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Abstract

In this paper, we present some monogamy relations of multiqubit quantum entan-
glement in terms of the Bth power of concurrence, entanglement of formation and
convex-roof extended negativity. These monogamy relations are proved to be tighter
than the existing ones, together with detailed examples showing the tightness.
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1 Introduction

Quantum entanglement is widely used as a very important resource in quantum infor-
mation processing [ 1-4]. With the emergence of quantum information theory, quantum
entanglement plays a very important role in quantum cryptography, quantum telepor-
tation and measurement-based quantum computing. An important issue related to
the entanglement metric is the limited shareability of the two-part entanglement in
a multipartite entangled qubit system, that is, the single duality of entanglement [5].
Monogamy of entanglement (MoE) plays a very important role in many quantum
information and communication processing tasks, such as security proof of quantum
cryptography schemes and security analysis of quantum key distribution [6, 7].

For a tripartite quantum state pspc, MoE can be described as E(papc) >
E(pap) + E(pac), where pap = trc(paBc), pac = trg(pasc), E(pajpc) denotes
the entanglement between systems A and BC. A remarkable result was established
by Coffman, Kundu and Wootters (CKW) [8] for three qubits that was the simulta-
neous squares satisfy monogamy inequality. Then, the so-called CKW inequality was
generalized to any N-qubit system [9]. Interestingly, it is further proved that similar
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inequalities of polyqubit monogamy can be established for negativity and convex-roof
extended negativity (CREN) [10-12], the entanglement of formation (EoF) [13, 14],
Rényi-o entanglement [15, 16] and Tsallis-g entanglement [17].

Our paper is organized as follows. In Sect. 2, we present and prove two monogamy
inequalities for the Sth (8 > 2) power of concurrence in N-qubit system. In Sect. 3, we
give a tighter monogamy relation for the Sth (8 > +/2) power of EoOF in2®2 ® 2N 2
system. Then, we extend the result to N-qubit system. In Sect. 4, the monogamy
relation for the Sth (8 > 2) power of CREN in N-qubit system is discussed. In addition,
detailed examples are given to illustrate the tightness. In Sect. 5, we summarize our
results.

2 Tighter monogamy relations using concurrence

Given a bipartite pure state |¢) 4 p on Hilbert space Hy ® Hp, the concurrence is given

by [18-20]
C(1$)an) = /2(1 = Tr(p})), ey

where py4 is the reduced density matrix by tracing over the subsystem B, pg =
Trp(|¢)ap{(®|). For a bipartite mixed state p4p, the concurrence is defined by the
convex-10of,

Clpap) = min lZpicu«mAB), 2)

where the minimum is taken over all possible pure state decompositions of pap =
> pildi){gil, with Y, p; = 1 and p; > 0.

For any N-qubit mixed state psp,...8y_;, the concurrence C(pa|p,...8y_,) of the
state pa B, ...By_, under bipartite partition A and By --- By_ satisfies [21]

CP(pai,-By_) = CP(oan) + CPloap,) + -+ CPloapy ), 3)

for B > 2. Furthermore, for an N-qubit mixed state, if Cap, > Cap;,,..By_; fOr
i=1,2,... ,m,andCABj < CA|B_/+|...B]\,_1 forj=m+41,..., N —2,ageneralized
monogamy relation for 8 > 2 was presented as [22]:

CP(paB By ) , ,
> CP(pag) + (27 — DCP(papy) + -+ (22 — D" 'CP(pas,)
8 ) £
+(22 = )"CP (paB,,) + -+ + CPlpasy )]+ (27 = )" CP(pagy_,).
4)

where ]l <m < N -3, N > 4.

In the following, we will show that these monogamy relations for concurrence can
be further tightened under some conditions. Before that, we first introduce two lemmas
as follows.
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Lemma1 Foranyx € [0, 1]andt > 1, we have

t (t — 1)2 (t — 1)2 (t — 1)2

1
(l+x)’21+§x+ Z x2+(2’—§+ 7 — x! — > X/t
t ¢ t t t t
> 14 ox+ @ == = 14 Q= D ®)

2 2
(l+x)’—1—%x— (f*41) x2+(t*21) XH~1
x[

Proof Let us consider the function f (¢, x) = . Then,

2 2
3f(f,)€) _ tx"l[1+%x+ (I_I)At(r_Z)x2+(t_2:) X[+17(1+X)t71]
ax X2t

. Next, we will prove that

r—1 t—1D%@¢ -2 t—1)2
x+( )( )x2+( )xl+

]<1 —1 6
2 4 21 = {0 ©

1+

thus % < 0, f(t,x) is a decreasing function of x, i.e., f(¢t,x) > f(t,1) =

2" — L+ =00 Ttfollows that (14x) > 1+ bx+ (5042 (of — L4 =D2
Dt — 52 1,

2
For the case 1 < ¢ < 2, itis obvious that (1 +x)"~! > 14 (r — Dx + =242,
Besides, we have

t=De=2 =1y, 02
) 4t

- %[(t — Dt —2)x> + (> 4+t — 2)x> — 21x7]

%[(r — D)t — 2)x> + (2t — 2)x'TT — 2x].

v

Thus, Eq. (6) is hold.
For the case ¢ > 2, it is obvious that (I + x)'™! > 14+ (+ — Dx + “_li‘ﬁxz.
Besides, we have
t-DeE—-2) , -
X

. 1 _ 2_t_1 . _ 2 _ 2 .2
2 =7 t(t —2)x = [ =D —2)x"+ 2t —2)x tx°]

t;—tl[(z‘ — Dt —2)x2 2@ — Dx' T = 21x].

v

Thus, Eq. (6) is hold.
2
On the other hand, since x2 — 2x't! 4+ x' > 0 and % > 0, fort > 1 and
x € [0, 1], we can get (1 + x)! > l+%x+%x2+(2t—§+%— Dx! —
G2yl > Ly 4 @ — L= Dx! > 14 (2 — D

O
Lemma 2 For any mixed state papc in a2 ® 2 @ 2NV=2 system, suppose that Cxp >
Cac, we have

B B B B B—2 B2
Cuipc Z Cyp +hCyc + ZCAC (CAB —Cyc )

@ Springer



224 Page4of14 Y.Guetal.

(B —2)? _ o
+——Cac (C§B4 + C§C4 - Zcﬁcchuza) , )

16

forall B > 2, where h = 2§ —1, Caipc = C(paiBc), analogously for Cap and Cac.

Proof Since Cap > Cac, wWe obtain

2 2
2 N Cic
Cfiwc > (Chp + )2 =Chy (1 + CT)

AB AB CAB
(-2 cﬁﬂ
8 Chy
= CﬁB + hcﬁc + gcﬁc (Cﬁgz - Cﬁ?)
TR 1_62)2ch (chs' +chct —2ciier). ®)

where the first inequality is due to the fact that C f\l gc=C f‘ gtC f‘ cforany2®2®
N2 tripartite state p4|gc [9, 23] and the second inequality is due to Lemma 1. O

Theorem 1 For any N-qubit mixed state pap,...gy_,» if CAB; = CAa|Bjyy--By_y» JOT
i=1,2,..., N =2, we have

N-=2
B i—1 ( ~B N-2 B
CAlBl-nBN,l > h' (CABL' + PAB,-) +h CABNfl’ (9)
i=1
_ 25 _ B2 B2 _
forall N > 3, B > 2, where h = 22 1, Pap, = 4CA|BI,+1,,_BN_](CAB!,
B2 (B=2)?% 4 p—4 | ~B—4 B2 )
CA‘BiJrl"'BN—l)_{— 16 CA|Bi+l"‘BN—1(CABi +CA|Bi+1"'BN—1_2CA‘Bi+l"'BN—lCABi)'

Proof Due to Eq. (7), we obtain
B
CA‘BI"'BN—I

B

B B 2 B2 B2
= Cap +hChgypyy T 3 ChiBoBy (CA& - CA|BZ"‘BN—1>

B=27 4 =4 p4 p2 i
+ 16 CA|BZ“'BN—1 (CAB1 + CA\BszNq o 2CA|BZ“‘BN—1CABI>

B B B ) B2 B—2
= Cap, th [CABz +hCpy.py_ T 7 CABs-By 1 (Can, = Capypy )

4
B-27 4 B4 | f—d B—2 -
t—¢ Caiss-By (CABz +Caipynyy ~ 2CA|83---BN71CABZ)
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B - -2 p—2
+ 1 CaBBy (CABI - CA|Bz---BN_1)

B-27 4 p—4 B—4 g2 -2
+—¢ Cas-sy (CA31 +CaiByBy .y ~ 2CA|Bz~-BN_.CABl)

B B N-2~B N-3|B 2 B2 B=2
Z Cyp +hCypy e A1 Chpy  Hh |:_CABN1 (CABNfz_CABNfl)

4
T TR TR AN |
etk |:§C1%HB3'“BN—1 (Cfgzz - ij“é_”BMJ
+%Ci33_“3,\,_1 (Chat +Chimmy = 2CK 5y c/;gz)}
+§Ci|32mBN,1 (Cﬁg.z - C£|;322~~BN,1)
+¥Cﬁwz_..3m} (chul+Chimny = 2C8 55y Cad,) - (10)
By the denotation of P4 p,, we complete the proof. O

Theorem 2 For any N-qubit mixed state pap,...gy_1,» if CAB; = CA|B,1--By_, JOTi =
1,2,...,m,andCABj < CA|B/.+1...BN71f0rj =m+1,.... N=-2,V1 <m < N-3,
we have

m
p 1 (B
Chiprny .y Z DN (CABl- + PABi)

i=1

N-2
B | B

+h" Y (hChy, + Phg) +HCH, (11)

Jj=m+l

forall N = 4 B = 2, where h = 2% — 1, Pap, = 5C% 5 5 (Chy? —

B2 (B=2)? 4 B—4 | ~B—4 B2 -2
BBy )T 16 CaByr-by Can TCAB By —2CA1Biy 1By CaB):
| _ B B2 B=2\ | (B=27 4 (P p—d
PAB_,' - ZCABI (CA|B_/+1~--BN_1 - CAB_/) + 16 CAB_,' (CA|B_,'+|~-BN_| + CAB_,' -

B—2 ~—2
ZCABj CA|BJ'+|~~BN_| )

Proof Due to the proof process of Theorem 1, we can get that

m
B —1 B 7 B
CA|BI“'BN—1 z Zhl (CAB:’ + PABi) + hncAleﬂ-“BN—l' (12)
i=1
In addition, since CABj < CA|Bj+l”'BN—1 forj=m+1,..., N —2, hence
B
CA‘B»hLl'“BNfl
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- B B 2 ( p—2 p—2 )

B _
= CA\Bm+2-~BN—1 + hCABm+1 + 4CABm+1 A|Bm42-Bn-1 CABm+1

B-27 4 p—4 /3—4 -2 -2
t g CaBu (CA\Bm+2~~BN_1 +CBy ~ ZCABm+1CA|Bm+z~--BN_1)

N-2
1
= > (nChy, + Pls) +Chyy (13)
Jj=m+1 '
Combing Egs. (12) and (13), we can get the inequality (11). O

Example 1 Consider the three-qubit state [1/) 4 pc in generalized Schmidt decomposi-
tion form [25, 26]:

W) asc = A0l000) + A1ei?1100) + A2|101) + A3|110) + Aq|111),  (14)

4
where A; > 0,7 = 0,1,2,3,4, and ) Xl.z = 1. A direct calculation shows that
i=0

Calpc = Zko,/)»% + )»% + )\2, Cap = 202 and Cac = 2A0A3.

Set Lo = ﬁ A = 0,0 = \/Tg,)@ = \/Tj,)q = 0. We have Cypc
Z«Qﬁ’ C — Zf and CAC = 4 Then C§|BC = (%ﬁ)ﬂ 2 CgB +
p 2 B2 B 2) 4 (B4, B4 P20
hClhe + §C3(Chy" — ChD) + E2mci ey’ + it —2cierp =
(—Z@W+h(§>ﬂ+z(§>2[(—2{>ﬁ - 2+ 25 )“[(nyS gy

2(3‘)/3—2(29@)—2]. However, the result in [24] is %, , + hC” . + £C2 (Ch}?

Chh = 40 4 hdP + %(3)2[(29@>ﬂ—2 - (g)H]. We can see that our
results are better than the ones in [24] for § > 2, see Fig. 1.

3 Tighter monogamy relations using EoF
Let H4 and Hp be two Hilbert spaces with dimension m and n (m < n). The entangle-
ment of formation (EoF) of a pure state |¢) 4 p on Hilbert space Hy ® Hp, is defined
as [27, 28]

E(|¢)a) = S(pa) = —Tr(palog; pa), (15)

where S(p) = —Tr(plog, p) and pa = Trp(|¢)ap(¢|). For a bipartite mixed state
|¢) ap on Hilbert space H4 ® Hp, the EoF is given by

E(pan) = inf > piE(Ii). (16)

where the infimum is taken over all possible pure state decompositions of p4p.
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Fig. 1 Dash dotted line, CﬁlBC as a function of 8 (2 < B < 10); solid line, the lower bound of Cﬁ\BC

as a function of 8 (2 < B < 10) in Eq. (11); dash line, the lower bound of Cﬁ\BC as a function of S
(2<B=<10)in[24]

Let g(x) = H(™5=%) and H (x) = —x log, x — (1 —x) log, (1 —x), it s obvious
that g(x) is a monotonically increasing function for 0 < x < 1, and satisfies

gV2(:2 + ) = ¢V2 (%) + gV20D). (17)

where gV2(x2 + y2) = [g(x? + yD)IV2.
From Egs. (15) and (16), we have E(|¢)) = g(C2(|¢))) for2®d (d > 2) pure
state |¢). And E(p) = g(C2(p)) for arbitrary two-qubit mixed state p [29].
Wootters [8] shows that the EoF does not satisfy the monogamy inequality E4p +
Esc < E4pc. In[30], the authors shows that EoF is a monotonic function satisfying
EZ(C/ZHBI 32"'BN—1) > E? va:_]l(CiBi). For N-qubit systems, one has [21]

B B B B
EA|B]BZ'~~BN_1 z EAB] + EABZ +oet EABN_1 ’ (18)

for B > \/5, where E |, B,..By_, 1S the EoF of p under bipartite partition
A|B1 By --- BNy_1, E s, is the EoF of the mixed state psp;, = Trp,...5,_; B, |- By_, (0)
fori =1,2,...,N — 1.

Lemma 3 Forany mixed state pspc ina 2Q2®2N2 system, § > V2, ifCap > Cac,
then we have
t

B B B V2 (B—V2 B—v2
Ejpe = Exp T hEyc + EEAC (EAB —Eyc )
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—1)? -
L )Eif(EﬁBZﬁ+Eﬂ MaEl e 9)

4 AB
wheret = Lo h =21 — 1
V2’ '
Proof The proof is similar to the proof of Lemma 2. O

In fact, the result can be generalized to N-qubit mixed state pap,...5y_,. The fol-
lowing theorem holds for pap,..By_;-

Theorem 3 For any N-qubit mixed state pap,..By_, if Ca; = CA|B;.y--By_; fOT
i=1,2,..., N =2, we have

N-2
B 1 (B N-2
Exipsy Z D0 (EAB + QAB) + N E g (20)
i=1
fOr,3>\/§whereh—2’—1t—ﬁQ —L(ﬁ 4o+
- T [ ag = (Exp.
B—2 1 gh- 2f
ABN 1)(E EA|Bi+1"‘BN 1)+(t . (EAB+1+ +EABN 1)[ ot
B-2v2 B2 -2
EABN—I _Z(EAIB:'+1---BN—1)EAB,' I

Proof Letp =) ; pilvi)(¥il € HA® Hp, ®- - - Hp,_, be the optimal decomposition
of E4|B,B,--By_, (p) for the N-qubit mixed state p, we have [22]

2
EABBy-By_, > 8 (CA|31324..BN_,) : (21
In addition, for g > ﬁ, we have

e +yH = [gﬁ(x2 + yz)]t > [gﬁ(xz) + gﬁ(yz)]t
> P + 2 - DgP D) + %gﬁ(yz)

— 1?2
[gﬁ_ﬁ(xQ)—gﬁ_ﬁ(yz)] L e Z " V22

(67727200 + 2207 — 2P V20| @22)

where the first inequality is due to Eq. (17), and without loss of generality, we can
assume x2 > y2, then the second inequality is obtained from the monotonicity of g(x)
and Eq. (5).

Thus, combining Egs. (21) and (22), we obtain

B
Ey1BByBy_,

2 2 2
ﬂ <CAB] +CABz + +CABN71>
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t
> ¢ (Chp, ) +hg" (Chg, ++ -+ Chn, ) + 58" (Chp, + -+ Chpy )
—V2 2 -2 2 2
[gﬁ I(CABl) —gF [(CABZ‘F"‘WLCABN,I)]

=1 25 (2 2
t—7 8 I(CABZ +"'+CABN_|>

[8’372«/i (CfxBl) + 8'372«/z (Cfsz et CfxBN_l)
—2g B—2 <C,2432 4+ .4 CiB]\/,]) g—ﬁ(ci&)]

> ¢# (Cap, ) +he” (CE,B2 oo+ Chp, )

(G e )]
[ ( ) (CA\Bz ‘By- 1)]
+(l‘ —41) [gZﬁ(CiBZ) 4+ .+ gzﬁ (CiBNq)]
.[gﬁ—zﬁ(ciBIH -+ gf 22 (CABN 1)
zgﬁ*ﬁ(C/%‘Bz_..BN_l g V2 (CABI)]
> gf (Cfm ) +hgf (Cfxm) SERE O (Cme)
)4
) e )

' [gﬁ 2 (Chy) - gﬁ*f Cra.]

LpN-3 . (t —41)2 .gZﬁ (CfxBN,l) [gﬁ—zﬁ (C%BAH) +gﬂ—2ﬁ (C%BNA)

(a7 ()]
“‘“h2<m@ e (Ch, )]
(o) 4 8 (G )
b2 (CA‘BZ,‘,BNq)g_fZ (CiBl)], (23)

where we have utilized Eq. (3) and the monotonicity of g(x) to obtain the first inequal-
ity, the third and the forth inequalities are due to Eq. (17) and the monotonicity of the
function g(x).

According to Eq. (21) and the fact that 2(C%(p)) = E(p) for arbitrary two-qubit
mixed state p, we obtain Eq. (20). O
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Fig.2 Dash dotted line, Eﬁ\BC as a function of 8 (ﬁ < B < 10); solid line, the lower bound of Eﬁ\BC
as a function of B (\/i < B < 10) in Eq. (20); dash line, the lower bound of E§|BC as a function of g
(+/2 < B <10)in [24]

Example2 Let us consider the state in (14) given in Example 1. Set g
%g,kl = 0,A = \/TE,)@ = %,)\4 = 0, we have Expc = 0.91829, Exp
0.68193, Eac = 0.40416. Then, Ef 5o = (0.91829)f > Efy + hEf. +
B N2 B2 pB—V2\ | (B—V2)? p2V2, pB-2V2 | . B—2V2 B—V2 =2y _
TEAC(EAB — By )t B (BT T E T T = 2E T E )

(0.68193)# + h(0.40416)8 + %(0.40416)‘5 [(0.68193)ﬂ—ﬁ — (0.40416)ﬂ—ﬁ] +
M(0.40416)%/5[(0.68193)ﬂ—2ﬁ £ (0.40416)5~2V2 _ 2(0.40416)F—2

(0.68193)—ﬁ]. While the result in [24] is Ef , + hEP . + %E;{E(Eﬁ;ﬁ _
EFYY) = (0.68193)F + h(0.40416)F + 2%(0.40416)ﬁ[(o.68193)ﬂ—ﬁ

— (0.40416)’3 _ﬁ]. We can see that our results are better than the ones in [24], see
Fig. 2.

4 Tighter monogamy relations using negativity

The negativity is a well-known quantifier of bipartite entanglement. Given a bipartite
state p4 p in Hilbert space Hy ® Hp, the negativity is defined as [31]:

T,
ekl -1

N(pap) 5 . (24)
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where p}}g is the partial transposed matrix of p4p with respect to the subsystem A

and || X || denotes the trace norm of X, i.e., | X|| = Tr~/ X X . For convenience, we use
the definition of negativity as: ||,0£’}3 | —1[10].
If a bipartite pure state |¢p)ap with the Schmidt decomposition, |¢p)ap =

o NAilii), ki >0, Y A = 1, then [10]
N(p)ap) =2 J/hik. (25)

i<j

From the definition of concurrence (1), we have

C(p)an) =2 [ hikj. (26)
i<j

As a consequence, for any bipartite pure state |¢)4p with Schmidt rank 2, one has

N(¢)ap) = C(1$)ap).

For a mixed state p4 g, the convex-roof extended negativity (CREN) is given by

¢ = mi ; i), 2
Ne(pap) {prir}|1£>}12p/v<|¢ ) 27)

where the minimum is taken over all possible pure state decomposition of p4 5. CREN
gives a perfect discrimination between PPT bound entangled states and separable states
in any bipartite quantum system [32]. It follows that for any 2®d (d > 2) mixed state
pAB, We have

Ne(pap) =  min Z piN (i) = min Z piC(¢i)) = Clpap).  (28)

According to the relation between CREN and concurrence, we have the following

B
results for the lower bound of ./\/'C AlBy~By_,"

Theorem 4 For any N-qubit mixed state pap,...py_,» if Nea; = Neay, By, for
i = 1,2,...,m,and./\/'CA3_/ f-/\/'cA|B_/+|---BN_|f0rj =m+1,..., N=2,Vl<m <
N — 3, then we have

m
B i—1, /B
Neapresy, = 20 Wiap, + Rag)
i=1
N-=-2
ey (thABj + Ryp) + HN (29)
j=m+1

forall N = 4 B = 2 where h = 2% — 1, Rap, = SN2 5 5 (NEp —

C C
p-2 (B=2)? 74 B—4 | \ P4 p—2
NeaBe -y T 16 Neas Nean, T Neap sy = 2Neais By

it1-Bn-1
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0.3
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0.1

Fig.3 Dash dotted line, /\/ CA|BC 852 function of B (2 < B < 10); solid line, the lower bound of A/ SA‘ BC

as a function of 8 (2 < B < 10) in Eq. (30); dash line, the lower bound of N CAIBC 852 function of g
(2 = B <10)in [24]

-2 1 _ B B—2 B2 (ﬁ 2)
B) Ry AB; = ZNZAB_/-(A/CA|BI~+1 By_ ]_A/CAB )+ N AB; ('/ch|B,+| By, T
NAB 2J\/uu; LA|BJ+1 )-

c ‘Bn—1

Theorem 5 For any N-qubit mixed state pap,...sy_,, if NeaB, = Nea|Biyy--By_1 for
i=1,2,..., N =2, then we can obtain

N—

NcA|Bl Z ( CAB; +RAB>+hN 2/\/'ABN . (30)

forall N > 3, B > 2, where h = 2% — 1, Rap, = g/\fCZA\B,H By 1(/\/‘0AB _
B2 (ﬂ 2) B—4

A/CA|Bi+I )T NCA|BH—1 ‘By— 1(N AB +NCA|BH—1'“BN 1 2NA|B:+1 ‘By-1

NTQZB,')'

C

Example 3 Let us consider the state in (14) given in Example 1. We have Noajpc =

2h0y/ A3 + 23 + 23, Noap = 240k and Noac = 2x0,\3 Setho = %2, 2 = 0,2 =
-2

205 = A = 0. We have NAlBC = Niag + hNEye + ENZ e WDas -

NE) + 22N + NG = NN = P+ hE)P +
é(—)z[(iy3 (P~ 2]+M<3‘)4[<¥)ﬂ R CIEIE L 2<£) 2).

While the result in[24] is ./\/AB + hNC’gAC + %/\CZAC(J\/&I; NAC) = (2f),3 +
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h(g)ﬁ + g(%)z[(@)ﬁ—z - (%)’3_2]. We can see that our result is better than the
one in [24] for B > 2, see Fig. 3.

5 Conclusion

Entanglement monogamy relations are fundamental properties of multipartite entan-
gled states. In this paper, we have provided the multipartite entanglement based on

the monogamy relations for Sth power of concurrence C ﬁ‘ Bi--By_ (B = 2), entan-
glement of formation E ﬁl BiBy_ (B > +/2) and convex-roof extended negativity

./\/C’3 AlBy By, (B = 2). Our monogamy relations have larger lower bounds and are
tighter than the existing results [24]. These tighter monogamy inequalities can also
provide a finer description of the entanglement distribution. In multi-qubit system,
our research results provide a rich reference for future research on multi-party quan-
tum entanglement. Our method can also be applied to the study of other properties of
monogamy related to quantum correlations.
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