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Abstract
Classical cryptographic techniques are currently under the growing quantum com-
puting threat. New techniques that quantum computing algorithms cannot break are
urgently needed. We present such an encryption method. It builds upon quantum per-
mutation logic gates or quantum permutation pads. It is universal in that it can be
equally employed on classical computers, today’s Internet, and the upcoming quan-
tum Internet.While the cryptographic technique is formulated in a quantum computing
framework, it does not rely on physical properties uniquely present at the quantum
level, such as no-cloning or entanglement of data. It achieves with today’s technol-
ogy a level of security comparable to what will be possible to attain with tomorrow’s
quantum technology. The mathematics behind the cryptographic technique, quan-
tum representations of a symmetric group over a computational basis, is surprisingly
simple. However, the challenge faced by an adversary wishing to break the code is
intractable and uninterpretable, a property of Shannon’s perfect secrecy. We believe
that the cryptographic technique presented in this article can be used in several dif-
ferent ways and modes. It can be integrated into numerous current Internet protocols,
or the Internet of Things, making them quantum safe. In addition, it can be used to
transition to the upcoming Internet quantum technology smoothly.
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1 Introduction

In this article, the qualifier universal generically refers to the classical data and quantum
data worlds. Building upon an encryption technique based on quantum algorithms of
permutation logic gates called quantum permutation pad (QPP), we define a universal
confidential communication framework. QPP is defined by an abstract model using
the quantummechanics formalism [36]. This model is represented by the box Abstract
QPP in Fig. 1. It uses Hilbert vector spaces. A data item can be interpreted as a column
vector or a qubit register in this framework. Figure 1 illustrates two representative
actualizations of the abstract model. A data item is interpreted as a column vector in
the upper part. A classical sender plaintext, in the column vector format, is encrypted
by a classical data actualization of QPP. The encrypted classical data are transported to
a receiver over a classical network, such as the current Internet. The receiver decrypts
the classical data using the classical data actualization of QPP and restores the classical
plaintext. The column vector representation is general enough that any classical data
can be represented in that format. In the lower part of Fig. 1, a sender quantumplaintext,
in the qubit register format, is encrypted by a quantum data actualization of QPP. The
encrypted quantum data are transported to a receiver over a quantum network. The
receiver decrypts the quantum data using the quantum data actualization of QPP and
restores the quantum plaintext. The genericity of the encryption technique is such that
its logic can be mapped to both the classical and quantum worlds. It does not rely on
the no-cloning theorem of quantum data nor the ability of the sender and receiver to
detect the presence of an interceptor, such as in quantum key distribution (QKD) [8].
It is independent of the implementation technology.
Contribution The article presents a new symmetric cryptosystem called QPP. First,
it is important to highlight the relevance of symmetric cryptosystems. They work
hand in hand with asymmetric cryptosystems. Asymmetric cryptography is used to
establish and encrypt the random key that is significantly smaller than the messages.

Fig. 1 The universal cryptography concept
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Together with the short randomly generated key, messages are efficiently encrypted
using symmetric cryptography. This hybrid approach to secure communications has
been widely adopted in modern cybersecurity. QPP is one of a kind. At its core are uni-
tary permutation matrices. It is a mathematical concept compatible with both classical
and quantum computing. Hence, QPP can run on classical computing platforms, on
quantum computing platforms, or amix of both. In contrast to a quantum cryptosystem
[6], the scope of QPP is not limited to quantum platforms and can run on classical
platforms. In contrast to a classical cryptosystem [34], QPP can run on a quantum
computing platform [40]. There are no classical symmetric encryption algorithms that
are easy as QPP to implement on a quantum computing system.

QPP’s security relies solely on the uninterpretable security following the use of
bijective transformations. On the one hand, an adversary is faced with testing 2n !
equally likely bijection maps to crack the code, where n, a positive integer, is a secu-
rity parameter. Conducting such an exploration requires an exponential quantity of
resources. On the other hand, brute force tests performed on a given ciphertext yield
the entire n-bit word plaintexts equally likely.

In Sect. 2, we review the state of the art in classical and quantum cryptography. In
Sect. 3, we bridge classical and quantum cryptography. In Sect. 4, we present QPP. In
Sect. 5, we describe our universal cryptography framework. Its security is analyzed in
Sect. 6. Implementation aspects are reviewed in Sect. 7. We conclude with Sect. 8.

2 Related work

2.1 Classical cryptography

Today’s information security builds upon asymmetric and symmetric cryptographic
techniques. On the one hand, asymmetric cryptography refers to algorithms that estab-
lish a shared key between a pair of communication peers over an unsecure public
channel. They include Rivest, Shamir and Adleman (RSA) [45], Diffie–Hellman [16]
and Elliptic Curve Cryptography (ECC)) [31]. Public-key cryptographic techniques
are based on specific computational difficulties, that is, RSA on the prime factorization
problem, Diffie–Hellman and ECC on the discrete logarithm problem. In the average
case, those problems are intractable and non-deterministic polynomial time (NP-hard).
Their hardness is exponentially increasing with the key bit length. On the other hand,
symmetric cryptographic techniques, such as data encryption standard (DES), triple
DES [7] and advanced encryption standard (AES)) [34], achieve security based on a
shared secret key. The key length is 64 bits in DES, 192 bits in triple DES and 128 or
256 bits in AES.

In 1994, Shor proposed a new algorithm to factorize large numbers leveraging
the power of quantum bits (qubits) superposition [48]. Shor’s algorithm reveals an
exponentially increased capability of solving cryptographicNP-hard problems in poly-
nomial time. However, the risk that such a discovery poses on public-key cryptography
has been insignificant until a recent quantum computing breakthrough disclosed by
Google [5, 56] . In 2015, Mosca [33] stated that “at present,... I estimate a 1/7 chance
of breaking RSA-2048 by 2026 and a 1/2 chance by 2031.”
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In 1996, Grover invented a new quantum search algorithm [19] that solves the
unstructured search problem of size n inO (√

n
)
queries, while any classical algorithm

needs O (n) queries. This speedup requires the key length of standard AES to be
augmented from 128 bits to 256 bits with true randomness. In its report on post-
quantum cryptography (PQC) [11], National Institute of Standards and Technology
(NIST) clearly indicates that classical public-key algorithms are no longer secure and
AES keys need to be true random and doubled in length.

NIST is currently in a review process of PQC techniques for the purposes of stan-
dardization. There were over two dozen techniques entered in the 2017 first run. The
techniques can be classified into two categories: digital signature and key encapsula-
tion mechanism (KEM). Within KEM, the techniques are lattice-based such as Nth
degree truncated polynomial ring units (NTRU) [20] and ring-learning with error (R-
LWE) [4], and code-based such as McEliece encryption system [13, 32] and random
linear code encryption (RLCE) [53], multivariate [42] and super singular isogeny
Diffie–Hellman (SIDH) [12]. The security of the different PQC techniques relies on
computational difficulties, especially the NP-hard problem such as the shortest vec-
tor problem (SVP), in lattice-based techniques, and the error-correcting problem, in
code-based techniques. In July 2020, NIST just entered its third round of candidate
reviews.

2.2 Quantum cryptography

Leveraging the laws of quantum physics, Bennett and Brassard proposed the QKD
protocol [8]. Shor and Preskill published a proof that QKD achieves unconditional
secure key distribution [49]. QKD has been widely explored resulting in a variety
of implementations and improvements (see a review article ref. [18]). In its initial
design, QKD uses single photons as information carriers. In single photon QKD,
extremely weak coherent photon pulses act as qubits, with an average photon number
per laser pulse in the order of 0.2 or less. This constraint greatly impacts QKD’s key
rate and working distance. To overcome that, continuous-variable QKD (CV-QKD)
proposed the use of weak coherent states as information carriers [28], with an average
photon number per laser pulse in the order of hundreds to thousands. Diamanti, Lo, Qi
and Yuan reviewed QKD challenges for a variety of practical implementations [15].
Recently, Xu et al. published a complete review of QKD security analysis addressing
protocol, implementation, signal source and detection aspects [55].

Quantum cryptography generally refers to QKD. QKD and all its derivatives have
shown that quantummechanics can be used to secure classical data. Besides, quantum
mechanics can be used to secure quantum data as well. Using Clifford groups, a
cryptographic technique for quantum message authentication has been originally be
introduced byAharonov at al. [2], with follow-upwork byBroadbent andWainewright
[10, 52]. Alagic et al. [3] and St-Jules [50] proposed asymmetric- and symmetric-key
encryption techniques for quantum data.

A post of National Security Agency (NSA) explains their decision to discourage
the use of QKD [35]. In their opinion, the added value of QKD does not compensate
for the risks and limitations specific to the method. NSA favors PQC techniques.
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On the other hand, three of the four PQC finalist algorithms are based on SVP, which
has been recently reported solvable leveraging adiabatic quantum computation [23].
Are we in a kind of dead end?

What we propose in this article is a novel paradigm, i.e., a cryptographic technique
that works for classical data and quantum data. The exact way it is being used is just a
matter of interpretation. It relies solely on the uninterpretable security of the Shannon
perfect secrecy extended over a quantum computational basis.

3 Bridging OTP and QKD

There are several different physical implementations of QKD. They mainly rely on
polarization or phase encoding, with two non-orthogonal bases. In polarization encod-
ing, the two bases are the rectilinear basis, where photon polarization is either vertical
or horizontal, and the diagonal basis, where photon polarization is either diagonal or
antidiagonal. In phase shift encoding, the first basis consists of phase shifts zero or π

radians, while the second basis comprises the phase shifts π/2 or 3π/2 radians.
Let us briefly review QKD using the Dirac notation, but without going to the

details of physical encoding such as polarization or phase encoding. It uses two non-
orthogonal bases. The first is the single-qubit computational basis B1 = {|0〉, |1〉},
where |0〉 and |1〉 are, respectively, equal to the column vectors [1, 0]T and [0, 1]T . It is
a two-dimensional Hilbert space. The second is the Hadamard basis B2 = {|−〉, |+〉},
where |−〉 and |+〉 are, respectively, equal to the column vectors

[
1/

√
2,−1/

√
2
]T

and
[
1/

√
2, 1/

√
2
]T

. Note that the Hadamard basis vectors (B2) are superpositions

of the computational basis vectors (B1). It can be easily verified that B1 and B2 are
orthonormal bases, but mutually not orthogonal.

The QKD protocol proceeds as follows. There is a sender and a receiver. The sender
randomly generates two equal-length strings σ1 and σ2 of classical bits. Every bit in
string σ1 controls the selection of a basis for encoding a key bit, value zero selects the
basis B1. Value one selects the basis B2. String σ2 is a key bit sequence. Value zero is
encoded as the vector |0〉 in the basis B1 or as the vector |+〉 in the basis B2. Bit one
is encoded as the vector |1〉 in the basis B1 or as the vector |−〉 in the basis B2.

The receiver randomly generates a bit string σ3. The length of σ3 is the same as the
length of the strings σ1 and σ2. The string σ3 controls the selection of the measurement
bases for incoming vectors. Bit zero selects the basis B1, while bit one selects the basis
B2. Measurement results are recorded in a fourth bit string σ4.

The protocol concludes with the announcement of the selected measurement
bases. This phase requires that the sender and receiver share a secret authentication
key, aiming to mitigate Person-In-The-Middle (PITM) attacks. The receiver publicly
announces themeasurement basis selection string σ3. The sender compares σ3 with σ1.
The sender indicates to the receiver the positions where the sender randomly generated
bases match the receiver randomly selected bases. The sender and receiver delete in σ2
and σ4, respectively, the bits where there are mismatch bases. The result is a common
sequence of bits called the sifted key.
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QKD encoding can be defined as well with quantum gates (see Appendix A). In this
interpretation, the identity gate I and Hadamard gate H are used to secure quantum
key distribution. However, there exists a relationship between those two gates (I and
H ) and permutation matrices in the symmetric group S2 [54]. Furthermore, a slight
variation of QKD can be defined with a pre-shared secret for both authentication and
basis selection purposes. The public announcement of bases can be omitted which in
return enhances its security with this trusted mode. This variation clearly reflects a
quantum implementation of the classical one-time pad.

Table 1 connects QKD, a quantum encryption technique, with OTP, a classical
encryption technique using the Exclusive OR (XOR) Boolean operation. On the left
side, we have theQKD encoding. The basis bit (σ1) and key bit (σ2) together determine
an encoding. On the right side, we have a quantum interpretation of OTP. Data bits 0
and 1 are mapped to computational basis members |0〉 and |1〉. Table 1 shows that bit a
in the XOR operation (⊕) can be interpreted as a control bit that selects a permutation
matrix for encoding a data bit b, in a way similar to what the basis bit does in QKD (see
Appendix A). The rightmost column shows the encoding of the computational basis
members using permutation matrices. With this way of seeing things, QKD encoding
can be interpreted as a quantum implementation of OTP, using the gates I and H . The
public announcement of bases in QKD determines the shared bases for both encoding
and measurement. The sifted key establishes a shared classical keypad used for the
synchronization of encoding and measuring bases.

Table 2 shows sample choices of encoding gates by QKD and quantum OTP, when
both the sender and receiver agree on the basis selection. This interpretation of the
shifted key and OTP is applicable to both quantum and classical data (no need of
the superposition concept). When the implementation meets the needed requirements
for truly random key generation, this interpretation of OTP achieves Shannon perfect

Table 1 A parallel between QKD and OTP encodings

Encryption technique

QKD Quantum OTP

Basis bit (σ1) Key bit (σ2) Encoding Control bit a Data bit b a ⊕ b

0 |0〉 I |0〉 = |0〉 0 0 I |0〉 = |0〉
0 |1〉 I |1〉 = |1〉 0 1 I |1〉 = |1〉
1 |0〉 H |0〉 = |+〉 1 0 P2|0〉 = |1〉
1 |1〉 H |1〉 = |−〉 1 1 P2|1〉 = |0〉

Table 2 Sample QKD and OTP(XOR) encoding

Sender basis bit (σ1) 1 0 1 1 0 0 1 0 1 1 0

Receiver basis bit (σ3) 0 0 1 0 0 1 1 0 1 1 1

Sifted key 0 1 0 1 0 1 1

QKD encoding I H I H I H H

Quantum OTP encoding I P2 I P2 I P2 P2
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secrecy (ref. [46]). On the other hand, this interpretation of OTP needs trusted peers
to mitigate PITM attacks.

It is very clear that the quantum interpretation of OTP is based on a single-qubit
computational basis. Within this basis, the symmetric group is S2 with only the two
permutation matrices I and P2. OTP can be considered as a pad consisting of permu-
tation matrices selected from a single-qubit permutation group, with bit 0 as gate I
and bit 1 as gate P2. OTP is a single-qubit quantum permutation pad, implemented
mathematically, while QKD is a single-qubit quantum permutation (corresponding to
I or H ) pad, implemented physically with photons.

Here is an interesting question. The computational basis B1 is single qubit. Can the
quantum interpretation of OTP be extended to a n-qubit computational basis (n > 1),
using permutation matrices in the symmetric group S2n? The answer turns out to be
yes!

4 Quantum permutation pad

In this section, we describe QPP. Let us consider the n-qubit computational basis
{|0〉, |1〉, . . . , |2n −1〉}. Over this computational basis, there is a symmetric group S2n
with 2n ! elements Pi , with i = 1, 2, . . . , 2n ! representing 2n ! permutation operators
(ref. [54]). They are 2n by 2n unitary reversiblematrices, also called permutation gates.

There is a message sender and a receiver. Confidential communication is required.
A uniformly selected random permutation gate P in S2n is used by the sender, while its
transpose permutation gate PT is employed by the receiver. The pair of P and PT is a
sender–receiver shared secret key. The sender uses the permutation gate P to transform
a plaintext state |m〉 into a ciphertext state P|m〉, denoted as |c〉. The ciphertext |c〉
is transmitted over a network to the receiver. The receiver applies the transposed
permutationmatrix PT and restores back the plaintext state PT |c〉 = PT P|m〉 = |m〉.
Lemma 1 (perfect secrecy) For n greater than one and uniform random key distribu-
tion, QPP achieves Shannon perfect secrecy (ref. [46]).

Proof It follows from the fact that the key domain size (2n !) is greater than the cipher-
text domain size (2n), which is greater than or equal to the message domain size (2n).
Keys are used with uniform probability 1/(2n !). A permutation map is also a bijec-
tion over Galois fields GF(2n). For every message-cipher pair, there exist (2n − 1)!
permutation matrices or keys. The overall probability for a message-cipher pair is still
2−n , or Shannon’s equally likely for perfect secrecy. Note that the constraint n greater
than one is required because S2 is a solvable group, leading to the Shannon perfect
secrecy of OTP. ��
Lemma 2 (non-commutability) For a pair of permutations Pi and Pj in S2n , n greater
than two, Pi generally does not commute with Pj .

Proof It follows from the fact that permutations are generally not commutative. ��
Corollary 1 Given ciphertext |c〉 encrypted with permutation gate P, the application
of any permutation gate Q in S2n is not equal to PT , i.e., Q|c〉 equally likely yields
any ciphertext |c′〉 with c′ within a Galois field GF(2n).
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QPP was originally proposed by Kuang and Bettenburg [24]. Shannon perfect
secrecy was extended over quantum Hilbert spaces. In Boolean algebra, OTP can be
secure only for a single time use. Thanks to the non-commutability of permutation
gates, QPP can be reused without compromising security. In fact, QPP can still be
called OTP but with one time provision, forever use. QPP has been applied in a few
use cases [25–27]. In this paper, a new universal quantum-safe cryptographic method
is established leveraging QPP through the mathematical representation of quantum
permutation gates over Hilbert spaces. For the first time, it puts forward the idea that
we can build a quantum-safe Internet over a hybrid Internet infrastructure. QPP works
in a quantum computing system with physical permutation gates between quantum
computers. QPP also works in a classical computing system with the mathematical
representation of quantum permutation gates. QPP works as well in hybrid, quantum
and classical networks with pretty much today’s Internet infrastructure consisting of
copper, fiber, wireless, laser, etc. QPP offers a way to reuse today’s existing trillion
dollars Internet infrastructure for quantum-safe communications. We know that we
have an urgent quantum threat problem, dubbed Years to Quantum (Y2Q). QPP is a
good and economic candidate for a vaccine for Y2Q.

5 Universal encryption technique

QPP is a cryptography technique originally introduced by Kuang and Bettenburg
(see Sect. 4). It can be interpreted in a classical data way, where the members of
the computational basis {|0〉, |1〉, . . . , |2n − 1〉} correspond to the 2n element column
vectors [1, 0, . . . , 0]T , [0, 1, . . . , 0]T , . . . , [0, 0, . . . , 1]T (ref. [36]). It may also be
interpreted in a quantum data way, where the members of the computational basis
{|0〉, |1〉, . . . , |2n − 1〉} correspond to n-quit quantum states.

QPP is information-theoretically secure, as the QPP or VernamCipher (see ref. [30]
Definition 1.39). At first glance, the conditions required to achieve this property reduce
practicality of the quantum technique. The key size of QPP is in O(2n !), i.e., space
complexity is exponential. However, in contrast to OTP, a consequence of Corollary 1
is that key reuse in QPP does not invalidate Shannon perfect secrecy. Corollary 1
means that QPP is not vulnerable to attacks exploiting repeated use of the same key,
for which OTP is vulnerable. A second application of permutation gate P to ciphertext
|c〉, i.e., P|c〉, yields a new ciphertext |c′〉. By analogy with OTP, double encryption
with the same keystream cancels keys and yields the plaintext message XOR with
plaintext message. In OTP, key reuse enables cryptanalysis. Differential cryptanalysis
is not enabled in QPP because plaintext differences are not available to the adversaries,
such as in XOR-based cryptographic techniques [39]. Key reusability in QPP makes
it practical.

QPP can be used in a block mode for M words of size n bits each. M uniformly
selected random permutation gates P1, . . . , PM in S2n are used to encrypt a block ofM
wordsm1, . . . ,mM of size n bits each into ciphertexts P1|m1〉 = |c1〉, . . . , PM |mM 〉 =
|cM 〉.

Table 3 shows that even for relatively small values of n, the corresponding number
of permutation gates and Shannon entropy, a measure of uncertainty, are considerable.
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Table 3 Number of permutation gates as a function of n

Message size (n) Number of permutation gates (2n !) Shannon entropy (bits)

4 2.09 × 1013 44.25

6 1.28 × 1089 295

8 10507 1684

Brute force attacks are unpractical. The random variable is the permutation gate with
2n ! possible outcomes. For a permutation group, the Shannon entropy is equal to
log2(2

n !) bits. For large values of n, it is approximately 2n(n − 1.42) bits.
Referring to Fig. 3, with the classical data actualization of QPP, the ciphertext,

transmitted over a classical network, is a column vector or some compact representa-
tion of it such as an index. With the quantum data actualization of QPP, the cipher text
is a quantum register state that can be transported from a sender to a receiver using
entanglement swapping (ref [57]) and teleportation (ref. [9]).

A pre-shared key can be reused without compromising the security of QPP. QPP
holds Shannon’s perfect secrecy property, as OTP. Hence, QPP could be considered as
an OTP extension for quantum communications. The reason why an OTP pre-shared
key can only be used one time is due to the encryption operator being bitwise XOR.
Let k, m1, m2, c1 and c2 be a pre-shared key, two messages and their corresponding
ciphertexts. Given ciphertexts c1 and c2, the encryption key could be eliminated by
performing the bitwise XOR calculation c1⊕c2 is equal to (m1⊕k)⊕(m2⊕k) is equal
to m1 ⊕ m2. When m1 and m2 are alphabet plaintexts, cracking m1 and m2 becomes
possible. In the quantum world, the OTP encryption scheme can be represented by
the two-qubit quantum CNOT gate. Conversely, a one-bit QPP is equivalent to OTP
encryption. However, there is no classical counterpart of n-(qu)bit QPP. Permutation
gates hold the generalized uncertainty principle: [Pi , Pj ] is not equal to zero. There
is also no corresponding control-permutation gate, like the CNOT. There are many
permutation gates: 2n !. They constitute a permutation space, which becomes our key
space, with huge entropy: log22n !. That is the major difference between classical
Boolean algebra and quantum linear algebra. A permutation is a typical bijective
transformation that is Shannon perfect! The QPP’s bijective property may be exploited
by a statistical analysis attack. To address that eventuality, QPP encryption consists of
multiple permutation gates, amplifying diffusion. Also, QPP does need to be equiped
with pre-randomizing and dispatching to further augment diffusion.

6 Security analysis

6.1 Unsolvable permutation groups

Although QPP would work nicely with n equal two, n needs to be larger than two to
avoid the solvable permutation group, as demonstrated by Galois. Indeed for n greater
than two, S2n are unsolvable Galois groups. In general, two permutation operators P
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and P ′ are non-commutative, that is, [P, P ′] is not equal to zero. P and P ′ do not
share the same eigenbasis. That means, a cipher text |c〉, obtained from a plaintext |m〉
transformed by a selected permutation gate P , does not reveal any information neither
about both permutation gate P and P ′ nor about the plaintext state |m〉.

6.2 Pre-processing

In secure and trusted environments, QPP has the property of Shannon perfect secrecy.
However, in a practical setting, QPP requires plaintext randomization and dispatching
to a permutation matrix in QPP if the plaintext is not truly random, but statistically
biased. This type of pre-processing strategy is present in numerous symmetric crypto-
graphic algorithms, such as ShiftRows and MixColumns in AES. The preprocessing
can be seeded with the pre-shared secret. The corresponding postprocessing is applied
at the receiver side after decryption by QPP to restore the original plaintext.

6.3 Ciphertext attack

Given a ciphertext state |c〉, how challenging is for an adversary to find a transposed
permutation matrix PT that reveals the corresponding plaintext state |m〉? There are
2n ! candidates. The ciphertext state |c〉 does not provide any clue about what PT can
be. The amount of resources required for a brute force search is super exponential to
n, together with un-interpretability. QPP can be considered safe with respect to brute
force search attacks.

6.4 Plaintext attack

A known plaintext attack is an attack model for cryptanalysis used to reveal secret key
information. Let us assume that an instance of QPP is selected with M permutation
matrices, based on shared secret key material. A dispatcher driven by the shared key
material dispatches a plaintext message to a permutationmatrix within the QPP. Given
a plaintext state |m〉 and a ciphertext state |c〉, with P|m〉 = |c〉, what can be inferred
about P? First, obviously we can infer that P maps |m〉 to |c〉, for a guessed P within a
space of 2n ! permutation matrices. Secondly, because P is a bijection, if P|m′〉 is also
equal to |c〉, thenm andm′ must identical if the dispatcher dispatches |m′〉 to the same
permutation matrix P . Other than that, to determine what P does to the members
of the computational basis different from |m〉, the adversary is left with exploring
(2n − 1)! choices of permutation matrices for a given pair |m〉 and |c〉. Furthermore,
the dispatcher dispatches |m〉 to any permutation gatewithinQPP, so the same |m〉may
be mapped to different |c〉’s. For a known plaintext–ciphertext pair for a QPP with M
permutation gates, the uncertainty of the pad is super exponential inO (

(2n − 1)!)M)
.

It means that QPP can be considered safe against plaintext attacks.
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6.5 Indistinguishability under adaptive chosen ciphertext attack

Ciphertext indistinguishability is a great semantic security property that can be
possessed by a cryptosystem. There are three types of indistinguishability: INDistin-
guishability under Chosen-Plaintext Attack (IND-CPA), INDistinguishability under
(non-adaptive) Chosen-Ciphertext Attack (IND-CCA1) and INDistinguishability
under adaptive Chosen-Ciphertext Attack (IND-CCA2). IND-CCA2 is the highest
indistinguishability level. When a cryptosystem has IND-CCA2, it has IND-CPA and
IND-CCA1 automatically.

Let us consider a QPP implementation with a simple preprocessing dispatcher
function driven by the shared key material. On the sender side, the challenger maps
the shared key material into M permutation gates for encryption. On the receiver
side, the dispatcher maps shared key material to their transposed M permutation
matrices for decryption. The adversary can obtain any ciphertext corresponding
to a plaintext. They supply chosen plaintexts to form k plaintext–ciphertext pairs
(m1, c1), (m2, c2), . . . , (mk, ck). The IND-CCA2 game proceeds as follows:

1. The adversary chooses twomessagesμ0 andμ1, not inm1,m2, . . . ,mk . It requests
encryption of μ0 and μ1 to the challenger.

2. The challenger randomly generates a bit b, encrypts the message μb and returns
the corresponding ciphertext c.

3. The opponent must guess which message the received ciphertext c is encrypted
from μ0 or μ1. The adversary can inquire a decryption oracle with chosen cipher-
texts as much as they want, except for the ciphertext c.

For a bijective n-bit permutation map, O’Conner proved that the probability
p(�m,�c) of a differential characteristic is 2n/2n for a single permutation map-
ping, where �m is the XOR of two messages and �c is the corresponding ciphertext
XOR [39]. For a QPP implementation with M permutation matrices, this probability
is equal to (2n/2n)M . For a typical case with n equal to eight and M equal to 16 [25,
26], the probability of a differential characteristic is equal to 2−128, that is, extremely
small. The opponent gets no significant benefit from making a biased decision given
ciphertext c, whether it comes from μ0 or μ1, even though it has access to a decryp-
tion oracle. It must make a random guess among μ0 and μ1, that is, with uniform
probability is 1/2.

7 Implementation

QPP can be used as a key distribution or a plaintext encryption protocol. For key
distribution purposes (see [29]), QPP can play the role of key expansion protocol, as
QKD does. QPP can play that role for another encryption technique such as AES [25].
The selection of permutation gates must be truly random, with no statistical bias. A
permutation gate is a bijection, with domain and codomain a computational basis. Any
bias or statistical pattern in the keying material is reflected in the ciphered material. As
a plaintext encryption protocol, confusion and diffusion (see ref. [30] Remark 1.36) of
plaintext are required before encryption to remove any statistical pattern in it, which
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Fig. 2 Placement of QPP in classical and quantum architectures

is commonly naturally present. Randomization techniques, such as ShiftRows and
MixColumns of AES, can be applied. This requirement is not unique to QPP. Indeed,
most of the data encryption techniques make use of plaintext confusion and diffusion
techniques. Figure 2 pictures, side by side, the placement of QPP in a classical network
architecture, running on a classical computer, and a quantum computer architecture.
The left side represents a five-layer classical protocol stack [41]. From bottom to top,
the physical layer takes care of classical bit transmission, the datalink layer handles
framing, the Internet layer does routing, the transport layer streams data process to
process, while the application layer contains protocols specific to applications. QPP is
placed in the application layer. It provides key distribution and encryption services to
classical applications such as file transfer and email. The right side of Fig. 2 shows a
quantum computer architecture running quantum algorithms [22]. From bottom to top,
the quantumphysical layer implements qubits and related concepts such entanglement,
the virtual layer provides error cancellation, the quantum error correction layer imple-
ments logical qubits, the logical layer achieves quantum computing gates. Quantum
algorithms are implemented in the application layer, together with QPP that provides
key distribution and encryption services to applications. Both computer architectures
share the same concept, i.e., permutation gates, but implemented in different ways.
In the sequel, we discuss further QPP classical data implementation, quantum data
implementation and secret key sharing.

7.1 Classical data implementation

The great advantage of QPP is the possibility to attain, with the current classical com-
puting and Internet technology, a degree of confidentiality theoretically achievable
with tomorrow’s quantum technology. QPP builds upon quantum mechanics theory,
while not requiring quantum-level physical properties such as entanglement and no
cloning of data. QPP can run above classical computer memory and classical commu-
nication channels. A computational basis of dimension n qubits provides an alphabet
of 2n plaintext symbols for the representation of classical data.
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Fig. 3 Architecture of a QPP implementation

Figure 3 pictures the architecture of a stream cipher implementation of QPP, build-
ing upon classical technology. A pre-shared secret Seed is supplied to the modulemap
that creates M permutation gates P0, . . . , PM−1 and seeds a pseudo-random number
generator PRNG. The latter is used to scramble the input plaintextm. A random binary
sequence x is XORed with the plaintext message |m〉, yielding |m′〉. Seeded by x , and
consequently the shared secret, a dispatcher D determines a randomly chosen per-
mutation gate Pd , d in 0, . . . , M − 1, used to encrypt the scrambled plaintext |m′〉.
This permutation gate selection step smooths out statistical bias in the input. The
output of the stream cipher is the column vector Pd |m′〉 = |c〉. On the receiver side,
the cipher text |c〉 is decoded as PT

d |c〉 = PT
d Pd |m′〉 = |m′〉. A postprocessing step

unscrambles |m′〉 with an XOR operation and x to recover the original plaintext, i.e.,
|m〉 = |x XOR m′〉. A detailed encryption and decryption example is provided in
Appendix C.

In the implementation design of Fig. 3, parameter Seed is the shared secret. The
word size n and number of permutation gates M are public security parameters. The
size of Seed is determined by n, discussed in the sequel. Assuming truly uniform
random input, because a permutation is a bijection every ciphertext word value of size
n may occur with probability 2−n . With a block of M words of size n bits each, every
ciphertext block value may occur with probability 2−nM .

Figure 4 plots the Shannon entropy as a function of the word size (n) and number of
permutation gates (M) used in the design of Fig. 3. The randomvariable in the design of
Fig. 3 is the arrangement of M permutation gates in S2n . As a function of n and M , the
y-axis value is equal toM times 2n(n−1.42) bits.Workable implementations may use
an eight-bit word size, i.e., n, and M equal to 64. Each of them is 256-by-256 matrix.
Shannon entropy is well above 105 bits. It means that the cipher uses 64 permutation
gates. When this encryption method is used, we pre-randomized input, such as in a
key distribution scenario, the scrambling–descrambling pre- and postprocessing can
be omitted. A demonstration open-source software implementation together with a
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Fig. 4 Shannon entropy versus word size and number of permutation gates

performance analysis is available on a companion web page [44]. Test results using
the NIST randomness test tools and Dieharder are also provided. Speed performance
is equivalent to the single round of an AES-256 software implementation. It is twice
the speed of AES-NI with hardware acceleration.With respect to energy consumption,
QPP consumes up to 10%of theAES-256 consumption.Other implementation designs
leveraging QPP can be envisioned, as a block cipher architecture.

An important issue is mapping a classical key S to permutation gates. QPP needs
uniform random generation of permutation gates. This can be done using the Fisher
and Yates algorithm [17]. An alternative is the subgroup algorithm [14]. With either of
these algorithms, a single permutation matrix is random in S2n selected with an input
random key of size n2n bits. For the design of Fig. 3, M · n2n uniformly generated
random bits would be needed to produce the M permutation gates. With n equal to
eight and M equal to 64, it means key size of 131, 072 bits, or 16K bytes. For the
Internet of Things, choices such as n equal to eight and M equal to 16 can envisioned.
In that case, the key size is 32, 768 bits, or 4K bytes. We can also choose n = 4 with
M = 16 to reduce RAM space to 128 bytes for QPP and achieve the total entropy of
707 bits for quantum-safe IoT communications.

QPP can be seen as a logical quantum cryptographic technique over a n-bit compu-
tational basis. It is an alternative to QKD on non-photonic or digital QKD to establish
a logical quantum Internet using the existing infrastructure. It can distribute keys
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between endpoints that use standard cryptographic techniques such as AES or OTP.
In contrast to OTP, where the pre-shared true random secret can be only used for one
time, a QPP pre-shared secret distributed one time and can be reused multiple times.
Of course, it can be updated automatically without invalidating the property of perfect
secrecy, thanks to the uncertainty resulting from the use of permutation groups.

An interesting question is why not using any other classical symmetric cryptosys-
tem, instead of QPP? Let us consider a classical symmetric cryptosystem such as
AES. AES supports the key sizes 128, 192 and 256 bits. Usage of an algorithm with a
maximum security of 256 bits of entropy implies that the security of key exchange is
no more than 256 bits of entropy. A session key with less than 256 bits of entropy is
not quantum safe for data encryption, according to the NIST recommendation [37]. A
physical quantum key distribution system has theoretically infinite entropy. Therefore,
it can be considered semantically secure for session keys, i.e., 256 bits of entropy from
a 256-bit-long distributed key. Then, data encryption with 256-AES would be consid-
ered quantum safe. QPP with 64 8-bit permutation matrices holds 64 times 1, 684 bits
(log2(256!)), a number greater than 100,000 bits, corresponding to more than 1032,448

states. Although it is not infinity, it can be treated as very close to infinity. Therefore,
due to the achievable high entropy, QPP can be used to replace a physical quantum
key distribution system (see [29]) over the existing Internet.

7.2 Quantum data implementation

QPP can universally work over classical or quantum networks. The only difference is
the underneath implementation, which is either with permutation matrices or quantum
permutation gates. At the outset, note that QPP does permutation of probability ampli-
tudes of all possible states, in contrast to permutation of qubits that are only associated
with transpositions of their positions . For example, with n equal to two, there are only
two qubit permutation gates associated with their position transpositions: identity and
SWAP. However, there are four probability amplitude permutations of their states.

In a n qubit system, there are 2n ! permutation gates. For n equal to three, there
are 40, 320 different eight-by-eight permutation gates. For n equal to four, there are
more than 2×1013 different 16-by-16 permutation gates. It is obvious that the physical
implementation of such a quantum system is challenging for a quantum secure commu-
nication. The actualization would realize the actual permutation gate implementation
of 4-qubits. Built on a layered quantum computer architectures [22, 43], QPP would
be implemented as an application in a quantum application layer. A library would
create the permutation gates and address the detailed implementation at the physical
layer. Shende et al. proposed an algorithm to create generic permutation gates with
NOT, CNOT and TOFFOLI gate [47].

Quantum implementations of QPP can be envisioned as the technology will evolve.
For the sake of simplicity, QPP can be physically implemented for a few qubit systems,
such as twoor three qubits.QPP can also be implementedwith one-qubit system,where
permutation gates are randomly selected from the identity gate and Pauli gate X , which
is the traditional QKD with a pre-shared pad for encoding and measuring bases.
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7.3 Secret key sharing

In QPP, it is assumed that the two parties, e.g., a message sender and receiver, share
a secret key. We discuss briefly how a secret key can be shared. There are indeed
several different ways to establish a pre-shared secret, such as through a public key
infrastructure (PKI), out-of-band communication or provisioning by a system admin.
PKI leverages a trusted certificate authority (CA) and the transport layer security
(TLS)/secure sockets layer (SSL) to share a secret key signed with a public key [1,
21, 51]. Hence, a public key exchange algorithm such as RSA [45] or Diffie–Hellman
[16] can be used to establish a shared key with classical cryptography. One may
also consider using one of the PQC algorithms for key exchange [38]. Out-of-band
communication means that the secret is exchanged over a channel separate from the
data channel, such as over a voice call. Provisioning by a system admin is a very
common process in any typical organization for first time establishment of a trusted
relationship.Note thatQKDboxes do notworkwithout an initial pre-configured shared
secret at the system provisioning phase. The QKD postprocess requires authentication
with a pre-shared secret. In our proposed QPP universal quantum-safe cryptographic
system, we take that pre-shared secret is to create permutation gates P and PT . P
is a n-bit permutation gate, behaving like a n-qubit QKD transmission box. PT , the
inverse of P , behaves like a n-qubit QKD receiving box.

In a short, secret sharing is not simply an extra requirement but a part of a practical
deployment of a trusted secure communication system.With that inmind, it is possible
to implement quantum secure communications digitally with QPP.

8 Conclusion

This article presented the quantum-safe QPP cryptographic system. It runs either on
the current classical Internet or the upcoming quantum Internet. This is the reason why
we argue that QPP cryptography is universal, for both classical and quantum systems.
It can be implemented on classical computer and communication technology. It can
be used now! It is also ready for the upcoming quantum Internet technology. The
QPP algorithm is indeed quantum. At its core, it uses quantum permutation gates. It
is implementable on quantum computers with quantum circuits. It is defined using
quantum computing notation, where data items can be interpreted as column vectors
or qubit registers. It has two security parameters, n and M . The first parameter (n)
determines the size of the input–output alphabet (2n symbols). The second parameter
(M) specifies the number of permutation gates randomly selected from2n ! permutation
matrices. Together, they determine the symmetric key size, that is, M log2(2

n !) bits.
It is described using quantum mechanics formalism but does not use quantum-level
properties such as a no-cloning of entanglement of qubits.

qpp is resistant against brute force, known plaintext and ciphertext attacks. QPP
ciphertext can be deterministically measured in a computational basis by adversaries.
However, they cannot interpret the measurement results without knowing the QPP pad
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secretly shared between the sender and receiver. QPP has Shannon’s perfect secrecy.
The results are uninterpretable. QPP is not sensitive to same-key double encryption.

Data availability All data generated or analyzed during this study are included in this published article (and
its Supplementary Information files).

Appendix A: Quantum gate interpretation of QKD

Let us consider the one-qubit computational basis {|0〉, |1〉}. QKD can be expressed
by quantum gate operations. In the computational basis B1 = {|0〉, |1〉}, encoding can
be interpreted as the application the identity gate I =

(
1 0
0 1

)
to the basis vectors |0〉 =

[1, 0]T and |1〉 = [0, 1]T . The encoding in the Hadamard basis B2 = {|−〉, |+〉}, can
be interpreted as of the application of the Hadamard gate H = 1√

2

(
1 1
1 −1

)
. Encoding

of |0〉 is performed by multiplying with the Hadamard gate, that is, H |0〉 = |+〉.
Similarly, the encoding |1〉 corresponds to the product H |1〉 = |−〉.

Quantum encoding in the Hadamard basis is equivalent to the Hadamard gate oper-
ation on a state in the computational basis. It transforms basis vectors into states with
superposition, for the purposes of secure communications. The receiver also applies
the Hadamard gate to restore the superposition states back to a computational basis
state, before measuring. A quantum state is prepared and measured in the computa-
tional basis, but a quantum gate transforms it into a superposition state for its secure
communication. The reverse gate operation brings the superposition state back to its
original state for measuring in the computational basis. However, a mismatched gate
selection at the receiver leads to the measurement of a superposition state. This out-
come must be avoided. Note that this interpretation of QKD uses two quantum gates,
namely the identity gate (I ) and Hadamard gate (H ).

Appendix B: Symmetric group S2

In S2, the permutation matrices are P1 =
(
1 0
0 1

)
and P2 =

(
0 1
1 0

)
(ref. [46]). P1 is

also the identity permutation gate I , and P2 is the Pauli permutation gate X .

Lemma 3 The Hadamard basis is the eigenbasis of P2.

Proof Permutation gate P2 is equal to the sum |+〉 − |1〉. ��

Appendix C: Key generation, encryption and decryption example

In the following example, classical key material is mapped to permutation gates, using
Fisher–Yates shuffling algorithm. QPP is used for encryption and decryption. Security
parameters n is 2 while M is 5. For the sake of simplicity, confusion and diffusion are
omitted.
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C.1 Encryption

Let us consider the plaintext Hello World as a toy example. Using an ASCII
character table, the plaintext has the following binary representation:

01001000 01100101 01101100 01101100 01101111 00000000
00100000 01010111 01101111 01110010 01101100 01100100

The binary representation is segmented into two-bit segments with decimal values of
segments as follows:

1, 0, 2, 0, 1, 2, 1, 1, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 3, 0, 0,
0, 0, 0, 2, 0, 0, 1, 1, 1, 3, 1, 2, 3, 3, 1, 3, 0, 2, 1, 2,
3, 0, 1, 2, 1, 0

For this example, we use a simple permutation selection algorithm. Suppose that
we have randomly selected five permutation matrices/gates:

P0 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ , P1 =

⎛

⎜
⎜
⎝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ , P2 =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞

⎟
⎟
⎠ ,

P3 =

⎛

⎜⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎟
⎠ and P4 =

⎛

⎜⎜
⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞

⎟⎟
⎠

Mapping every decimal value 0, 1, 2, and 3 of input segments to the column vectors
|0〉 = [1000]T , |1〉 = [0100]T , |2〉 = [0010]T and |3〉 = [0001]T . Let us ignore
the randomization for this simple example and also take the position of a dispatching
segment modulo M = 5 to be the dispatching index of QPP. Then, we perform Pd |m〉
= |c〉 with m as the decimal value of the dispatching segment, the ciphertext decimal
values |c〉 of segments are as follows:

2, 2, 2, 0, 3, 0, 1, 3, 3, 1, 3, 2, 3, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1,
0, 0, 0, 2, 1, 3, 3, 2, 3, 3, 2, 2, 3, 1, 0, 0, 1, 2, 0, 0, 0, 3, 0,
1, 1

The corresponding ciphertext binary representation is:

10101000 11000111 11011110 10010110 01100110 01100100
00001001 11111011 11101011 01000001 10000000 11000101

It is clearly shown that the bit randomness is improved: the number of zero bits is 53
and the number of one bits is 43 in the plaintext Hello World, but the number of
zero bits is 49 and the number of one bits is 47 in the ciphertext.
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C.2 Decryption

The corresponding inverse permutation gates are:

PT
0 =

⎛

⎜⎜
⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞

⎟⎟
⎠ , PT

1 =

⎛

⎜⎜
⎝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞

⎟⎟
⎠ , PT

2 =

⎛

⎜⎜
⎝

0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

⎞

⎟⎟
⎠ ,

PT
3 =

⎛

⎜⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎟
⎠ and PT

4 =

⎛

⎜⎜
⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞

⎟⎟
⎠

Decryption uses the same process as the encryption, but with transposed QPP and
perform PT

d |c〉 = |m〉. The application of every corresponding inverse permutation
gate yields the original plaintext, in a decimal form:

1, 0, 2, 0, 1, 2, 1, 1, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 3, 0, 0,
0, 0, 0, 2, 0, 0, 1, 1, 1, 3, 1, 2, 3, 3, 1, 3, 0, 2, 1, 2, 3, 0,
1, 2, 1, 0

It corresponds to the the ASCII binary:

01001000 01100101 01101100 01101100 01101111 00000000
00100000 01010111 01101111 01110010 01101100 01100100

That is the decrypted plaintext: Hello World.
The pre-shared key is a bit sequence. To achieve quantum-level security, the key

length can be anything greater than 256 bits. The classical key material is expanded to
determine a QPP pad. For 256 bits of entropy, a two-qubit QPP pad requires at least
56 permutation matrices with a classical key of 256 to 448 bits. A three-qubit QPP
pad requires 17 permutation matrices with a key of 256 to 408 bits. A four-qubit QPP
pad needs six permutation matrices with a key of 256 to 384 bits.
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