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Abstract
Entanglement-assisted quantum error-correcting (EAQEC) codes can be transformed
from classical linear codes through entanglement-assisted formalism by loosing the
dual-containing condition and using pre-shared entanglement. It has become a chal-
lenging task to construct optimal EAQEC codes and determine the required number
of pre-shared entanglement pairs. In this work, we explore the structure of q2-ary
cyclic codes through analyzing two classes of cyclotomic cosets independently. By
computing the number of maximally entangled states, we construct three classes of q-
ary entanglement-assisted quantum maximum distance separable (EAQMDS) codes.
This construction produces new EAQMDS codes with minimum distance more than
q + 1.

Keywords Cyclic code · Defining set · EAQEC code · Cyclotomic coset

1 Introduction

Quantum error-correcting codes are the most effective coding scheme in reducing
decoherence during quantum communications and quantum computations. Qudits are
the basic unit of q-dimensional quantum systems used for quantum information pro-
cessing. A standard quantum code of length n is a qk-dimensional subspace of the
Hilbert space (Cq)⊗n , which can encode k qudits of a q-dimensional quantum system
into n qudits. Such a quantum code is denoted by [[n, k, d]]q , where d is the minimum
distance of the code. A quantum code with minimum distance d can detect up to d
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quantum errors and correct up to � d−1
2 � quantum errors. It is well known that standard

quantum codes can be obtained from classical linear codes that must satisfy certain
dual-containing condition. The dual-containing constraint forms a great obstacle in
the construction of quantum codes. A significant breakthrough is the discovery of
entanglement-assisted quantum error-correcting (EAQEC) codes by Brun et al. [4].
They showed that non-dual-containing quaternary linear codes can be used to construct
EAQEC codes if the sender and receiver share pre-existing entanglement. This indi-
cates the construction of quantumcodes is not limited by the dual-containing condition.
Later, a general coding scheme of the construction of binary EAQEC codes was built
and several explicit construction methods were proposed [20, 21, 25, 45]. Afterwards,
lots of binary EAQEC codes were constructed by utilizing various classical linear
codes over F2 or F4 (see [11, 26, 28]). With the realization of fault-tolerant quantum
computation [1, 14, 38] and the construction of concatenation technology [16, 42],
non-binary EAQEC codes have received much attention. Galindo et al. [12] extended
binary construction methods to arbitrary finite fields and gave complete proofs. Many
classes of non-binary EAQEC codes have been derived from classical linear codes
such as constacyclic codes, LCD codes and Reed-Solomom codes (see [5, 7, 9, 10,
12, 18, 19, 24, 29, 30]). A difficulty in EAQEC code construction is to determine the
number of (pairs of) maximally entangled states. There exist two techniques to find
such number for present. One is through computing the hull dimension of linear codes
[12, 18], and the other is through decomposing the defining sets of constacyclic codes
[30].

Let q be a prime power. A q-ary EAQEC code Q encoding k logical qudits
into n physical qudits by using c pairs of maximally entangled states, denoted by
[[n, k, d; c]]q , can correct up to � d−1

2 � quantum errors, where d is called the min-
imum distance of Q. If c = 0, then Q is a standard [[n, k, d]]q quantum code. It
is desirable to find EAQEC codes with good error-correcting ability. As in classical
codes, the parameters of an EAQEC code aremutually restricted. In [4, 27], the authors
gave a Singleton-type bound for binary EAQEC codes. Recently, in [2, 17], the authors
used different methods to generalize the bound to q-ary EAQEC codes.

Theorem 1.1 ([2, 17])Suppose thatC is anEAQECcodewith parameters [[n, k, d; c]]q .
Then

2(d − 1) ≤ n − k + c (1)

if d ≤ n+2
2 , where 0 ≤ c ≤ n − 1.

For d ≤ n+2
2 , if an EAQEC codewith parameters [[n, k, d; c]]q meets the bound (1)

with equality, then it is said to be an entanglement-assisted quantummaximumdistance
separable (EAQMDS) code. For d > n+2

2 , Grassl [15] gave examples of EAQECcodes
with parameters beating the bound (1). When the number c of maximally entangled
states is fixed, EAQMDS codes are optimal in the sense that they have the largest
minimum distance. During the past decade, a number of EAQMDS codes with length
n in the range q + 2 ≤ n ≤ q2 + 1 were constructed from classical linear codes.
Fan et al. [10] obtained EAQMDS codes with a few maximally entangled states from
classicalMDS codes. Qian and Zhang [41] constructed EAQMDS codeswithmaximal
entangled states from classical LCD codes. Liu et al. [29] obtained EAQMDS codes
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from k-Galois dual codes. Recently, Hu and Liu [22] used Gabidulin codes to gain
EAQMDS codes.

Due to good algebraic structure, constacyclic codes including cyclic codes and
negacyclic codes are preferred objects on the construction of EAQMDS codes. In
2011, Lu et al. [28] introduced the decomposition of defining sets of cyclic codes to
obtain EAQMDS codes with large minimum distance. The technique was extended to
general constacyclic codes in [5, 30, 32], and many classes of EAQMDS codes with
length n dividing q2+1 or q2−1 were derived from them (see [5, 6, 24, 30, 32, 33, 37,
39, 44]). Koroglu [24] obtained EAQMDS codes based on constacyclic codes. Wang
et al. [44] obtained EAQMDS codes with less entangled states from cyclic codes.
Recently, Chen et al. [7] constructed EAQMDS cyclic codes with flexible parameters
and large minimum distance. Meanwhile, EAQMDS codes on various lengths were
found through the generalized Reed-Solomon codes (see [9, 19, 34, 35]).

Let n = q2−1
r , where r | (q + 1) and r = 3, 5, 7. In [33], Lu et al. used con-

stacyclic codes to construct EAQMDS codes of length n with minimum distance
d ≤ (q+1)(r+3)

2r − 1. In [30], Liu et al. enlarged the minimum distance of EAQMDS

codes up to d = (q+1)(r+1)
r − 1. In this work, we will further enlarge the range of the

minimum distance by employing cyclic codes over Fq2 of length n. We analyze cyclo-
tomic cosets whose elements are respectively from the sets of even integer numbers
and odd integer numbers and determine the number of maximally entangled states.
Our construction yields many new EAQEC codes with large minimum distance. In
particular, in the case when r = 3, we obtain EAQEC codes with minimum distance
greater than 2(q+1). The paper is organized as follows. In Sect. 2, some notations and
results about classical cyclic codes and EAQEC codes are presented. In Sect. 3, we
explore the structure of cyclic codes overFq2 and give a formula of the number ofmax-

imally entangled states. In Sect. 4, new EAQEC codes of lengths q2−1
r (r = 3, 5, 7)

are constructed from cyclic codes. Comparisons and conclusions are made in the last
section.

2 Preliminaries

Let q be a prime power. Let Fq2 be a finite field with q2 elements. For any α ∈ Fq2 ,
define the conjugate of α as ᾱ = αq . For two vectors u = (u0, u1, . . . , un−1) and
v = (v0, v1, . . . , vn−1) ∈ F

n
q2
, define their Hermitian inner product as

〈u, v〉 = u0v̄0 + u1v̄1 + · · · + un−1v̄n−1.

The vectors u and v are called Hermitian orthogonal if 〈u, v〉 = 0. A q2-ary linear
code C of length n with dimension k and minimum distance d, denoted by [n, k, d], is
a k-dimensional subspace of Fn

q2
. It is known that, for a q2-ary [n, k, d] linear code,

there exists the Singleton bound d ≤ n − k + 1. If d = n − k + 1 then C is called a
maximum distance separable (MDS) code. Define the Hermitian dual code of C as
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C⊥H =
{
u ∈ F

n
q2 | 〈u, v〉 = 0,∀v ∈ C

}
.

Then, C⊥H is linear and has dimension n − dim(C). The Hermitian hull of C, denoted
by HullH (C), is defined as the intersection of C and C⊥H , i.e., HullH (C) = C ∩C⊥H .

Let τ denote the cyclic shift on Fn
q2

given by τ (c0, c1, . . . , cn−1) = (cn−1, c0, . . . ,

cn−2) . A q2-ary linear code C of length n is called a cyclic code if τ(C) = C. Identity
(c0, c1, . . . , cn−1) ∈ F

n
q2

with its polynomial representation c(x) = c0 + c1x +
· · · + cn−1xn−1. Then, xc(x) corresponds to a cyclic shift of c(x) in the quotient ring
R = Fq2 [x]/〈xn − 1〉. Hence, a q2-ary cyclic code of length n is an ideal ofR. Note
that each ideal of R is principal. Let C = 〈g(x)〉 be a q2-ary cyclic code of length n,
where g(x) is a monic polynomial of minimal degree in C. Then g(x) is a divisor of
xn−1 and called the generator polynomial of C. The polynomial h(x) = (xn−1)/g(x)
is called the check polynomial of C.

Assume that gcd(n, q) = 1. Let Zn = {0, 1, . . . , n − 1} denote the the ring of
integers modulo n. For any i ∈ Zn , the q2-cyclotomic coset modulo n containing i
is defined by Ci = {iq2 j (mod n) | 0 ≤ j ≤ � − 1} ⊆ Zn , where � is the smallest
positive integer such that iq2� ≡ i(mod n). The smallest positive integer in Ci is
called the coset leader of Ci . A q2-cyclotomic coset Ci is said to be skew symmetric
if n − qi(mod n) ∈ Ci , otherwise it is said to be skew asymmetric. Suppose that C is
a q2-ary cyclic code of length n with generator polynomial g(x). Let β be a primitive
n-th root of unity. The set T = {i ∈ Zn | g(β i ) = 0} is called the defining set of C. It is
clear that T is a union of some q2-cyclotomic cosets modulo n and dim(C) = n−|T |.
The minimum distance of C can be estimated by the BCH bound.

Theorem 2.1 [36] (BCH bound) Suppose that C is a cyclic code of length n with
defining set T . If T consists of δ − 1 consecutive elements, for 2 ≤ δ ≤ n, then
d(C) ≥ δ.

Brun et al. [4] proved that binary EAQEC codes can be constructed from quaternary
linear codes. The key to the construction is to determine the number of maximally
entangled states. Formulas that obtain the number of maximally entangled states
required for a binary EAQEC code were provided in [4, 20, 45]. Galindo et al. [12]
proved that these formulas hold true for EAQEC codes over any finite field. The fol-
lowing is one of the construction methods of EAQEC codes, which will be used in the
sequel.

Theorem 2.2 ([12]) Let C be a q2-ary [n, k, d] linear code with parity check matrix
H. Then there exists an [[n, 2k − n + c, d; c]]q EAQEC code, where c = rank(HH†)

and H† denotes the conjugate transport of H.

A relation between rank(HH†) and the dimension of the Hermitian hull of a q2-ary
linear code is established in [12, 18].

Theorem 2.3 ([12, 18]) Let C be a q2-ary [n, k, d] linear code with parity checkmatrix
H. Then

rank(HH†) = n − k − dim(HullH (C)). (2)
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Thus, the problem of determining the number of maximally entangled states is
transformed into computing rank(HH†) or dim(HullH (C)). In the next section, we
will use the relation to obtain an approach to finding the number c from the defining
set.

3 The number of maximally entangled states

From now on, we assume that q is an odd prime power and n is an even positive integer
with gcd(n, q) = 1. Let C be a cyclic code over Fq2 of length n with parity check
matrix H . Following the ideas and methods in [13], we provide a formula that derives
the number of maximally entangled states for EAQEC codes from C. By Theorems
2.2 and 2.3, it suffices to compute the value of either rank(HH†) or dim(HullH (C)).

Let m = n
2 . Then xn − 1 = (xm − 1)(xm + 1) in Fq2 [x]. Let ξ be a primitive n-th

root of unity. Then ξ2 is a primitive m-th root of unity. Then xm − 1 has roots ξ i for
i = 0, 2, . . . , 2(m − 1) and xm + 1 has roots ξ j for j = 1, 3, . . . , 2m − 1. Let

Ωe = {0, 2, . . . , 2(m − 1)} and Ωo = {1, 3, . . . , 2m − 1}.

Suppose that C is a cyclic code over Fq2 of length n with defining set T . Then T =
Te ∪ To, where Te and To are the unions of some q2-cyclotomic cosets modulo n from
Ωe and Ωo, respectively. Denote T−q = {−qt(mod n) | t ∈ T }. It can be checked
that T−q is the complement of the defining set of C⊥H (see [3]).

Lemma 3.1 Let C be a cyclic code over Fq2 of length n with defining set T = Te ∪ To.

Then T ∩T−q = (Te ∩T−q
e )∪ (To ∩T−q

o ) and |T ∩T−q | = |Te ∩T−q
e |+ |To ∩T−q

o |.
Proof Notice that Te ∩ To = ∅ and T−q

e ∩ T−q
o = ∅. We have

T ∩ T−q = (Te ∪ To) ∩ (T−q
e ∪ T−q

o )

= (Te ∩ T−q
e ) ∪ (Te ∩ T−q

o ) ∪ (To ∩ T−q
e ) ∪ (To ∩ T−q

o )

= (Te ∩ T−q
e ) ∪ (To ∩ T−q

o ).

Hence, |T ∩ T−q | = |Te ∩ T−q
e | + |To ∩ T−q

o |. ��
It is known that the defining set of C⊥H is T⊥H = Zn\T−q . Denote T⊥H

e =
Ωe\T−q

e and T⊥H
o = Ωo\T−q

o .

Lemma 3.2 Let C be a cyclic code over Fq2 of length n with defining set T = Te ∪ To.

Then the defining set of C⊥H is given by T⊥H = T⊥H
e ∪ T⊥H

o .

Proof Using set operations, we have

T⊥H = Zn\T−q

= (Ωe ∪ Ωo)\(T−q
e ∪ T−q

o )

= (Ωe\T−q
e ) ∪ (Ωo\T−q

o )

= T⊥H
e ∪ T⊥H

o .

The result follows. ��
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In the light of Lemmas 3.1 and 3.2, we can provide an expression for determining
the value of rank(HH†), whichwill be helpful for computing the number ofmaximally
entangled states.

Theorem 3.3 Let C be a cyclic code over Fq2 of length n with defining set T = Te ∪To
and parity check matrix H. Then rank(HH†) = |Te ∩ T−q

e | + |To ∩ T−q
o |.

Proof By Lemma 3.1, HullH (C) has defining set

TH = (Te ∪ To) ∪ (T⊥H
e ∪ T⊥H

o )

= (Te ∪ T⊥H
e ) ∪ (To ∪ T⊥H

o ).

Hence,

dim(HullH (C)) = n − |TH | = n − |Te ∪ T⊥H
e | − |To ∪ T⊥H

o |
= n −

(
|Te| + |T⊥H

e | − |Te ∩ T⊥H
e |

)
−

(
|To| + |T⊥H

o | − |To ∩ T⊥H
o |

)

= |Te ∩ T⊥H
e | + |To ∩ T⊥H

o |
= |Te| + |To| − |Te ∩ T−q

e | − |To ∩ T−q
o |.

From (2),

c = rank(HH†)

= |Te| + |To| − dim(HullH (C))

= |Te ∩ T−q
e | + |To ∩ T−q

o |.

The result follows. ��

Combining Theorem 2.2 with Theorem 3.3, we can immediately obtain the follow-
ing result.

Corollary 3.4 Let C be a cyclic code over Fq2 of length n with defining set T = Te∪To.
Then there exists an [[n, 2k − n + c, d; c]]q EAQEC code, where

c = |Te ∩ T−q
e | + |To ∩ T−q

o |. (3)

From Corollary 3.4, we see that the parameter c of an EAQEC cyclic code with
even length can be calculated by the formula |Te ∩ T−q

e | + |To ∩ T−q
o |. Notice that

Te ∩ T−q
e ⊆ Ωe, To ∩ T−q

o ⊆ Ωo and Ωe ∩ Ωo = ∅. So, we can analyze the
cyclotomic cosets in the sets Ωe and Ωo independently. Compared with the known
formula |T ∩ T−q | [26, 28], the parameter c is more easily determined by (3) along
the odd and even lines.
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4 Construction of EAQMDS codes from cyclic codes

Let n = q2−1
r , where q is an odd prime power and r is an odd divisor of q + 1. In this

section, we are going to use cyclic codes over Fq2 of length n to construct EAQMDS
codes. Let m = n

2 . Notice that m is even.

Lemma 4.1 Let n = q2−1
r with odd r | (q + 1), and a = q+1

r . Then

1) C2k is a skew symmetric coset if and only if k = �(q−1)
2 , for 0 ≤ � ≤ a − 1.

2) For 2k + 1 ∈ Ωo, C2k+1 is a skew asymmetric coset.

Proof 1) C2k is a skew symmetric coset if and only if C2k = −qC2k , if and only
if 2k + q · 2k ≡ 0(mod n), i.e., (q + 1)k ≡ 0(mod m). Hence, m | (q + 1)k,
which means (q − 1) | 2kr . Notice that gcd(q − 1, r) = 1. This is equivalent to
(q − 1) | 2k. Therefore, k = �(q−1)

2 , for 0 ≤ � ≤ a − 1.
2) Suppose that C2k+1 = −qC2k+1. Then (2k + 1) + q(2k + 1) ≡ 0(mod n). This

implies (q − 1) | (2k + 1)r , which means (q − 1) | (2k + 1). This is impossible
since q −1 is even and 2k+1 is odd. Hence, C2k+1 is a skew asymmetric coset. ��

Lemma 4.2 Let n = q2−1
r with odd r | (q + 1). If 1 ≤ k1, k2 ≤ q−3

2 and k1 �= k2,
then C2k1 �= −qC2k2 .

Proof Suppose there exist two integers k1, k2 with 1 ≤ k1, k2 ≤ q−3
2 such thatC2k1 =

−qC2k2 . Observe that, if C2k1 �= −qC2k2 , then C2k2 �= −qC2k1 since q2 ≡ 1(mod
n). So, we can assume k1 < k2. Hence,

2qk1 + 2k2 ≡ 0(mod 2m), (4)

where 2 < k1 + k2 < q − 3. (4) is equivalent to

qk1 + k2 ≡ 0(mod m).

So, qk1 + k2 = ms, for some integer s. This gives

(q − 1)

[
(q + 1)s

2r
− k1

]
= k1 + k2,

which implies that (q − 1) | (k1 + k2). This produces a contradiction. ��

Lemma 4.3 Let n = q2−1
r with odd r | (q + 1). For any k1, k2 ∈ Zm, if C2k1+1 =

−qC2k2+1, then k1 + k2 + 1 ≡ 0(mod q−1
2 ).

Proof We can assume k1 < k2. It can be seen that C2k1+1 = −qC2k2+1 if and only if

2qk1 + 2k2 + q + 1 ≡ 0(mod n),
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which is equivalent to

qk1 + k2 + q + 1

2
≡ 0(mod m). (5)

By taking both sides of (5) modulo q−1
2 , we obtain k1 + k2 + 1 ≡ 0(mod q−1

2 ). The
result follows. ��
Lemma 4.4 Let n = q2−1

r with odd r | (q + 1). If 0 ≤ k1, k2 ≤ q−3
2 , then C2k1+1 =

−qC2k2+1 if and only if k1 + k2 = q−3
2 .

Proof We can assume k1 < k2. It can be seen that C2k1+1 = −qC2k2+1 if and only if

2qk1 + 2k2 + q + 1 ≡ 0(mod n),

which is equivalent to

qk1 + k2 + q + 1

2
≡ 0(mod m). (6)

By taking both sides of (6) modulo q−1
2 , we obtain k1 + k2 +1 ≡ 0(mod q−1

2 ). Since

k1 < k2 and 1 < k1 + k2 + 1 < q − 2, it follows that k1 + k2 = q−3
2 . The result

follows. ��
Based on the lemmas given above, we next explore the cases when r = 3, 5 and

7 respectively, and construct some classes of EAQMDS codes with larger minimum
distance than the codes available in the literature.

4.1 Length n = q2−1
3 with 3 | (q+ 1)

Assume that q ≥ 11 is an odd prime power. Let r = 3 and 3 | (q + 1). Then

n = q2−1
3 and m = n

2 . Now, we are going to find skew asymmetric pairs (Cδ1 ,Cδ2)

with 1 ≤ δ2 < δ1 ≤ 8q−10
3 . For cyclotomic cosets C2k in Ωe, by Lemma 4.2, we only

need to consider the case when k ≥ q+1
2 .

Lemma 4.5 Let n = q2−1
3 with 3 | (q +1). Let k1 and k2 be integers with

q+1
2 ≤ k1 ≤

4q−8
3 and 1 ≤ k2 < k1. The pairs (2k1, 2k2) such that C2k2 = −qC2k1 are given by

(
4q−2
3 ,

2q−4
3 ), ( 5q−1

3 ,
q−5
3 ) and (

7q−5
3 ,

5q−7
3 ).

Proof If C2k2 = −qC2k1 , then

k1q + k2 ≡ 0(mod m). (7)

Note that (q − 1) | m. Taking both sides of (7) modulo q − 1, we have k1 + k2 ≡
0(mod q − 1). Since q+3

2 ≤ k1 + k2 <
8q−16

3 , it follows that k1 + k2 = q − 1 or
2(q − 1).

1) k1 + k2 = q − 1. Then k2 = q − 1 − k1. Putting it into (7) one obtains k1 + 1 ≡
0(mod q+1

6 ). Note that q+1
2 ≤ k1 ≤ q − 2, so k1 = 2q−1

3 or 5q−1
6 . Hence,

(2k1, 2k2) = (
4q−2
3 ,

2q−4
3 ) or (

5q−1
3 ,

q−5
3 ).
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2) k1 + k2 = 2(q − 1). Then k2 = 2(q − 1) − k1. Putting it into (7) one obtains
k1 + 2 ≡ 0(mod q+1

6 ). Note that q − 1 < k1 ≤ 4q−8
3 , so k1 = 7q−5

6 . Hence,

(2k1, 2k2) = (
7q−5
3 ,

5q−7
3 ).

This completes the proof. ��
Lemma 4.6 Let n = q2−1

3 with 3 | (q + 1). Let k1 and k2 be integers with 0 ≤ k1 ≤
4q−8
3 and 1 ≤ k2 < k1. The pairs (2k1 + 1, 2k2 + 1) such that C2k2+1 = −qC2k1+1

are given by (
2q−1
3 ,

q−2
3 ), ( 5q−4

3 ,
4q−5
3 ), (2q − 1, q − 2) and (

7q−2
3 ,

2q−7
3 ).

Proof From C2k2+1 = −qC2k1+1, we can get

qk1 + k2 + q + 1

2
≡ 0(mod m). (8)

By Lemma 4.3, k1 + k2 + 1 ≡ 0(mod q−1
2 ). Since 1 ≤ k1 + k2 + 1 <

8q−13
3 , it

follows that k1 + k2 + 1 = t · q−1
2 , for 1 ≤ t ≤ 5. Notice that k1 + k2 < 2k1 and

k2 ≥ 1.

1) When t = 1, q−3
4 < k1 ≤ q−5

2 and k2 = q−1
2 −k1−1. From (8), we obtain k1+1 ≡

0(mod q+1
6 ). This gives k1 = q−2

3 . Hence, (2k1 + 1, 2k2 + 1) = (
2q−1
3 ,

q−2
3 ).

2) When t = 2, q−1
2 < k1 ≤ q − 3 and k2 = q − k1 − 2. From (8), we obtain

k1+ 3
2 ≡ 0( mod q+1

6 ), which has no solutions.Hence, such pairs (2k1+1, 2k2+1)
do not exist.

3) When t = 3, 3q−5
4 < k1 ≤ 3q−7

2 and k2 = 3(q−1)
2 − k1 − 1. From (8), we

obtain k1 + 2 ≡ 0(mod q+1
6 ). This gives k1 = 5q−7

6 , q − 1 or 7q−5
6 . Hence,

(2k1 + 1, 2k2 + 1) = (
5q−4
3 ,

4q−5
3 ), (2q − 1, q − 2) or (

7q−2
3 ,

2q−7
3 ).

4) When t = 4 or 5, as in Case 2), we can get the pairs (2k1 + 1, 2k2 + 1) such that
C2k2+1 = −qC2k1+1 do not exist.

This completes the proof. ��
Let C be a cyclic code overFq2 of length n with defining set T = Te∪To = ∪δ

i=1Ci ,

where 1 ≤ δ ≤ 8q−10
3 . We use the cyclic codes C to construct EAQMDS codes with

flexible parameters.

Theorem 4.7 Let n = q2−1
3 with 3 | (q + 1). There exist q-ary EAQMDS codes with

parameters

1) [[n, n − 2d + 5, d; 3]]q , where q ≤ d ≤ 4q−2
3 (q ≥ 11).

2) [[n, n − 2d + 7, d; 5]]q , where 4q+1
3 ≤ d ≤ 5q−4

3 (q ≥ 11).

3) [[n, n − 2d + 11, d; 9]]q , where 5q+2
3 ≤ d ≤ 2q − 2 (q ≥ 11).

4) [[n, n − 2d + 14, d; 12]]q , where 2q ≤ d ≤ 7q−5
3 (q ≥ 17).

5) [[n, n − 2d + 18, d; 16]]q , where 7q+1
3 ≤ d ≤ 8q−7

3 (q ≥ 17).

Proof Let C be defined as above. We know that C is an [n, n − δ, δ + 1] MDS code
over Fq2 .
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1) If q − 1 ≤ δ ≤ 4q−5
3 , then { 2q−1

3 ,
q−2
3 , q − 1} ⊆ T . By Lemma 4.1 1) and

Lemma 4.2, Te ∩ T−q
e = {q − 1}. By Lemma 4.1 2) and Lemma 4.6, To ∩ T−q

o =
{ 2q−1

3 ,
q−2
3 }. By Theorem 3.3, c = |Te ∩ T−q

e | + |To ∩ T−q
o | = 3. Applying

Corollary 3.4 to C one obtains an [[n, n − 2δ + 3, δ + 1; 3]]q EAQEC code. It can

be checked that the parameters meet the Singleton-type bound (1), and hence C is
an EAQMDS code. This produces the first class of codes.

2) If 4q−2
3 ≤ δ ≤ 5q−7

3 , then { 2q−1
3 ,

q−2
3 , q − 1, 4q−2

3 ,
2q−4
3 } ⊆ T . It can be seen

that Te ∩ T−q
e = {q − 1, 4q−2

3 ,
2q−4
3 } and To ∩ T−q

o = { 2q−1
3 ,

q−2
3 }. So, c =

|Te ∩ T−q
e | + |To ∩ T−q

o | = 5. This produces an [[n, n − 2δ + 5, δ + 1; 5]]q
EAQMDS code, which gives the second class of codes.

3) If 5q−1
3 ≤ δ ≤ 2q−3, then { 2q−1

3 ,
q−2
3 , q−1, 4q−2

3 ,
2q−4
3 ,

5q−4
3 ,

4q−5
3 ,

5q−1
3 ,

q−5
3 }

⊆ T . We have Te ∩ T−q
e = {q − 1, 4q−2

3 ,
2q−4
3 ,

5q−1
3 ,

q−5
3 } and To ∩ T−q

o =
{ 2q−1

3 ,
q−2
3 ,

5q−4
3 ,

4q−5
3 }. So, c = 9. This produces an [[n, n− 2δ + 9, δ + 1; 9]]q

EAQMDS code. This gives the third class of codes.

4) If 2q − 1 ≤ δ ≤ 7q−8
3 , then Te ∩ T−q

e = {q − 1, 4q−2
3 ,

2q−4
3 ,

5q−1
3 ,

q−5
3 , 2q − 2}

and To ∩ T−q
o = { 2q−1

3 ,
q−2
3 ,

5q−4
3 ,

4q−5
3 , 2q − 1, q − 2}. So, c = 12. Hence, we

get an [[n, n − 2δ + 12, δ + 1; 12]]q EAQMDS code. This gives the fourth class
of codes.

5) If 7q−2
3 ≤ δ ≤ 8q−10

3 , then Te ∩ T−q
e = {q − 1, 4q−2

3 ,
2q−4
3 , 2q −

2, 5q−1
3 ,

q−5
3 ,

7q−5
3 ,

5q−7
3 } and To ∩ T−q

o = { 2q−1
3 ,

q−2
3 ,

5q−4
3 ,

4q−5
3 , 2q − 1, q −

2, 7q−2
3 ,

2q−7
3 }. So, c = 16. Hence, we have an [[n, n − 2δ + 16, δ + 1; 16]]q

EAQMDS code. This gives the last class of codes. ��

4.2 Length n = q2−1
5 with 5 | (q+ 1)

Assume that q ≥ 19 is an odd prime power with 5 | (q+1). Let n = q2−1
5 andm = n

2 .

Lemma 4.8 Let n = q2−1
5 with 5 | (q + 1). Let k1, k2 be integers with q+1

2 ≤ k1 ≤
9q−16
10 and 1 ≤ k2 < k1. The pairs (2k1, 2k2) with C2k2 = −qC2k1 are given by

(
6q−4
5 ,

4q−6
5 ), ( 7q−3

5 ,
3q−7
5 ) and (

8q−2
5 ,

2q−8
5 ).

Proof If C2k2 = −qC2k1 , then

k1q + k2 ≡ 0(mod m). (9)

Taking both sides of (9) modulo q − 1, we have k1 + k2 ≡ 0(mod q − 1). Since
q+3
2 ≤ k1 + k2 <

9q−16
5 , it follows that k1 + k2 = q − 1 and k2 = q − 1− k1. Putting

123



Construction of new entanglement-assisted quantum... Page 11 of 17 206

it into (9) one obtains k1 + 1 ≡ 0(mod q+1
10 ). Note that q+1

2 ≤ k1 ≤ q − 2. So, we

can get (2k1, 2k2) = (
6q−4
5 ,

4q−6
5 ), ( 7q−3

5 ,
3q−7
5 ) or (

8q−2
5 ,

2q−8
5 ). ��

Lemma 4.9 Let n = q2−1
5 with 5 | (q+1). Let k1, k2 be integers with 0 ≤ k1 ≤ 9q−16

10
and 1 ≤ k2 < k1. The pairs (2k1 + 1, 2k2 + 1) such that C2k2+1 = −qC2k1+1 are
given by (2k1 + 1, 2k2 + 1) = (

3q−2
5 ,

2q−3
5 ), ( 4q−1

5 ,
q−4
5 ) and (

8q−7
5 ,

7q−8
5 ).

Proof As in the proof of Lemma 4.6, we have

qk1 + k2 + q + 1

2
≡ 0(mod m)

and

k1 + k2 + 1 ≡ 0(mod
q − 1

2
). (10)

Since 1 ≤ k1 + k2 + 1 <
9q−11

5 , it follows from (10) that k1 + k2 = q−3
2 , q − 2 or

3q−5
2 . Notice that k1 + k2 < 2k1. Then we can get

(2k1 + 1, 2k2 + 1) =
(
3q − 2

5
,
2q − 3

5

)
,

(
4q − 1

5
,
q − 4

5

)
or

(
8q − 7

5
,
7q − 8

5

)
.

This gives the result. ��
By using Lemmas 4.8 and 4.9, we can construct EAQMDS codes of length n =

q2−1
5 .

Theorem 4.10 Let n = q2−1
5 with 5 | (q + 1). There exist q-ary EAQMDS codes with

parameters

1) [[n, n − 2d + 7, d; 5]]q , where q ≤ d ≤ 6q−4
5 .

2) [[n, n − 2d + 9, d; 7]]q , where 6q+1
5 ≤ d ≤ 7q−3

5 .

3) [[n, n − 2d + 11, d; 9]]q , where 7q+2
5 ≤ d ≤ 8q−7

5 .

4) [[n, n − 2d + 15, d; 13]]q , where 8q+3
5 ≤ d ≤ 9q−6

5 .

Proof Let C be a cyclic code over Fq2 of length n with defining set T = Te ∪ To =
∪δ
i=1Ci , where 1 ≤ δ ≤ 9q−11

5 . Then C is an [n, n − δ, δ + 1] MDS code over Fq2 .

1) If q − 1 ≤ δ ≤ 6q−9
5 , then Te ∩ T−q

e = {q − 1} and To ∩ T−q
o =

{ 3q−2
5 ,

2q−3
5 ,

4q−1
5 ,

q−4
5 }. So, c = 5. By applying Corollary 3.4, we obtain an

[[n, n − 2δ + 5, δ + 1; 5]]q EAQMDS code, which is the first class of codes.

2) If 6q−4
5 ≤ δ ≤ 7q−8

5 , then Te ∩ T−q
e = {q − 1, 6q−4

5 ,
4q−6
5 } and To ∩ T−q

o =
{ 3q−2

5 ,
2q−3
5 ,

4q−1
5 ,

q−4
5 }. So, c = 7.Hence,we obtain an [[n, n−2δ+7, δ+1; 7]]q

EAQMDS code, which is the second class of codes.
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3) If 7q−3
5 ≤ δ ≤ 8q−12

5 , then Te ∩ T−q
e = {q − 1, 6q−4

5 ,
4q−6
5 ,

7q−3
5 ,

3q−7
5 } and

To ∩ T−q
o = { 3q−2

5 ,
2q−3
5 ,

4q−1
5 ,

q−4
5 }. So, c = 9. Hence, we obtain an [[n, n −

2δ + 9, δ + 1; 9]]q EAQMDS code, which gives the third class of codes.

4) If 8q−2
5 ≤ δ ≤ 9q−11

5 , thenTe∩T−q
e = {q−1, 6q−4

5 ,
4q−6
5 ,

7q−3
5 ,

3q−7
5 ,

8q−2
5 ,

2q−8
5 }

and To ∩ T−q
o = { 3q−2

5 ,
2q−3
5 ,

4q−1
5 ,

q−4
5 ,

8q−7
5 ,

7q−8
5 }. So, c = 13. Hence, we

obtain an [[n, n−2δ +13, δ +1; 13]]q EAQMDS code, which gives the last class

of codes. ��

4.3 Length n = q2−1
7 with 7 | (q+ 1)

Assume that q ≥ 27 is an odd prime power with 7 | (q+1). Let n = q2−1
7 andm = n

2 .

Lemma 4.11 Let n = q2−1
7 with 7 | (q + 1). Let k1, k2 be integers with

q+1
2 ≤ k1 ≤

11q−24
14 and 1 ≤ k2 < k1. The pairs (2k1, 2k2) with C2k2 = −qC2k1 are given by

(
8q−6
7 ,

6q−8
7 ), ( 9q−5

7 ,
5q−9
7 ) and (

10q−4
7 ,

4q−10
7 ).

Proof If C2k2 = −qC2k1 , then

k1q + k2 ≡ 0(mod m). (11)

Taking both sides of (11) modulo q − 1, we have k1 + k2 ≡ 0(mod q − 1). Since
q+3
2 ≤ k1 + k2 <

11q−24
7 , it follows that k1 + k2 = q −1 and k2 = q −1− k1. Putting

it into (11) one obtains k1 + 1 ≡ 0(mod q+1
14 ). Note that q+1

2 ≤ k1 ≤ q − 2. So, we

can get (2k1, 2k2) = (
8q−6
7 ,

6q−8
7 ), ( 9q−5

7 ,
5q−9
7 ) or (

10q−4
7 ,

4q−10
7 ). ��

Lemma 4.12 Let n = q2−1
7 with 7 | (q + 1). Let k1, k2 be integers with 0 ≤ k1 ≤

11q−24
14 and 1 ≤ k2 < k1. The pairs (2k1 + 1, 2k2 + 1) such that C2k2+1 = −qC2k1+1

are given by (2k1 + 1, 2k2 + 1) = (
4q−3
7 ,

3q−4
7 ), ( 5q−2

7 ,
2q−5
7 ) and (

6q−1
7 ,

q−6
7 ).

Proof As in the proof of Lemma 4.6, since 1 ≤ k1 + k2 + 1 <
11q−17

7 , it follows that

k1+k2 = q−3
2 or q−2. Notice that k1+k2 < 2k1. Thenwe can get (2k1+1, 2k2+1) =

(
4q−3
7 ,

3q−4
7 ), ( 5q−2

7 ,
2q−5
7 ) or (

6q−1
7 ,

q−6
7 ). ��

By using Lemmas 4.11 and 4.12, we can find the following EAQMDS codes of

length n = q2−1
7 .

Theorem 4.13 Let n = q2−1
7 with 7 | (q + 1). There exist q-ary EAQMDS codes with

parameters

1) [[n, n − 2d + 9, d; 7]]q , where q ≤ d ≤ 8q−6
7 .

2) [[n, n − 2d + 11, d; 9]]q , where 8q+1
7 ≤ d ≤ 9q−5

7 .

3) [[n, n − 2d + 13, d; 11]]q , where 9q+2
7 ≤ d ≤ 10q−4

7 .
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4) [[n, n − 2d + 15, d; 13]]q , where 10q+3
7 ≤ d ≤ 11q−10

7 .

Proof Let C be a cyclic code over Fq2 of length n with defining set T = Te ∪ To =
∪δ
i=1Ci , where 1 ≤ δ ≤ 11q−17

7 . Then C is an [n, n − δ, δ + 1] MDS code over Fq2 .

1) If q − 1 ≤ δ ≤ 8q−13
7 , then Te ∩ T−q

e = {q − 1} and To ∩ T−q
o =

{ 4q−3
7 ,

3q−4
7 ,

5q−2
7 ,

2q−5
7 ,

6q−1
7 ,

q−6
7 }. So, c = 7. By applying Corollary 3.4, we

obtain an [[n, n − 2δ + 7, δ + 1; 7]]q EAQMDS code, which is the first class of

codes.

2) If 8q−6
7 ≤ δ ≤ 9q−12

7 , then Te ∩ T−q
e = {q − 1, 8q−6

7 ,
6q−8
7 } and To ∩ T−q

o =
{ 4q−3

7 ,
3q−4
7 ,

5q−2
7 ,

2q−5
7 ,

6q−1
7 ,

q−6
7 }. So, c = 9. Hence, we obtain an [[n, n −

2δ + 9, δ + 1; 9]]q EAQMDS code, which is the second class of codes.

3) If 9q−5
7 ≤ δ ≤ 10q−11

7 , then Te ∩ T−q
e = {q − 1, 8q−6

7 ,
6q−8
7 ,

9q−5
7 ,

5q−9
7 } and

To ∩ T−q
o = { 4q−3

7 ,
3q−4
7 ,

5q−2
7 ,

2q−5
7 ,

6q−1
7 ,

q−6
7 }. So, c = 11. Hence, we obtain

an [[n, n − 2δ + 11, δ + 1; 11]]q EAQMDS code, which gives the third class of

codes.

4) If 10q−4
7 ≤ δ ≤ 11q−17

7 , then Te ∩T−q
e = {q−1, 8q−6

7 ,
6q−8
7 ,

9q−5
7 ,

5q−9
7 ,

10q−4
7 ,

4q−10
7 } and To∩T−q

o = { 4q−3
7 ,

3q−4
7 ,

5q−2
7 ,

2q−5
7 ,

6q−1
7 ,

q−6
7 }. So, c = 13. Hence,

we obtain an [[n, n − 2δ + 13, δ + 1; 13]]q EAQMDS code, which gives the last

class of codes. ��

5 Comparisons and conclusions

In this paper, we have constructed EAQMDS codes with length n = q2−1
r , where

r | (q + 1) and r = 3, 5, 7. Through separating the defining set into the sets of
even integer numbers and odd integer numbers, we have determined the number of
maximally entangled states. Our construction has produced many new EAQMDS
codes with large minimum distance. In [8, 23, 43], some standard quantum MDS
codes with the same length have been obtained, and they have minimum distance not
more than q+1. Our EAQMDS codes presented in this paper have minimum distance
upper limit greater than 3(q+1)

2 . In particular, when r = 3, we obtain the EAQMDS
codes with minimum distance upper limit greater than 2(q +1). We now compare our
EAQMDS codes with the known ones in the literature.

In [10], Fan et al. constructed EAQMDS codes with parameters [[ q2−1
r ,

q2−1
r −

2d + r + 2, d; r ]]q , where r | (q + 1) and (r−1)(q+1)
r + 2 ≤ d ≤ (r+1)(q+1)

r − 2. It

is obvious that 3(q+1)
2 >

(r+1)(q+1)
r − 2, hence our construction produces more codes

processing bigger minimum distance.

In [40], Pang et al. obtained EAQMDS codes with parameters [[ q2−1
r ,

q2−1
r −2d+

2m + 1, d; 2m − 1]]q , where r | (q + 1), 1 ≤ m ≤ r−1
2 and (r+2m−1)(q+1)

2r ≤
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Table 1 EAQMDS codes of length n = q2−1
3 with 3 | (q + 1)

[[n, k, d; c]]q d d in [30]

[[ q2−1
3 ,

q2−1
3 − 2d + 5, d; 3]]q (q ≥ 11) q ≤ d ≤ 4q−2

3 q + 1 ≤ d ≤ 4q−2
3

[[ q2−1
3 ,

q2−1
3 − 2d + 7, d; 5]]q (q ≥ 11) 4q+1

3 ≤ d ≤ 5q−4
3 −−

[[ q2−1
3 ,

q2−1
3 − 2d + 11, d; 9]]q (q ≥ 11) 5q+2

3 ≤ d ≤ 2q − 2 −−
[[ q2−1

3 ,
q2−1
3 − 2d + 14, d; 12]]q (q ≥ 17) 2q ≤ d ≤ 7q−5

3 −−
[[ q2−1

3 ,
q2−1
3 − 2d + 18, d; 16]]q (q ≥ 17) 7q+1

3 ≤ d ≤ 8q−7
3 −−

Table 2 EAQMDS codes of length n = q2−1
5 with 5 | (q + 1)

[[n, k, d; c]]q d d in [30]

[[ q2−1
5 ,

q2−1
5 − 2d + 7, d; 5]]q q ≤ d ≤ 6q−4

5 q + 1 ≤ d ≤ 6q+1
5

[[ q2−1
5 ,

q2−1
5 − 2d + 9, d; 7]]q 6q+1

5 ≤ d ≤ 7q−3
5 −−

[[ q2−1
5 ,

q2−1
5 − 2d + 11, d; 9]]q 7q+2

5 ≤ d ≤ 8q−7
5 −−

[[ q2−1
5 ,

q2−1
5 − 2d + 15, d; 13]]q 8q+3

5 ≤ d ≤ 9q−6
5 −−

Table 3 EAQMDS codes of length n = q2−1
7 with 7 | (q + 1)

[[n, k, d; c]]q d d in [30]

[[ q2−1
7 ,

q2−1
7 − 2d + 9, d; 7]]q q ≤ d ≤ 8q−6

7 q + 1 ≤ d ≤ 8q+1
7

[[ q2−1
7 ,

q2−1
7 − 2d + 11, d; 9]]q 8q+1

7 ≤ d ≤ 9q−5
7 −−

[[ q2−1
7 ,

q2−1
7 − 2d + 13, d; 11]]q 9q+2

7 ≤ d ≤ 10q−4
7 −−

[[ q2−1
7 ,

q2−1
7 − 2d + 15, d; 13]]q 10q+3

7 ≤ d ≤ 11q−10
7 −−

d ≤ (q−1)r+(2m+1)(q+1)
2r . It can be seen that these codes have minimum distance not

more than q. Hence, our quantum codes have larger minimum distance and higher
error-correcting capability.

In [30], by using constacyclic codes, Liu et al. constructed EAQMDS codes with
minimum distance more than q + 1. We compare the parameters of our codes with

those from [30] in Tables 1, 2 and 3. There for length n = q2−1
r (r = 3, 5, 7), we show

almost all the parameters constructed in [30] are covered by our construction based on
cyclic codes. Furthermore, new classes of EQAMDS codes have been obtained, which
have minimum distance with a wide range. As the minimum distance gets large, the
required number of maximally entangled states becomes growing. However, the net
rate k−c

n remains unchanged. In Table 4, wemake a comparison between our codes and
the known ones in [30] for some special lengths. We find the number c of maximally
entangled states changes with the values of r and d. However, it is not easy to describe
the changeable rules among the three values. A further consideration is to present an
explicit expression to reveal their relation.
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Table 4 Some new EAQMDS codes and comparisons

q r Our parameters Parameters in [30]

11 3 [[40, 45 − 2d, d; 3]]11 11 ≤ d ≤ 14 [[40, 45 − 2d, d; 3]]11 12 ≤ d ≤ 14

11 3 [[40, 47 − 2d, d; 5]]11 15 ≤ d ≤ 17 New

11 3 [[40, 51 − 2d, d; 9]]11 19 ≤ d ≤ 20 New

17 3 [[96, 101 − 2d, d; 3]]17 17 ≤ d ≤ 22 [[96, 101 − 2d, d; 3]]17 18 ≤ d ≤ 22

17 3 [[96, 103 − 2d, d; 5]]17 23 ≤ d ≤ 27 New

17 3 [[96, 107 − 2d, d; 9]]17 29 ≤ d ≤ 32 New

17 3 [[96, 110 − 2d, d; 12]]17 34 ≤ d ≤ 38 New

17 3 [[96, 114 − 2d, d; 16]]17 40 ≤ d ≤ 43 New

19 5 [[72, 79 − 2d, d; 5]]19 19 ≤ d ≤ 22 [[72, 79 − 2d, d; 5]]11 20 ≤ d ≤ 23

19 5 [[72, 81 − 2d, d; 7]]19 23 ≤ d ≤ 26 New

19 5 [[72, 83 − 2d, d; 9]]19 27 ≤ d ≤ 29 New

19 5 [[72, 87 − 2d, d; 13]]19 31 ≤ d ≤ 33 New

23 3 [[176, 181 − 2d, d; 3]]23 23 ≤ d ≤ 30 [[176, 181 − 2d, d; 3]]23 24 ≤ d ≤ 30

23 3 [[176, 183 − 2d, d; 5]]23 31 ≤ d ≤ 37 New

23 3 [[176, 187 − 2d, d; 9]]23 39 ≤ d ≤ 44 New

23 3 [[176, 190 − 2d, d; 12]]23 46 ≤ d ≤ 52 New

23 3 [[176, 194 − 2d, d; 16]]23 54 ≤ d ≤ 59 New

27 7 [[104, 113 − 2d, d; 7]]27 27 ≤ d ≤ 30 [[104, 113 − 2d, d; 7]]11 29 ≤ d ≤ 31

27 7 [[104, 115 − 2d, d; 9]]27 31 ≤ d ≤ 34 New

27 7 [[104, 117 − 2d, d; 11]]27 35 ≤ d ≤ 38 New

27 7 [[104, 119 − 2d, d; 13]]27 39 ≤ d ≤ 41 New

29 5 [[168, 175 − 2d, d; 5]]29 29 ≤ d ≤ 34 [[168, 175 − 2d, d; 5]]11 30 ≤ d ≤ 35

29 5 [[168, 177 − 2d, d; 7]]29 35 ≤ d ≤ 40 New

29 5 [[168, 179 − 2d, d; 9]]29 41 ≤ d ≤ 45 New

29 5 [[168, 183 − 2d, d; 13]]29 47 ≤ d ≤ 51 New

41 7 [[240, 249 − 2d, d; 7]]41 41 ≤ d ≤ 46 [[240, 249 − 2d, d; 7]]41 42 ≤ d ≤ 47

41 7 [[240, 251 − 2d, d; 9]]41 47 ≤ d ≤ 52 New

41 7 [[240, 253 − 2d, d; 11]]41 53 ≤ d ≤ 58 New

41 7 [[240, 255 − 2d, d; 13]]41 59 ≤ d ≤ 63 New

Our construction is based on classical cyclic codes over Fq2 with even length which
enables us to deal with two classes of cyclotomic cosets independently. It requires the
size of the finite field must be an odd prime power. Hence, the construction is generally
invalid for the 2�-ary case. It is expected to provide a new method for finding new
EAQMDS codes over finite fields with characteristic two. For a nonzero element
λ ∈ Fq2 , x

n − λ probably factors as the product of two binomials xn/2 − λ1 and
xn/2 − λ2 over a finite field. Hence, it is hopeful to construct new EAQMDS codes
from certain types of constacyclic codes.
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