ−2

A|B3···BN−1

)

+ (β − 2)2

16
C4

A|B3···BN−1

(
Cβ−4

AB2
+ Cβ−4

A|B3···BN−1
− 2Cβ−2

A|B3···BN−1
C−2

AB2

)]

+β

4
C2

A|B2···BN−1

(
Cβ−2

AB1
− Cβ−2

A|B2···BN−1

)

+ (β − 2)2

16
C4

A|B2···BN−1

(
Cβ−4

AB1
+ Cβ−4

A|B2···BN−1
− 2Cβ−2

A|B2···BN−1
C−2

AB1

)
. (10)

By the denotation of PABi , we complete the proof. 	

Theorem 2 For any N-qubit mixed state ρAB1···BN−1 , if CABi ≥ CA|Bi+1···BN−1 for i =
1, 2, . . . ,m, and CABj ≤ CA|Bj+1···BN−1 for j = m+1, . . . , N −2, ∀ 1 ≤ m ≤ N −3,
we have

Cβ
A|B1···BN−1

≥
m∑
i=1

hi−1
(
Cβ

ABi
+ PABi

)

+hm
N−2∑

j=m+1

(
hCβ

ABj
+ P1

ABj

)
+ hmCβ

ABN−1
, (11)

for all N ≥ 4, β ≥ 2, where h = 2
β
2 − 1, PABi = β

4C
2
A|Bi+1···BN−1

(Cβ−2
ABi

−
Cβ−2

A|Bi+1···BN−1
)+ (β−2)2

16 C4
A|Bi+1···BN−1

(Cβ−4
ABi

+Cβ−4
A|Bi+1···BN−1

−2Cβ−2
A|Bi+1···BN−1

C−2
ABi

),

P1
ABj

= β
4C

2
ABj

(Cβ−2
A|Bj+1···BN−1

− Cβ−2
ABj

) + (β−2)2

16 C4
ABj

(Cβ−4
A|Bj+1···BN−1

+ Cβ−4
ABj

−
2Cβ−2

ABj
C−2

A|Bj+1···BN−1
).

Proof Due to the proof process of Theorem 1, we can get that

Cβ
A|B1···BN−1

≥
m∑
i=1

hi−1
(
Cβ

ABi
+ PABi

)
+ hmCβ

A|Bm+1···BN−1
. (12)

In addition, since CABj ≤ CA|Bj+1···BN−1 for j = m + 1, . . . , N − 2, hence

Cβ
A|Bm+1···BN−1
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≥ Cβ
A|Bm+2···BN−1

+ hCβ
ABm+1

+ β

4
C2

ABm+1

(
Cβ−2

A|Bm+2···BN−1
− Cβ−2

ABm+1

)

+ (β − 2)2

16
C4

ABm+1

(
Cβ−4

A|Bm+2···BN−1
+ Cβ−4

ABm+1
− 2Cβ−2

ABm+1
C−2

A|Bm+2···BN−1

)

≥
N−2∑

j=m+1

(
hCβ

ABj
+ P1

ABj

)
+ Cβ

ABN−1
. (13)

Combing Eqs. (12) and (13), we can get the inequality (11). 	

Example 1 Consider the three-qubit state |ψ〉ABC in generalized Schmidt decomposi-
tion form [25, 26]:

|ψ〉ABC = λ0|000〉 + λ1e
iϕ |100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉, (14)

where λi ≥ 0, i = 0, 1, 2, 3, 4, and
4∑

i=0
λ2i = 1. A direct calculation shows that

CA|BC = 2λ0
√

λ22 + λ23 + λ24, CAB = 2λ0λ2 and CAC = 2λ0λ3.

Set λ0 =
√
2
3 , λ1 = 0, λ2 =

√
5
3 , λ3 =

√
2
3 , λ4 = 0. We have CA|BC =

2
√
14
9 , CAB = 2

√
10
9 and CAC = 4

9 . Then, Cβ
A|BC = ( 2

√
14
9 )β ≥ Cβ

AB +
hCβ

AC + β
4C

2
AC (Cβ−2

AB − Cβ−2
AC ) + (β−2)2

16 C4
AC (Cβ−4

AB + Cβ−4
AC − 2Cβ−2

AC C−2
AB) =

( 2
√
10
9 )β +h( 49 )

β + β
4 ( 49 )

2
[
( 2

√
10
9 )β−2−( 49 )

β−2
]
+ (β−2)2

16 ( 49 )
4
[
( 2

√
10
9 )β−4+( 49 )

β−4−
2( 49 )

β−2( 2
√
10
9 )−2

]
. However, the result in [24] is Cβ

AB + hCβ
AC + β

4C
2
AC (Cβ−2

AB −
Cβ−2

AC ) = ( 2
√
10
9 )β + h( 49 )

β + β
4 ( 49 )

2
[
( 2

√
10
9 )β−2 − ( 49 )

β−2
]
. We can see that our

results are better than the ones in [24] for β ≥ 2, see Fig. 1.

3 Tighter monogamy relations using EoF

Let HA and HB be two Hilbert spaces with dimensionm and n (m ≤ n). The entangle-
ment of formation (EoF) of a pure state |φ〉AB on Hilbert space HA ⊗ HB , is defined
as [27, 28]

E(|φ〉AB) = S(ρA) = −Tr(ρA log2 ρA), (15)

where S(ρ) = −Tr(ρ log2 ρ) and ρA = TrB(|φ〉AB〈φ|). For a bipartite mixed state
|φ〉AB on Hilbert space HA ⊗ HB , the EoF is given by

E(ρAB) = inf{pi ,|φi 〉}
∑
i

pi E(|φi 〉), (16)

where the infimum is taken over all possible pure state decompositions of ρAB .
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C

Fig. 1 Dash dotted line, Cβ
A|BC as a function of β (2 ≤ β ≤ 10); solid line, the lower bound of Cβ

A|BC
as a function of β (2 ≤ β ≤ 10) in Eq. (11); dash line, the lower bound of Cβ

A|BC as a function of β

(2 ≤ β ≤ 10) in [24]

Let g(x) = H
( 1+√

1−x
2

)
and H(x) = −x log2 x−(1− x) log2(1− x), it is obvious

that g(x) is a monotonically increasing function for 0 ≤ x ≤ 1, and satisfies

g
√
2(x2 + y2) ≥ g

√
2(x2) + g

√
2(y2), (17)

where g
√
2(x2 + y2) = [g(x2 + y2)]

√
2.

From Eqs. (15) and (16), we have E(|φ〉) = g(C2(|φ〉)) for 2 ⊗ d (d ≥ 2) pure
state |φ〉. And E(ρ) = g(C2(ρ)) for arbitrary two-qubit mixed state ρ [29].

Wootters [8] shows that the EoF does not satisfy the monogamy inequality EAB +
EAC ≤ EA|BC . In [30], the authors shows that EoF is a monotonic function satisfying
E2(C2

A|B1B2···BN−1
) ≥ E2 ∑N−1

i=1 (C2
ABi

). For N -qubit systems, one has [21]

Eβ
A|B1B2···BN−1

≥ Eβ
AB1

+ Eβ
AB2

+ · · · + Eβ
ABN−1

, (18)

for β ≥ √
2, where EA|B1B2···BN−1 is the EoF of ρ under bipartite partition

A|B1B2 · · · BN−1, EABi is the EoF of themixed state ρABi = TrB1···Bi−1,Bi+1···BN−1(ρ)

for i = 1, 2, . . . , N − 1.

Lemma 3 For anymixed stateρABC in a 2⊗2⊗2N−2 system,β ≥ √
2, if CAB ≥ CAC,

then we have

Eβ
A|BC ≥ Eβ

AB + hEβ
AC + t

2
E

√
2

AC

(
Eβ−√

2
AB − Eβ−√

2
AC

)
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+ (t − 1)2

4
E2

√
2

AC

(
Eβ−2

√
2

AB + Eβ−2
√
2

AC − 2Eβ−√
2

AC E−√
2

AB

)
, (19)

where t = β√
2
, h = 2t − 1.

Proof The proof is similar to the proof of Lemma 2. 	

In fact, the result can be generalized to N -qubit mixed state ρAB1···BN−1 . The fol-

lowing theorem holds for ρAB1···BN−1 .

Theorem 3 For any N-qubit mixed state ρAB1···BN−1 , if CABi ≥ CA|Bi+1···BN−1 for
i = 1, 2, . . . , N − 2, we have

Eβ
A|B1···BN−1

≥
N−2∑
i=1

hi−1
(
Eβ
ABi

+ QABi

)
+ hN−2Eβ

ABN−1
, (20)

for β ≥ √
2, where h = 2t − 1, t = β√

2
, QABi = t

2 (E
√
2

ABi+1
+ · · · +

E
√
2

ABN−1
)(Eβ−√

2
ABi

−Eβ−√
2

A|Bi+1···BN−1
)+ (t−1)2

4 (E2
√
2

ABi+1
+· · ·+E2

√
2

ABN−1
)[Eβ−2

√
2

ABi
+· · ·+

Eβ−2
√
2

ABN−1
− 2(Eβ−√

2
A|Bi+1···BN−1

)E−√
2

ABi
].

Proof Let ρ = ∑
i pi |ψi 〉〈ψi | ∈ HA⊗HB1 ⊗· · · HBN−1 be the optimal decomposition

of EA|B1B2···BN−1(ρ) for the N -qubit mixed state ρ, we have [22]

EA|B1B2···BN−1 ≥ g
(
C2

A|B1B2···BN−1

)
. (21)

In addition, for β ≥ √
2, we have

gβ(x2 + y2) =
[
g

√
2(x2 + y2)

]t ≥
[
g

√
2(x2) + g

√
2(y2)

]t

≥ gβ(x2) + (2t − 1)gβ(y2) + t

2
g

√
2(y2)

[
gβ−√

2(x2) − gβ−√
2(y2)

]
+ (t − 1)2

4
g2

√
2(y2)

[
gβ−2

√
2(x2) + gβ−2

√
2(y2) − 2gβ−√

2(y2)g−√
2(x2)

]
, (22)

where the first inequality is due to Eq. (17), and without loss of generality, we can
assume x2 ≥ y2, then the second inequality is obtained from the monotonicity of g(x)
and Eq. (5).

Thus, combining Eqs. (21) and (22), we obtain

Eβ
A|B1B2···BN−1

≥ gβ
(
C2

AB1 + C2
AB2 + · · · + C2

ABN−1

)

123
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≥ gβ
(
C2

AB1

)
+ hgβ

(
C2

AB2 + · · · + C2
ABN−1

)
+ t

2
g

√
2
(
C2

AB2 + · · · + C2
ABN−1

)

[
gβ−√

2
(
C2

AB1

)
− gβ−√

2
(
C2

AB2 + · · · + C2
ABN−1

)]

+ (t − 1)2

4
g2

√
2
(
C2

AB2 + · · · + C2
ABN−1

)

[
gβ−2

√
2
(
C2

AB1

)
+ gβ−2

√
2
(
C2

AB2 + · · · + C2
ABN−1

)

−2gβ−√
2
(
C2

AB2 + · · · + C2
ABN−1

)
g−√

2(C2
AB1)

]

≥ gβ
(
C2

AB1

)
+ hgβ

(
C2

AB2 + · · · + C2
ABN−1

)

+ t

2

[
g

√
2
(
C2

AB2

)
+ · · · + g

√
2
(
C2

ABN−1

)]

·
[
gβ−√

2
(
C2

AB1

)
− gβ−√

2
(
C2

A|B2···BN−1

)]

+ (t − 1)2

4

[
g2

√
2(C2

AB2) + · · · + g2
√
2
(
C2

ABN−1

)]

·
[
gβ−2

√
2(C2

AB1) + · · · + gβ−2
√
2
(
C2

ABN−1

)

−2gβ−√
2(C2

A|B2···BN−1
)g−√

2
(
C2

AB1

)]

≥ gβ
(
C2

AB1

)
+ hgβ

(
C2

AB2

)
+ · · · + hN−2gβ

(
C2

ABN−1

)

+hN−3 · t
2

· g
√
2
(
C2

ABN−1

) [
gβ−√

2
(
C2

ABN−2

)
− gβ−√

2
(
C2

ABN−1

)]
+ · · ·

+ t

2

[
g

√
2
(
C2

AB2

)
+ · · · + g

√
2
(
C2

ABN−1

)]

·
[
gβ−√

2
(
C2

AB1

)
− gβ−√

2
(
C2

A|B2···BN−1

)]

+hN−3 · (t − 1)2

4
· g2

√
2
(
C2

ABN−1

) [
gβ−2

√
2
(
C2

ABN−2

)
+ gβ−2

√
2
(
C2

ABN−1

)

−2gβ−√
2
(
C2

ABN−1

)
g−√

2
(
C2

ABN−2

)]
+ · · ·

+ (t − 1)2

4

[
g2

√
2
(
C2

AB2

)
+ · · · + g2

√
2
(
C2

ABN−1

)]

·
[
gβ−2

√
2
(
C2

AB1

)
+ · · · + gβ−2

√
2
(
C2

ABN−1

)

−2gβ−√
2
(
C2

A|B2···BN−1

)
g−√

2
(
C2

AB1

)]
, (23)

where we have utilized Eq. (3) and the monotonicity of g(x) to obtain the first inequal-
ity, the third and the forth inequalities are due to Eq. (17) and the monotonicity of the
function g(x).

According to Eq. (21) and the fact that g(C2(ρ)) = E(ρ) for arbitrary two-qubit
mixed state ρ, we obtain Eq. (20). 	
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Fig. 2 Dash dotted line, Eβ
A|BC as a function of β (

√
2 ≤ β ≤ 10); solid line, the lower bound of Eβ

A|BC
as a function of β (

√
2 ≤ β ≤ 10) in Eq. (20); dash line, the lower bound of Eβ

A|BC as a function of β

(
√
2 ≤ β ≤ 10) in [24]

Example 2 Let us consider the state in (14) given in Example 1. Set λ0 =√
6
3 , λ1 = 0, λ2 =

√
2
3 , λ3 = 1

3 , λ4 = 0, we have EA|BC = 0.91829, EAB =
0.68193, EAC = 0.40416. Then, Eβ

A|BC = (0.91829)β ≥ Eβ
AB + hEβ

AC +
β

2
√
2
E

√
2

AC (Eβ−√
2

AB −Eβ−√
2

AC )+ (β−√
2)2

8 E2
√
2

AC (Eβ−2
√
2

AB +Eβ−2
√
2

AC −2Eβ−√
2

AC E−√
2

AB ) =
(0.68193)β + h(0.40416)β + β

2
√
2
(0.40416)

√
2
[
(0.68193)β−√

2 − (0.40416)β−√
2
]
+

(β−√
2)2

8 (0.40416)2
√
2
[
(0.68193)β−2

√
2 + (0.40416)β−2

√
2 − 2(0.40416)β−√

2

(0.68193)−
√
2
]
. While the result in [24] is Eβ

AB + hEβ
AC + β

2
√
2
E

√
2

AC (Eβ−√
2

AB −
Eβ−√

2
AC ) = (0.68193)β + h(0.40416)β + β

2
√
2
(0.40416)

√
2
[
(0.68193)β−√

2

− (0.40416)β−√
2
]
. We can see that our results are better than the ones in [24], see

Fig. 2.

4 Tighter monogamy relations using negativity

The negativity is a well-known quantifier of bipartite entanglement. Given a bipartite
state ρAB in Hilbert space HA ⊗ HB , the negativity is defined as [31]:

N (ρAB) = ‖ρTA
AB‖ − 1

2
, (24)
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where ρ
TA
AB is the partial transposed matrix of ρAB with respect to the subsystem A

and ‖X‖ denotes the trace norm of X , i.e., ‖X‖ = Tr
√
XX†. For convenience, we use

the definition of negativity as: ‖ρTA
AB‖ − 1 [10].

If a bipartite pure state |φ〉AB with the Schmidt decomposition, |φ〉AB =∑
i
√

λi |i i〉, λi ≥ 0,
∑

i λi = 1, then [10]

N (|φ〉AB) = 2
∑
i< j

√
λiλ j . (25)

From the definition of concurrence (1), we have

C(|φ〉AB) = 2
√∑

i< j

λiλ j . (26)

As a consequence, for any bipartite pure state |φ〉AB with Schmidt rank 2, one has
N (|φ〉AB) = C(|φ〉AB).

For a mixed state ρAB , the convex-roof extended negativity (CREN) is given by

Nc(ρAB) = min{pi ,|φi 〉}
∑
i

piN (|φi 〉), (27)

where the minimum is taken over all possible pure state decomposition of ρAB . CREN
gives a perfect discrimination betweenPPTbound entangled states and separable states
in any bipartite quantum system [32]. It follows that for any 2⊗d (d ≥ 2)mixed state
ρAB , we have

Nc(ρAB) = min{pi ,|φi 〉}
∑
i

piN (|φi 〉) = min{pi ,|φi 〉}
∑
i

piC(|φi 〉) = C(ρAB). (28)

According to the relation between CREN and concurrence, we have the following
results for the lower bound of N β

cA|B1···BN−1
.

Theorem 4 For any N-qubit mixed state ρAB1···BN−1 , if NcABi ≥ NcABi+1···BN−1 for
i = 1, 2, . . . ,m, andNcAB j ≤ NcA|Bj+1···BN−1 for j = m + 1, . . . , N − 2, ∀1 ≤ m ≤
N − 3, then we have

N β
cA|B1···BN−1

≥
m∑
i=1

hi−1(N β
cABi

+ RABi )

+hm
N−2∑

j=m+1

(hN β
cAB j

+ R1
ABj

) + hmN β
cABN−1

, (29)

for all N ≥ 4, β ≥ 2, where h = 2
β
2 − 1, RABi = β

4N 2
cA|Bi+1···BN−1

(N β−2
cABi

−
N β−2

cA|Bi+1···BN−1
)+ (β−2)2

16 N 4
cA|Bi+1···BN−1

(N β−4
cABi

+N β−4
cA|Bi+1···BN−1

− 2N β−2
cA|Bi+1···BN−1
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Fig. 3 Dash dotted line, N β
cA|BC as a function of β (2 ≤ β ≤ 10); solid line, the lower bound of N β

cA|BC
as a function of β (2 ≤ β ≤ 10) in Eq. (30); dash line, the lower bound of N β

cA|BC as a function of β

(2 ≤ β ≤ 10) in [24]

N−2
cABi

), R1
ABj

= β
4N 2

cAB j
(N β−2

cA|Bj+1···BN−1
−N β−2

cAB j
)+ (β−2)2

16 N 4
cAB j

(N β−4
cA|Bj+1···BN−1

+
N β−4

cAB j
− 2N β−2

cAB j
N−2

cA|Bj+1···BN−1
).

Theorem 5 For any N-qubit mixed state ρAB1···BN−1 , if NcABi ≥ NcA|Bi+1···BN−1 for
i = 1, 2, . . . , N − 2, then we can obtain

N β
cA|B1···BN−1

≥
N−2∑
i=1

hi−1
(
N β

cABi
+ RABi

)
+ hN−2N β

cABN−1
, (30)

for all N ≥ 3, β ≥ 2, where h = 2
β
2 − 1, RABi = β

4N 2
cA|Bi+1···BN−1

(N β−2
cABi

−
N β−2

cA|Bi+1···BN−1
) + (β−2)2

16 N 4
cA|Bi+1···BN−1

(Nβ−4
cABi

+N β−4
cA|Bi+1···BN−1

− 2N β−2
cA|Bi+1···BN−1

N−2
cABi

).

Example 3 Let us consider the state in (14) given in Example 1. We have NcA|BC =
2λ0

√
λ22 + λ23 + λ24,NcAB = 2λ0λ2 andNcAC = 2λ0λ3. Set λ0 =

√
2
3 , λ1 = 0, λ2 =

√
5
3 , λ3 =

√
2
3 , λ4 = 0. We have N β

cA|BC ≥ N β
cAB + hN β

cAC + β
4N 2

cAC (N β−2
cAB −

N β−2
cAC ) + (β−2)2

16 N 4
cAC (N β−4

cAB + N β−4
cAC − 2N β−2

cAC N−2
cAB) = ( 2

√
10
9 )β + h( 49 )

β +
β
4 ( 49 )

2
[
( 2

√
10
9 )β−2−( 49 )

β−2
]
+ (β−2)2

16 ( 49 )
4
[
( 2

√
10
9 )β−4+( 49 )

β−4−2( 49 )
β−2( 2

√
10
9 )−2).

While the result in[24] is N β
cAB + hN β

cAC + β
4N 2

cAC (N β−2
cAB − N β−2

cAC ) = ( 2
√
10
9 )β +

123



Tighter monogamy relations in multi-qubit systems Page 13 of 14 224

h( 49 )
β + β

4 ( 49 )
2
[
( 2

√
10
9 )β−2 − ( 49 )

β−2
]
. We can see that our result is better than the

one in [24] for β ≥ 2, see Fig. 3.

5 Conclusion

Entanglement monogamy relations are fundamental properties of multipartite entan-
gled states. In this paper, we have provided the multipartite entanglement based on
the monogamy relations for βth power of concurrence Cβ

A|B1···BN−1
(β ≥ 2), entan-

glement of formation Eβ
A|B1···BN−1

(β ≥ √
2) and convex-roof extended negativity

N β
cA|B1···BN−1

(β ≥ 2). Our monogamy relations have larger lower bounds and are
tighter than the existing results [24]. These tighter monogamy inequalities can also
provide a finer description of the entanglement distribution. In multi-qubit system,
our research results provide a rich reference for future research on multi-party quan-
tum entanglement. Our method can also be applied to the study of other properties of
monogamy related to quantum correlations.
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