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Abstract
Quantumconvolutional codes constructedwith the stabilizer formalismhave the ability
to protect a sequence of qubits against decoherence. Such codes can correct errors
including phase-flip errors and bit-flip errors at the receiver by measuring the error
syndrome. In this paper, we propose a framework of quantum convolutional codes
which can dealwith continuous errors that occurmore frequently in quantum channels.
We concatenate quantum convolutional codes with the GKP code which is designed
to be resistant to small shift errors. Instead of measuring the error syndrome, we make
use of the output information of the decoding circuit with several iterations to further
reduce the error.

Keywords Quantum convolutional codes · The GKP code · Quantum error correction

1 Introduction

Quantum error correction codes play an important role in quantum communication as
they can resist quantum noise and improve the reliability of quantum communication.

The 9-bit quantum encoding proposed by Shor in 1995 can correct single-bit phase-
flip error or bit-flip error [1], which is considered the first attempt on quantum error
correction. On this basis, Calderbank, Shor and Steane proposed a basic quantum
block coding framework using the idea of classical linear block error correction codes
and two special classical binary error correction codes in 1996 [2, 3]. This quantum
error correction code is called Calderbank–Shor–Steane (CSS) code. In the same year,
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Gottesman proposed the quantum stabilizer codes using the stabilizer formalism to
protect the target qubits from the noise of channels [4].

In recent years, several kinds of quantum error correction codes developed from
stabilizer codes are proposed and developed. The surface code requires only nearest-
neighbour interactions so that it has comparatively high threshold [5, 6]. Toric codes
use tensors to construct geometric-looking codes with highly non-trivial properties [7,
8]. The complex code constructions are represented as tensor networks built from the
tensors of simple codes or states in a modular fashion [9]. Graph states are used to pro-
vide a fruitful approach to the construction and characterization of topological quantum
error correction codes [10]. The approachesmentioned above are naturally local,which
make them appealing for practical implementations with locality constraints. When
we hope to transmit a series of quantum states, using quantum convolutional codes is
a better choice. Quantum convolutional codes can link information transmitted back
and forth with uncomplicated quantum circuits.

Quantum convolutional codes are proposed to protect quantum information and
achieve reliable quantum communication by combining traditional coding and quan-
tum information. In the beginning, Chau proposed a type of quantum convolutional
code based on classical convolutional codes in 1998 [11]. Then, based on the concept
of traditional convolutional codes [12], quantum convolutional codes are constructed
using the CSS code framework and methods of the stabilizer codes. Ollivier and
Tillich first described quantum convolutional codes in 2003, using stabilizer forms
and providing an explicit encoding circuit [13]. Forney proposed a tail-biting quan-
tum convolutional code, which has a higher rate and lower decoding complexity [14,
15].

In recent years, improved quantum convolutional codes have been proposed, but
they are all focused on improving the ability of codewords and reducing complexity
[16–19]. However, the errors generated during the transmission of qubits cannot all be
described as phase-flip errors or bit-flip errors. Consider a more complicated situation
where the errors are continuous. Lately, continuous quantum error correction attracts
great attention.We hope to extend the quantum convolutional code so that it can handle
continuous quantum errors.

To correct the continuous errors, Gottesman, Kitaev and Preskill proposed an
encoding mode that encodes quantum information in a harmonic oscillator, which
is inherently fault-tolerant [20]. Such kind of quantum code is called the GKP code,
and it works well in dealing with continuous quantum errors.

In this paper, we proposed a quantum convolutional code concatenated with the
GKP codes to correct the continuous quantum errors. Furthermore, we also proposed
an algorithm to enhance the error correction capability of the code.

2 Basic concepts

To construct a quantum convolutional code that can deal with continuous errors, we
have to change the structure of existing quantum convolutional codes. The GKP code
is a typical and practical case for protecting the qubits from small shift errors which
are continuous. In this case, we attempt to concatenate the quantum convolutional
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codes with the GKP code to give them the capacity to correct continuous errors. This
section will briefly introduce quantum convolutional codes and the GKP code.

2.1 Quantum convolutional codes

Quantum convolutional codes use the stabilizer formalism which was first proposed
by Gottesman [21, 22]. The error syndrome is defined by the Pauli matrix.

X =
[
0 1
1 0

]
,Y =

[
0 -i
i 0

]
,Z =

[
1 0
0 −1

]
(1)

Pauli matrixX refers to bit flipping, Z refers to phase flipping, andY refers to both.
The code subspace C of any stabilizer codes is defined as the largest subspace stabilized
by an Abelian group S acting on the N physical qubits of the code. In practice, S is
a subgroup of the multiplicative Pauli group GN = sp{I , X ,Y , Z}⊗N [23]. The code
subspace C can be defined by a set of independent generators {Mi } of S:

∀i, |ψ〉 = Mi |ψ〉 ⇔ |ψ〉 ∈ C (2)

An [n, k,m] stabilizer code is possible to encode k qubits of quantum information
in n qubits and correct at most (m − 1)/2 errors. Similarly, the stabilizer group S for
an [n, k,m] convolutional code can be given by:

S = sp
{
Mj,i = I⊗ j×n ⊗ M0,i , 1 ≤ i ≤ n − k, 0 ≤ j

}
(3)

where M0,i ∈ Gn+m . Above Mj,i ’s are required to be independent and to commute
with each other. The encoding circuit mapping the to-be-protected qubits c j,i onto the
code subspace is written as follows:

∣∣c0,1, . . . , cq−1,k
〉 →

⎛
⎝∏

i, j

1 + Mj,i√
2

⎞
⎠∏

r ,s

X̄
cs,r
s,r |0, . . . , 0〉 (4)

for cs,r ∈ {0, 1}, 0 < i ≤ n − k, 0 ≤ j < q + λ, 0 ≤ s < q and 1 ≤ r ≤ k. The X̄i

operator is the encoded Pauli operator X. This operation can be decomposed into two
steps. First,

∏
r ,s X̄

cs,r
s,r applies the different flip operators depending on the value of

the to-be-protected qubits on the computational basis. Second, this state is projected
onto the code subspace.

Take the [5,1,2] convolutional code, for example, [24]. The generator matrix of the
stabilizer group can be written as:

M =

⎛
⎜⎜⎝

0 1 1 0 0 1 0 0 1 0
0 0 1 1 0 0 1 0 0 1
0 0 0 1 1 D 0 1 0 0
D 0 0 0 1 0 D 0 1 0

⎞
⎟⎟⎠ (5)
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Fig. 1 Circuit for encoding the first three qubits of a stream of quantum information with the 5-qubit
convolutional code

From the generator matrix, it is easy to obtain the encoding circuit as Fig. 1 [24].
To estimate the error at the receiver, the quantum Viterbi algorithm was introduced.

The algorithm examines the syndromes block by block and updates a list of error
candidates among which one of them coincides with the most likely error. Through
the algorithm, the most likely error can be selected and then corrected.

2.2 The GKP code

TheGKP codewas designed to protect the qubits from small continuous shift errors by
encoding the qubit |0〉 and qubit |1〉 with the harmonic oscillator [20]. For a harmonic
oscillator, the position and momentum operators are defined as q̂ and p̂ quadratures.
Their eigenstates are called quadrature states, which are defined as |q〉 and |p〉 with
the Fourier transformation relation written as:

|q〉 =
∫

dp√
2π

eipq |p〉 (6)

The arbitrary errors will influence both quadratures as they cannot be separated.
Consider the errors u and v occur on the q̂ and p̂ quadratures. The affect can be written
as

|q + u〉 = e−iupq̂, |p + v〉 = e−ivq p̂ (7)

where q, p are arbitrary real numbers representing the original quantum state and
u, v are arbitrary real numbers representing the shift error. With the property of the
harmonic oscillator, the logical |0〉 and |1〉 expanded in the quadrature states |q〉 and
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|p〉 can be defined as:

|0〉 =
∑
n

δ(q − 2n
√

π)|q〉 = 1√
2

∑
n

δ(p − n
√

π)|p〉 (8)

|1〉 =
∑
n

δ(q − (2n + 1)
√

π)|q〉 = 1√
2

∑
n

(−1)nδ(p − n
√

π)|p〉 (9)

Apart from the encoding qubits, the quantum gates also need to be defined. In
quantum stabilizer code, the X operator can turn |0〉 state to |1〉 state and turn |1〉 state
to |0〉 state. The Z operator can turn |1〉 state to -|1〉 state and keep the |0〉 state the
same. In this case, the logic X and logic Z gates in q̂ and p̂ quadratures are written as
[25] :

X = e−i
√

π p̂, Z = ei
√

π q̂ (10)

It is easy to prove that the X and Z gates have the same action as them in quantum
stabilizer codes. Similarly, the Clifford gate under the quadratures of q̂ and p̂ can act
as:

Hadamard: q̂ −→ p̂, p̂ −→ −q̂

CNOT: q̂1 −→ q̂1, p̂1 −→ p̂1 + p̂2
q̂2 −→ q̂2 − q̂1, p̂2 −→ p̂2

Phase S: q̂ −→ q̂, p̂ −→ p̂ − q̂

(11)

To correct the shift errors, Steane proposed an error correction circuit using an
ancilla qubit and the CNOT gate to perform the homodyne measurement [26]. It can
correct small shift errors of position or momentum quadrature fault-tolerantly. There
are two kinds of ancilla qubits defined as

|+〉 =
∑
n

δ(p − 2n
√

π)|p〉 =
∑
n

|p = 2n
√

π〉 (12)

|−〉 =
∑
n

δ(p − (2n + 1)
√

π)|p〉 =
∑
n

|p = (2n + 1)
√

π〉 (13)

Since |p〉 and |q〉 are orthogonal and independent, we consider that the input state
in the |q〉 has only a shift error u1, while the ancillary state is affected by the shift error
u2. Normalize the input qubits and ancilla qubits. The initial state of the combined
system is

e−iu1 p̂1e−iu2 p̂2
∣∣ψ 〉 ∣∣+〉

Using the CNOT gate, the error correction circuit can be proposed as in Fig. 2:
After error correction, we can measure that qout = u1 + u2 + n

√
π , qcor =

qout mod
√

π . Then, the errors on the |q〉 are transferred:

u1 → −u2 (14)
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Fig. 2 Circuit of Steane error correction for shift errors in q̂ quadrature

In this way, the errors can be reduced with the limitation that |u1 + u2| ≤ √
π/2.

3 Methods

In quantum convolutional codes, the possible errors have three types: bit-flip errors,
phase-flip errors and both kinds of errors occurred at the same time. We hope to make
the encoding formalism suitable for continuous errors which have the form:

|0〉 N−→ α0|0〉 + β0|1〉 (15)

|1〉 N−→ α1|0〉 + β1|1〉 (16)

where α2
i + β2

i = 1. Obviously, a |0〉 state or a |1〉 state will be transformed into a
superposition state of |0〉 and |1〉 after the noisy channel N . When the quantum state
is measured, it will collapse to |0〉 state or |1〉 state with a certain probability and may
lead to the wrong result.

To reduce the errors occurred in the measurement, we use the GKP code to resist
small shift errors. Moreover, we concatenate the quantum convolutional code with the
GKP code in order to reduce the error probability more effectively. Here, we use the
[4,2,2] stabilizer code with the generator matrix G=[1 0 0 1 0 1 1 0 ; 1 1 1 1 1 0 0 1]
for example.

Then, we provide the circuit model as Fig. 3. In the circuit, all the input quantum
states are prepared in standard GKP states. The |δi 〉 states are target qubits which need
to be protected, and the |0〉 states refer to ancilla qubits. The block of GSC refers to
the Gaussian shift channel. The block of QEC refers to the Steane error correction
proposed in Fig. 2. The |δo〉 states are the final output of the circuit. As error types
are limited in the early quantum convolutional codes, they can be decoded using the
Viterbi algorithm to determine the error syndrome. But it does not work when the
errors are continuous. So we use the decoding circuit after Steane error correction.

As the encoding circuit is based on stabilizer formalism, we choose the standard
decoding circuit of stabilizer codes [23]. The decoding circuit is the inverse circuit of
the encoding circuit. It can be represented as follows.

K∏
i=1

(
X̄i

)δi
K∏
l=1

X δl
al

∣∣δ1 . . . δK
〉 ⊗ |0 . . . 0〉K = |0 . . . 0〉 ⊗ |δ1 . . . δK 〉 (17)

X δl
al refers to the Pauli gate X acting on the l-th qubit in |0 . . . 0〉K when δ1 is 1.
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Fig. 3 [4,2,2] stabilizer code concatenated with the GKP code

Fig. 4 Circuit of [4,2,2] quantum convolutional codes concatenated with the GKP code

In session 2.2, we pointed out that the logic X and logic Z gates have the same
action as them in quantum stabilizer code. There is no doubt that the circuit also works
under the GKP states.

To reflect the property of convolutional codes, the generator matrix of every single
part should be associated with the previous one as G=[D−1 0 0 1 0 1 1 0 ; 1 1 1 1 1 0 0
1]. The whole circuit is the combination of several single circuits. The combination of
two single circuits is shown in Fig. 4. Longer circuits are also generated in this way.

For a single circuit, 4 independent input qubits turn into a 4-qubit entangled state
via the controlled quantum gates. Table 1 shows the corresponding encoded states
of different input states after the encoding circuit. The decoding circuit turns the
ancilla qubits |00〉 to the corresponding input state and the encoded state |0̄0〉, where
|0̄0〉 = 1

2 (|0000〉 + |1001〉 + |0110〉 + |1111〉).
We define the encoded state |0̄0〉 as ancillary zero state. Because of the noisy chan-

nel, the decoded state might be different from the input state, so we use an algorithm
making use of the ancillary zero state to further reduce the error probability. With the
influence of the noisy channel, the ancillary zero state may also be wrong. The error
probability of ancillary zero state and decoded state is strongly related. Thus, we can
deduce whether the decoded state is reliable by measuring the ancillary zero state.
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Table 1 Evolution in encoding circuit

Input state Encoded state Decoded state

|0000〉 1
2 (|0000〉 + |1001〉 + |0110〉 + |1111〉) |0̄0〉 ⊗ |00〉

|0001〉 1
2 (|0001〉 + |1000〉 − |0111〉 − |1110〉) |0̄0〉 ⊗ |01〉

|0010〉 1
2 (|0010〉 − |1011〉 − |0100〉 + |1101〉) |0̄0〉 ⊗ |10〉

|0011〉 1
2 (|0011〉 − |1010〉 + |0101〉 − |1100〉) |0̄0〉 ⊗ |11〉

Fig. 5 Circuit to further reduce error with the ancillary zero states

Fig. 6 Circuit to further reduce error with the ancillary zero states with two iteration times

First, we use the same decoding circuit on the ancillary zero state. If the output
state of ancillary zero state is not |00〉, we consider the result of the decoding circuit
on the target qubits incorrect. So we apply the CNOT gate between the output of
ancillary zero state and the output of the target qubits to correct the error. The latter
error correction circuit is shown in Fig. 5.

The ∗ after
∣∣0̄0〉 denotes that the state should be ∣∣0̄0〉 if there is no error. |ϕi 〉 denotes

the decoded state in the previous circuit, and |ϕo〉 is the final output.
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It is obvious that the error correction circuit based on ancillary zero state can be
iterated several times as the errors cannot be eliminated. The circuit with two iteration
times is provided in Fig. 6.

As the figure shows, we use CNOT gates and Toffoli gates to achieve the iteration
circuit. The Toffoli gate achieves the function that the target qubit is flipped if both
control qubits are set to |1〉. The matrix of Toffoli gate [27] is :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

Any of the corresponding output qubits of the ancillary zero states are ought to be
|0〉. If it is not, the corresponding |ϕi 〉 is assumed to be wrong. So we apply bit-flip
operation to correct it.

With the number of iteration times increasing, the accuracy may increase at first.
But with the correlation between ancillary zero states and the previous output decreas-
ing, the reliability of the result goes down. It is necessary to find a compromise by
simulation.

4 Simulation and analysis

4.1 BER analysis

In order to verify the correctness of the algorithm, we applied simulation to prove it.
We use the [4,2,2] quantum convolutional codes in simulation. The generator matrix
of the code is which we used before: G=[D−1 0 0 1 0 1 1 0 ; 1 1 1 1 1 0 0 1]. We
defined the error model:

∣∣0̄〉 → ∣∣0̄ + u0
〉
,
∣∣1̄〉 → ∣∣1̄ + u1

〉
(19)

u0 and u1 are the normalized noise. We use u to represent the arbitrary noise below.
The judgment is correct when |u| < 0.5, and the judgment is wrong when |u| ≥ 0.5.
As the power of

∣∣0̄〉 and ∣∣1̄〉 is normalized, we define the Eb/No as 10 lg (1/u). Use the
Steane error correction method to correct the error. The error on the ancilla qubit used
for error correction is u2. The ratio of u2 and u is called the ancillary qubit error ratio.

In the simulation, we assume that the encoding and decoding processes are without
noise. The noise occurs in theGaussian shift channelwhich brings error to the quantum
states. We use Eb/No to describe the noise. It is the ratio of the energy of the encoded
quantum states to the energy of noise in the form of dB. The ancilla qubit is also with
noise which is described by the Eb/No and ancillary qubit error ratio. Figure 7 shows
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Fig. 7 Bit error rate of [4,2,2] quantum convolutional codes with different ancillary qubit error ratios

the performance of the whole circuit under different ancillary qubit error ratios. With
the increase of the Eb/No from 1 dB to 3 dB, the BER interval is [10.71%, 0.12%]
without the Steane error correction circuit. When the ancillary qubit error ratio of
the Steane error correction is 50%, the BER interval is [13.27%, 0.049%]. When the
ancillary qubit error ratio of the Steane error correction is 40%, the BER interval is
[10.63%, 0.019%]. When the ancillary qubit error ratio of the Steane error correction
is 30%, the BER interval is [9.2%, 0.018%]. If we hope to achieve the BER of less
than 1% with a 30% ancillary qubit error ratio, the Eb/No is required to be larger than
2 dB. If we hope to achieve the BER of less than 0.1% with a 30% ancillary qubit
error ratio, the Eb/No is required to be larger than 2.7 dB.

The curve shows that the smaller the ancillary qubit error ratio, the lower the bit
error rate. However, there are two crosses in the figure. The left one happens in low
Eb/No between the curve without ancilla qubits and the curve whose ancillary qubit
error ratio is 0.5. The noise of the qubit needs to be protected, and the noise of the
ancilla qubit is independent. In low Eb/No, the big ancillary qubit error ratio such as
0.5 cannot feed the condition that |u + u2| ≤ √

π/2 which leads to higher BER. The
right cross happens because the amount of simulation data limited by the insufficient
machine computation capability is not big enough.

As described above, we use a correction circuit to further reduce the error. How-
ever, the number of suitable iteration times is uncertain. We provide the result of the
simulation in Fig. 8 showing themost suitable iteration times. The ancillary qubit error
ratio of Steane error correction in the simulation is set to 40%.

As shown in Fig. 8, the result is just consistent with speculation. With the increase
of the Eb/No from 1 dB to 3 dB, the BER interval is [10.63%, 0.019%] without the
correction circuit. TheBER intervalwith 1 iteration time is [6.34%, 0.008%]. TheBER
interval with 2 iteration times is [5.81%, 0.002%]. The BER interval with 3 iteration
times is [6.83%, 0.006%]. TheBER intervalwith 4 iteration times is [8.78%, 0.013%].
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Fig. 8 Influence of different iteration times of the error correction circuit with [4,2,2] quantum convolutional
code

Fig. 9 Influence of different iteration times of the error correction circuit with [8,3,3] quantum convolutional
code

When the iteration time is no more than 2, the qubit error rate goes down with the
iteration times go up.When the number of iteration times reaches 3, the effect becomes
worse.
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Table 2 The gain in Eb/No under different BER standards

BER

0.01% 0.1% 1% 5%

Gain with 1 iteration time (dB) 0.37 0.37 0.39 0.25

Gain with 2 iteration times (dB) 0.44 0.45 0.43 0.32

Fig. 10 Bit error rate of [4,2,2] code and [8,3,3] code under 2.5 dB with different iteration times

Table 2 shows the gain in Eb/No under different BER standards. From the table,
we can see that the algorithm performs better when the required BER is less than 1%
as it provides less gain in Eb/No when the required BER is 5%. When it is hard to
enhance the Eb/No, using the further error correction circuit can help achieve higher
precision.

To confirm our speculation more powerfully, we also conduct the simula-
tion of [8,3,3] convolutional codes in Fig. 9. The generator of the code can be
listed as follows:g1 = X1X2X3X4X5X6X7X8, g2 = Z1Z2Z3Z4Z5Z6Z7Z8, g3 =
X2X4Y5Z6Y7Z8, g4 = X2Z3Y4X6Z7Y8, g5 = Y2X3Z4X5Z6Y8. As shown in Fig. 9,
the lowest curve also refers to 2 iteration times.

We show the simulation of both codes under 2.5 dB with different iteration times
in Fig. 10. It is clear that we obtain the lowest BER at 2 iteration times.

4.2 Resource consumption

Table 3 shows the resources needed for the whole circuit for every two target qubits.
We use 2 ancilla qubits, 2 Hadamard gates and 6 controlled Pauli gates to encode 2
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Table 3 Resources used in the whole circuit for every two target qubits

Ancilla qubits 1-qubit gates 2-qubit gates 3-qubit gates

Encoding 2 2 6 0

Decoding 6 0 13 0

One iteration time 2 0 11 0

Two iteration times 4 6 18 2

Fig. 11 The gain of BER reduction of [4,2,2] code caught by different iteration times

target qubits into a 4-qubit entangled state. The resources for decoding include the
Steane error correction circuit and the decoding circuit. The Steane error correction
circuit uses 1 ancilla qubit to reduce the error probability via a CNOT gate for each
qubit in the entangled state. For the decoding circuit, we apply 9 controlled Pauli gates
on 2 ancilla qubits to turn the encoding states into a 4-qubit entangled state |0̄0〉 and
2 decoded qubits which should be the same as the target qubits.

The resources used in the further error correction circuit are also listed in the table.
As the circuit is the same as the decoding circuit, it uses 2 ancilla qubits and 9 controlled
gates. If we apply the circuit once, we use 2 CNOT gates to correct the errors. If we
apply the circuit twice, we use 2 Toffoli gates and 6 Hadamard gates to correct the
errors.

Consider the situation that we apply the [4,2,2] code under 2.5 dB with a 30%
ancillary qubit error ratio. If we only use the encoding and decoding circuit, the BER
is 0.37%with 8 ancilla qubits, 2 1-qubit quantum gates and 19 2-qubit quantum gates.
If we apply the further error correction circuit once, the BER reaches 0.14% with 8
ancilla qubits, 2 1-qubit quantum gates and 30 2-qubit quantum gates. BER can reach
0.12% using the further error correction circuit twice with 10 ancilla qubits, 8 1-qubit
quantum gates, 37 2-qubit quantum gates and 2 3-qubit quantum gates.
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Considering the resource consumption, the best iteration time is uncertain. We
estimate the gain rate of the error correction circuit with different iteration times. As
shown in Fig. 11, the gain rate brought by the first iteration is much larger than that
brought by the second iteration. We suggest using the error correction circuit once
to balance BER and resource consumption. When a higher correctness probability is
required, using the circuit twice is optimal.

5 Conclusion

Based on the existing concept of quantum convolutional codes, this paper proposes
an error correction method in the case of continuous errors. Because all output qubits
will be transformed into superposition states of

∣∣0̄〉 and ∣∣1̄〉 under continuous errors,
they will collapse to

∣∣0̄〉 state or ∣∣1̄〉 state with a certain probability after measurement,
so the output of the same input is jointly measured at the output, and then, the result
is obtained via classical Viterbi decoding. As the errors are continuous, it is suitable
to use the GKP codes in encoding. The

∣∣0̄〉 state, ∣∣1̄〉 state and the operators in the
encoding circuit are all encoded in the standard form of GKP formalism before the
encoding circuit, and Steane error correction is performed at the receiver and then
decoded by the decoding circuit. When the error probability is small in the ancilla
qubits, the GKP code has a great enhancement to the encoding method.

Furthermore, we make use of the output information of the decoding circuit to
construct an error correction circuit after the original decoding circuit. This circuit
can further reduce the error probability and can iterate several times. However, the
most suitable iteration times cannot be deduced only by the algorithm. Sowe conduct a
simulation to find out the best number. We confirm our speculation with another group
of quantum convolutional codes. From the simulation, we deduce that the lowest BER
is reached at 2 iteration times. Considering the resource consumption, using the error
correction circuit only once is the optimal choice.

Data availability All data generated or analysed during this study are included in this article.
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