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Abstract
The dynamical behavior of quantumcoherence of a displaced squeezed thermal state in
contact with an external bath is discussed in the present work.We use a Fano-Anderson
type of Hamiltonian to model the environment and solve the quantum Langevin equa-
tion. From the solution of the quantum Langevin equation we obtain Green’s functions
which are used to calculate the expectation value of the quadrature operators which
are in turn used to construct the covariance matrix. We use a relative entropy based
measure to calculate the quantum coherence of the mode. The single mode squeezed
thermal state is studied in the Ohmic, sub-Ohmic and the super-Ohmic limits for
different values of the mean photon number. In all these limits, we find that when
the coupling between the system and the environment is weak, the coherence decays
monotonically and exhibits a Markovian nature. When the system and the environ-
ment are strongly coupled, we observe that the evolution is initially Markovian and
after some time it becomes non-Markovian. The non-Markovian effect is due to the
environmental back action on the system. Finally, we also present the steady state
dynamics of the coherence in the long time limit in both low and high temperature
regime.We find that the qualitative behaviour of quantum coherence in the steady state
remains the same in both the low and high temperature limits. But quantitative values
differ because the coherence in the system is lower due to thermal decoherence.
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1 Introduction

Quantum information has evolved from being a theoretical field to technological one
in the last few decades [1]. Quantum systems are in general exposed to an external
environment which can cause decoherence in the system [2]. In general, we model the
environment as a many body quantum system which is also referred to as bath. When
the quantum system is coupled to the bath, there is a dynamical change in the quantum
properties of the system. Both the qualitative and quantitative nature of this dynamical
change depends on the bath properties as well as on the coupling between the system
and the environment. Qualitatively, there are two fundamental kinds of dynamics
namely the Markovian and the non-Markovian dynamics [3, 4]. A knowledge of the
dynamical change is important from thepoint of viewof fabrication of quantumdevices
[5–8]. When the relaxation time of the bath is very short compared to the evolution
time of the system, the quantumness of the system falls monotonically which is a
Markovian decay [9–11]. For the non-Markovian dynamics, the bath relaxation time
and the system evolution time are comparable to each other [4, 12]. Due to this we will
observe a revival of quantumness due to environmental back action [13, 14]. Thus an
open quantum system has a very rich and interesting structure which has formed the
basis for several seminal works [15, 16].

Continuous variable systems candescribe the interaction andpropagationof electro-
magnetic waves and hence are a valuable resource in quantum information processing
[17–19]. An electromagnetic field with quantized radiation modes can be denoted
by bosonic modes. For n number of bosonic modes, the Hilbert space is ⊗n

k=1Hk .

The creation and annihilation operators of the kth bosonic field is given by a†k and
ak respectively. Alternatively, the continuous variable system can be described using
the quadrature operators {xk, pk} and for a n-mode system we have a 2n-dimensional
vector which contains all the quadrature pairs. For a single mode continuous variable
system, the quadrature operators are ξ1 = x = (a + a†) and ξ2 = p = −i(a − a†)
and the 2D quadrature vector ξ = {ξ1, ξ2}. It is well known that the quadrature oper-
ators satisfy the canonical commutation relation [ξi , ξ j ] = 2i�i j , with �i j being the
elements of the matrix

� =
(

0 1
− 1 0

)
. (1)

A continuous variable quantum state which has representation in terms of Gaus-
sian functions is referred to as a Gaussian state. Gaussian states are special class of
continuous variable states which can be easily created and experimentally controlled
using quantum optics procedure [18, 20]. Theoretically Gaussian states are easier to
investigate and hence several discussions on continuous variable states are restricted
to Gaussian states. In particular, a Gaussian state is completely characterized by the
first and second moments of the quadrature field operators. For these operators we can
construct a vector of the first moments ξ = (〈ξ1〉, 〈ξ2〉) and the covariance matrix V
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Vi j = 〈{�ξi ,�ξ j }〉 = Tr
({�ξi ,�ξ j }ρ

)
. (2)

Here we consider {�ξi ,�ξ j } = (�ξi�ξ j + �ξ j�ξi )/2, and the fluctuation operator
is �ξi = ξi − 〈ξi 〉. In the present work we consider a single mode Gaussian state for
which the matrix elements of the covariance matrix are

Vii = 〈ξ2i 〉 − 〈ξi 〉2, (3)

Vi j = 1

2
〈ξiξ j + ξ jξi 〉 − 〈ξi 〉〈ξ j 〉. (4)

Due to the positivity of the density matrix the covariance matrix has to satisfy the
uncertainty relation V + i� ≥ 0.

Entanglement is one of the fundamental properties of a quantum system and has
been studied in detail for finite dimensional and infinite dimensional systems. But
entanglement is not the only unique property, rather it is one among an hierarchy of
quantum properties. In the hierarchy, quantum coherence occupies the topmost level
which nestles within it the other properties like nonlocality, steering, entanglement
and discord [21]. This means that in a given quantum system, even when these prop-
erties are not present, quantum coherence might be present in the system. A scheme
to estimate quantum coherence was introduced by Baumgratz et al. [22] from the
perspective of quantum information theory. This led to an explosion of interest in the
field of quantum coherence especially in defining new quantum coherence measures
[23], resource theory of quantum coherence [24, 25] estimation of quantum coherence
[26] and also in some applications [27–29]. Initially, most of these works were done
on quantum systems with finite degrees of freedom. The quantum coherence of the
finite dimensional system [22] is measured as the relative entropy distance between
two matrices

D(ρ) = min
σ

S(ρ‖σ) = min
σ

Tr(ρ log2 ρ − ρ log2 σ), (5)

where ρ and σ are the given quantum state and the incoherent state respectively. For
a continuous variable system, the quantum coherence was initially investigated using
a density matrix approach [30]. This method did not give a closed form expression
for Gaussian states. Hence in Ref. [31], the authors made use of a covariance matrix
method to quantify coherence in the system since the covariancematrix can completely
characterize a Gaussian state. The coherence measure based on the covariance matrix
is

C(ρ) = inf
δ
S(ρ‖δ). (6)

Here the minimization runs over all the incoherent Gaussian states. The closest inco-
herent state to a Gaussian state is the thermal state of the form

ρd =
∞∑
n=0

μn

(1 + μ)n+1 |n〉〈n|, (7)
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withμ = Tr[a†aρ] being the mean photon number associated with the Gaussian state.
The entropy of a single mode Gaussian state is

S(ρ) = ν + 1

2
log2

ν + 1

2
− ν − 1

2
log2

ν − 1

2
, (8)

where ν = √
detV . Hence the relative entropy of coherence for the single mode

Gaussian state is

C(ρ) = S(ρ‖ρd) = Tr(ρ log2 ρ − ρ log2 ρd)

= ν − 1

2
log2

ν − 1

2
− ν + 1

2
log2

ν + 1

2
+ (μ + 1) log2(μ + 1) − μ log2 μ. (9)

For our work, we use this relative entropy measure to estimate the coherence in the
single mode quantum system [32]. Investigations on the open system dynamics of
entanglement has been carried out on both qubit (finite dimensional) systems as well
as on infinite dimensional (continuous variable) systems [33–35]. The entanglement
dynamics presents unique features like sudden death [36] and revival of entanglement
[37]. In the case of quantum coherence the dynamics has been investigated only for
qubit systems [38–40]. In this work, we investigate the dynamics of a single mode
Gaussian state which is a displaced squeezed thermal state. In Sect. 2, of the article
we give a description of the system and the environment, and also the procedure to
calculate the time evolved covariance matrix. We consider three different spectral
densities in this manuscript and in Sect. 3, we compute the quantum coherence in the
Ohmic environment. In Sects. 4 and 5wedescribe the dynamical behavior of coherence
in the sub-Ohmic and the super-Ohmic environments. A steady state analysis of the
system is given in Sect. 6 and we give our conclusions in Sect. 7.

2 Formulation of the system-environmentmodel and the dynamics

The quantum coherence dynamics of finite dimensional systems have been studied
from both the theoretical [39, 40] and experimental [41] perspectives. An infinite
dimensional case is considered in the present work where we consider the system to
be a single bosonic mode of frequency ω0. The bath coupled to the system is a non-
Markovian environment at a finite temperature. This non-Markovian environment is
a structured bosonic reservoir [42] with a collection of infinite modes of varying
frequencies. The system-environment combination can be described using the Fano-
Anderson Hamiltonian [43, 44]

H = �ω0a
†a + �

∑
k

ωkb
†
kbk + �

∑
k

(
Vka

†bk + V∗
k b

†
ka

)
. (10)

Here, the factor Vk represents the coupling strength between the bath and the system
and a† (a) is the creation (annihilation) operator where ω0 is the frequency of the

123



Quantum coherence dynamics of displaced squeezed thermal… Page 5 of 21 193

system. For the kth mode of the bosonic reservoir with frequency ωk , b
†
k (bk) is the

corresponding creation (annihilation) operator. This Hamiltonian is used in the study
of several different models in the fields of atomic and condensed matter physics.

To solve the dynamics, we can use the Heisenberg equation of motion approach.
The time evolved operators corresponding to the system and the environment are

a(t) = e
i Ht
� ae− i Ht

� and bk(t) = e
i Ht
� bke− i Ht

� and in the Heisenberg picture they
satisfy

d

dt
a(t) = − i

�
[a(t), H ] = −iω0a(t) − i

∑
k

Vkbk(t), (11)

d

dt
bk(t) = − i

�
[bk(t), H ] = −iωkbk(t) − iV∗

k a(t). (12)

To obtain the quantum Langevin equation [45] we solve Eq. (12) for bk and substitute
the result in Eq. (11) which gives

ȧ(t) + iω0a(t) +
∫ t

0
dτg(t, τ )a(τ ) = −i

∑
k

Vkbk(0)e
−iωk t . (13)

The non-Markovian memory effects between the system and the environment is
characterized by the integral kernel g(t, τ ) = ∑

k |Vk |2e−iωk (t−τ). In the case of
an environment with a continuous spectrum g(t, τ ) = ∫ ∞

0 dωJ (ω)e−iω(t−τ) with
J (ω) = �(ω)|V(ω)|2 being the spectral density characterizing the non-Markovian
memory of the environment. The factor �(ω) is the density of states of the environment
and ω is the continuously varying bath frequency. Since the quantum Langevin equa-
tion inEq. (13) is linear, one canwrite a(t) = u(t)a(0)+ f (t). Here the time dependent
coefficients u(t) and the noise operator f (t) satisfy the two integro-differential equa-
tions given below:

d

dt
u(t) = −iω0u(t) −

∫ t

0
dτg(t, τ )u(τ ), (14)

d

dt
f (t) = −iω0 f (t) −

∫ t

0
dτg(t, τ ) f (τ )

−i
∑
k

Vkbk(0)e
−iωk t . (15)

We can find u(t) by numerically solving Eq. (14) with the initial condition u(0) = 1.
To get f (t) we solve Eq. (15) subject to the initial condition f (0) = 0 which gives

f (t) = −i
∑
k

Vkbk(0)
∫ t

0
dτe−iωkτu(t, τ ). (16)
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where u(t, τ ) = u(t − τ). The nonequilibrium thermal fluctuation is characterized by
the correlation function given below

〈 f †(t) f (t)〉 = v(t) =
∫ t

0
dτ1

∫ t

0
dτ2 u(t, τ1)g̃(τ1, τ2)u

∗(t, τ2). (17)

Here we consider the initial state of the total system to be an uncorrelated prod-
uct state i.e., ρtot(0) = ρS(0) ⊗ ρE (0). For the environment with the Hamiltonian
HE = ∑

k �ωkb
†
kbk , where β = 1/kBT is the inverse temperature and kB is the Boltz-

mann constant, the thermal state ρE (0) = exp(−βHE )/Tr[exp(−βHE )] is its initial
environment state.

Here the time correlation function of the environment with continuous spectrum is

g̃(τ1, τ2) =
∫ ∞

0
dωJ (ω)n̄(ω)e−iω(τ1−τ2). (18)

Here n̄(ω) = 1/(e�ω/kBT − 1) is the initial particle number distribution. The time
dependent average values of the system are:

〈a(t)〉 = u(t)〈a(0)〉, 〈a†(t)〉 = u∗(t)〈a†(0)〉, (19)

〈a(t)a(t)〉 = (u(t))2〈a(0)a(0)〉, (20)

〈a†(t)a†(t)〉 = (u∗(t))2〈a†(0)a†(0)〉, (21)

〈a†(t)a(t)〉 = |u(t)|2〈a†(0)a(0)〉 + v(t). (22)

Initially, the reservoir is in a thermal state and uncorrelated to the system so
〈 f (t)〉 = 〈 f †(t)〉 = 0 and also 〈 f (t) f (t)〉 = 〈 f †(t) f †(t)〉 = 0. The time evolved
first and second moments of the quadrature operators viz 〈ξ1(t)〉, 〈ξ2(t)〉, 〈ξ21 (t)〉,
〈ξ22 (t)〉, 〈ξ1(t)ξ2(t)〉, and 〈ξ2(t)ξ1(t)〉 can be found from the time-dependent average
values in Eqs. (19–22). From the moments of the quadrature operator one can express
the time evolved covariance matrix as

V11 = 1 + 2v(t) + 2|u(t)|2 Cov(a†(0), a(0))

+ (u(t))2 Var(a(0)) + (u∗(t))2 Var(a†(0)), (23)

V22 = 1 + 2v(t) + 2|u(t)|2 Cov(a†(0), a(0))

− (u(t))2 Var(a(0)) − (u∗(t))2 Var(a†(0)), (24)

V12 = i(u∗(t))2 Var(a†(0)) − i((u(t))2 Var(a(0)). (25)

where Cov(a, b) = 〈ab〉 − 〈a〉〈b〉 and Var(a) = Cov(a, a). Due to the symmetry of
the covariance matrix we also have V12 = V21.

From the knowledge of the initial state and the environmental parameters, we can
find the time evolved covariance matrix elements using the nonequilibrium Green’s
functions u(t) and v(t). The spectral density J (ω) of the environment needs to be
specified to calculate the Green’s functions. An Ohmic type spectral density,
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J (ω) = η ω

(
ω

ωc

)s−1

e−ω/ωc , (26)

is considered in our work, since this can simulate a large class of thermal baths.
In the above equation, ωc is the cut-off frequency of the environmental spectra and
η is the system-bath coupling strength. At the critical value of the coupling strength
ηc = ω0/(ωc�(s)) a localizedmode is generated and here�(s) is the gamma function.
The environment is classified as Ohmic for s = 1 super-Ohmic for s > 1 and sub-
Ohmic for s < 1. The dynamics of coherence is measured for the displaced squeezed
thermal state over a wide range of parameters. In the present work we consider the
Hamiltonian which is bilinear in the creation and annihilation operators. Hence the
Gaussian states preserve their form and remain Gaussian. Throughout our work we
use a scaled temperature Ts = kBT /�ω0, where ω0 is the frequency of the system.

In the present work we investigate the quantum coherence dynamics of a general
Gaussian state of the form [46]

ρ = D(α) S(r) ρth S†(r) D†(α), (27)

where D(α) and S(r) are the displacement and squeezing operators defined as:

D(α) = exp(αa† − α∗a), (28)

S(r) = exp
[
r(a2 − a†2)/2

]
, (29)

with the thermal state ρth being:

ρth =
∞∑
n=0

n̄n

(1 + n̄)n+1 |n〉〈n|. (30)

The transient dynamics of a single mode Gaussian state with initial form as described
in Eq. (27) is investigated for different values of the displacement parameter α and
squeezing parameter r .

3 Quantum coherence evolution of displaced squeezed thermal state
in a Ohmic environment

The transient dynamics of a single mode squeezed displaced thermal state in contact
with a ohmic bath with spectral density J (ω) = η ω exp(−ω/ωc) is described in the
present section. The mode is characterized by two parameters viz the displacement
parameter (α) and the squeezing parameter (r ) and the dynamics are shown through the
plots Figs. 1, 2, 3 and 4. From these plots we find that the amount of initial coherence
is higher in systems with lower mean photon number.

In Figs. 1 and 2, the dynamics of quantum coherence of a weakly coupled system
(η = 0.01ηc) is studied in the low temperature (Ts = 1) and high temperature (Ts =
20) limits respectively. The rate of fall of coherence decreases with increase in the

123



193 Page 8 of 21 Md. M. Ali et al.

Fig. 1 The time evolution of quantumcoherence of a displaced squeezed thermal state in the low temperature
limit Ts = 1, is shown above for a weakly coupled system (η = 0.01 ηc) for various values of the
displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the different
values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use Ohmic spectral density
(s = 1) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)

Fig. 2 The time evolution of quantum coherence of a displaced squeezed thermal state in the high temper-
ature limit Ts = 20, is shown above for a weakly coupled system (η = 0.01 ηc) for various values of the
displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the different
values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use Ohmic spectral density
(s = 1) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)
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Fig. 3 The time evolution of quantumcoherence of a displaced squeezed thermal state in the low temperature
limit Ts = 1, is shown above for a strongly coupled system (η = 2.0 ηc) for various values of the
displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the different
values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use Ohmic spectral density
(s = 1) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)

Fig. 4 The time evolution of quantum coherence of a displaced squeezed thermal state in the high temper-
ature limit Ts = 20, is shown above for a strongly coupled system (η = 2.0 ηc) for various values of the
displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the different
values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use Ohmic spectral density
(s = 1) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)
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displacement parameter and the squeezing parameter. Since there is no back flow of
information, the quantumcoherencedecreases steadilywith time.The initial coherence
and the rate of fall also depends on the mean photon number n̄. This is characteristic of
the system that is weakly coupled to the environment. A comparison between the low
and high temperature plots show that the coherence falls faster in the high temperature
limit. This is because, apart from the loss of coherence due to the dissipative interaction
with the environment, the system also suffers from decoherence due to the thermal
effects.

The strongly coupled system (η = 2.0ηc) is studied through the plots in Figs. 3
and 4, corresponding to the low temperature (Ts = 1) and high temperature (Ts = 20)
limits respectively. We find that the amount of coherence is higher at low temperature
and the rate of fall of coherence is lesser for systems with higher value of displacement
and squeezing parameter. The quantum coherence in the system initially falls faster
and reaches a minimum value. Then it increases slightly and exhibits an oscillatory
behavior. These oscillations indicate an information back flow which is a character-
istic feature of a non-Markovian dynamics. Due to thermal decoherence in the high
temperature limit, there is a faster fall of quantum coherence. Thus we find that the
system dynamics is dependent on the strength of its coupling with the bath.

4 Quantum coherence dynamics of displaced squeezed thermal state
in a sub-Ohmic environment

In the current section, we consider a sub-ohmic bath (s < 1) and characterize the
quantum coherence dynamics for the displaced squeezed thermal state. We take s =
1/2 and so the corresponding spectral distribution reads J (ω) = η

√
ωωc exp(−ω/ωc).

The initial Gaussian state is characterized by two parameters viz the displacement
parameter (‘α’) and the squeezing parameter (‘r ’). The transient dynamics of quantum
coherence of this system under the variation of these parameters is shown through the
plots in Figs. 5, 6, 7 and 8.

The coherence evolution in the weak coupling limit with η = 0.01 ηc is analyzed
in Fig. 5 considering the low temperature (Ts = 1) limit and in Fig. 6 for the high
temperature (Ts = 20) limit. In both the high and low temperature limits we observe
that the initial coherence is inversely proportional to the mean photon number n̄. Since
the coupling between the system and the environment is weak, the coherence decay
exhibits a Markovian nature and the coherence falls steadily with time. When the
displacement parameter and the squeezing parameter increases, the coherence decay
rate increases. In the high temperature limit, the coherence falls faster as can be seen
through the plots in Fig. 6. This is because thermal decoherence also contributes to
the coherence degradation in addition to the decay due to the environmental effects.

Through the plots Figs. 7 and 8, we study the coherence dynamics in a system
strongly coupled (η = 2.0 ηc) to a sub-ohmic bath. The low temperature limit is
described through the plots in Fig. 7 and the high temperature limit through Fig. 8.
The amount of initial coherence is higher at lower temperature, with the coherence
decay being faster for lower values of displacement and squeezing parameter. Here in
the shorter time scales, the coherence falls faster and reaches a minimum value. Then
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Fig. 5 The time evolution of quantumcoherence of a displaced squeezed thermal state in the low temperature
limit Ts = 1, is shown above for a weakly coupled system (η = 0.01 ηc) for various values of the
displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the different
values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use sub-Ohmic spectral
density (s = 1/2) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)

Fig. 6 The time evolution of quantum coherence of a displaced squeezed thermal state in the high temper-
ature limit Ts = 20, is shown above for a weakly coupled system (η = 0.01 ηc) for various values of the
displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the different
values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use sub-Ohmic spectral
density (s = 1/2) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)
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Fig. 7 The time evolution of quantumcoherence of a displaced squeezed thermal state in the low temperature
limit Ts = 1, is shown above for a strongly coupled system (η = 2.0 ηc) for various values of the
displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the different
values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use sub-Ohmic spectral
density (s = 1/2) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)

Fig. 8 The time evolution of quantum coherence of a displaced squeezed thermal state in the high temper-
ature limit Ts = 20, is shown above for a strongly coupled system (η = 2.0 ηc) for various values of the
displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the different
values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use sub-Ohmic spectral
density (s = 1/2) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)
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it shows an oscillatory nature indicating a non-Markovian behavior for the strongly
coupled system. This non-Markovian dynamics is indicative of information backflow
in the system. Thus we find Markovian evolution for a weakly coupled system and a
non-Markovian evolution for a strongly coupled system.

5 Non-Markovian dynamics of displaced squeezed thermal state in a
super-Ohmic environment

The time dynamics of a single mode continuous variable state in contact with a super-
Ohmic bath with s > 1 is studied in the present work. Towards this end, we consider a
spectral density of the form J (ω) = η(ω/ωc)

3 exp(−ω/ωc) in our investigations. The
dynamical variation of coherence is studied by varying the displacement operator and
the squeezing parameter. The results are displayed in the plots given through Figs. 9,
10, 11 and 12.

When the system is weakly coupled to the environment (η = 0.01 ηc), it exhibits
a Markovian decay. Hence we observe a characteristic behaviour where the quan-
tum coherence decreases steadily. The coherence at time t = 0 is dependent on the
mean photon number with quantum coherence being inversely proportional to the
mean photon number of the system. The coherence fall decreases with increase in the
displacement parameter and the squeezing parameter. Again at higher temperatures,
coherence falls faster due to the thermal decoherence effects. In contrast to the Ohmic
and the sub-Ohmic case, the system does not exhibit a non-Markovian behavior in the
strong coupling limit. Rather we observe a steady decay in the low temperature limit.
In the high temperature limit, initially the coherence falls abruptly and then increases

Fig. 9 The time evolution of quantumcoherence of a displaced squeezed thermal state in the low temperature
limit Ts = 1, is shown above for a weakly coupled system (η = 0.01 ηc) for various values of the
displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the different
values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use super-Ohmic spectral
density (s = 3) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)
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Fig. 10 The time evolution of quantum coherence of a displaced squeezed thermal state in the high tem-
perature limit Ts = 20, is shown above for a weakly coupled system (η = 0.01 ηc) for various values
of the displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the
different values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use super-Ohmic
spectral density (s = 3) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)

Fig. 11 The time evolution of quantum coherence of a displaced squeezed thermal state in the low temper-
ature limit Ts = 1, is shown above for a strongly coupled system (η = 2.0 ηc) for various values of the
displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the different
values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use super-Ohmic spectral
density (s = 3) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)
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Fig. 12 The time evolution of quantum coherence of a displaced squeezed thermal state in the high tem-
perature limit Ts = 20, is shown above for a strongly coupled system (η = 2.0 ηc) for various values of the
displacement parameter (‘α’) and squeezing parameters (‘r ’). The different lines correspond to the different
values of n̄ as follows: n̄ = 0.1 (blue), n̄ = 1.0 (red) and n̄ = 10.0 (black). We use super-Ohmic spectral
density (s = 3) with the cut-off frequency ωc = 5.0 ω0 (Color figure online)

slightly and later saturates at a steady value. The final saturation value depends on the
displacement and the squeezing parameter.

6 Steady state analysis

An important limit of an open quantum system is the long time limit, which can help
us to understand steady state behaviour of the system. Towards this end we need the
analytic solution of the integro-differential of u(t) which is given in Ref. [12] and
reads as follows:

u(t) = Ze−iωbt+
∫ ∞

0
dω

J (ω)e−iωt

[ω − ω0 − �(ω)]2 + γ 2(ω)
, (31)

The first term arises due to the contribution of the localized mode in the Fano model.
The second term is due to the continuous part of the spectra which causes dissipation.
Since the localized mode produces dissipationless dynamics, the system can forever
memorize some of its initial state information. Here

�(ω) = P
∫ ∞

0
dω′ J (ω′)

ω − ω′ (32)
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is a principal value integral and γ (ω) = π J (ω). They are the real and imaginary parts
of the self-energy correction given by

�(ω ± i0+) =
∫ ∞

0
dω′ J (ω′)

ω − ω′ ± i0+ = �(ω) ∓ iγ (ω). (33)

The conditions for the localized mode frequency is determined by the expression
ωb − ω0 − �(ωb) = 0 and Z = [

1 − �′(ωb)
]−1 is the amplitude of the localized

mode. The steady state value of quantum coherence is determined by the steady state
value of the Green’s functions given by

u(ts) = Z exp(−iωbts) (34)

v(ts) =
∫ ∞

0
dω[Dl(ω) + Dc(ω)]n̄(ω, T ) (35)

where Dc(ω) = J (ω)/[(ω − ω0 − �(ω))2 + γ 2(ω)] and Dl(ω) = J (ω)Z2/(ω −
ωb)

2. Using these results we analyze the quantum coherence steady state values of
the system in the strong coupling limit. We do not investigate the weak coupling limit
since the coherence vanishes in the long time limit for this case.
Ohmic case The steady state of quantum coherence for a Ohmic bath with spectral
density J (ω) = ηω exp(−ω/ωc) is shown in Fig. 13, where we show the variation of
coherence with the displacement parameter (α) and the squeezing parameter (r ). The

Fig. 13 The steady state value of coherence in the long time limit (t → ∞) for a strongly coupled system
(η = 2.0ηc) in contact with a Ohmic bath. Here the low temperature limit (Ts = 0.1) for mean photon
number n̄ = 0.1 and n̄ = 2.0 is given through the plots in a, b respectively. The high temperature limit
(Ts = 20.0) for mean photon number n̄ = 0.1 and n̄ = 2.0 is given through the plots in c, d respectively.
The cut-off frequency used is ω = 5.0ω0
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Fig. 14 In the long time limit (t → ∞) for a strongly coupled system (η = 2.0ηc) we investigate the
steady state value of coherence in contact with a sub-Ohmic bath in this figure. The low temperature limit
(Ts = 0.1) for mean photon number n̄ = 0.1 and n̄ = 2.0 is given through the plots a, b respectively. In
plots c, d the high temperature limit (Ts = 20.0) for mean photon number n̄ = 0.1 and n̄ = 2.0 respectively.
We use a cut-off frequency of ω = 5.0ω0

plots Fig. 13a, b show the coherence change for the mean photon numbers of n̄ = 0.1
and n̄ = 2.0 in the low temperature limit of the environment. In the long time limit,
when both the displacement parameter (α) and the squeezing parameter (r ) are zero,
there is no coherence in the system. But if any one of them is finite, there is a finite
amount of coherence. Also we find that the coherence varies faster with the decrease in
the displacement parameter (α) when compared to the squeezing parameter (r ). From
a comparison between the plots Fig. 13a, b we find that for low mean photon number
n̄ = 0.1 the coherence decreases with increase in the squeezing parameter whereas
for the high mean photon number n̄ = 2.0 the coherence increases with the squeezing
parameter. From the results in Fig. 13c, d we find that the long time coherence exhibits
the same qualitative behavior. But quantitatively, the amount of coherence is lower at
high temperatures due to the thermal decoherence effects.
sub-Ohmic case The coherence variation with the displacement parameter (α) and the
squeezing parameter (r ) in the long time limit is described for the sub-Ohmic bath with
spectral density J (ω) = η

√
ωωc exp(−ω/ωc) through the plots in Fig. 14. The low

temperature limit of the coherence variation is analyzed through the plots in Fig. 14a,
b where we consider the mean photon number to be n̄ = 0.1 and n̄ = 2.0 respectively.
Here we find that when both the displacement and squeezing parameters are zero the
coherence vanishes since in this limit the state is an incoherent state. Comparatively
the coherence falls faster with the displacement parameter when compared with the
squeezing parameter. The high temperature regime is studied through the results in
plots Fig. 14c, d for n̄ = 0.1 and n̄ = 2.0 respectively. The long time coherence in
the high temperature limit exhibits the same qualitative behavior as the one in the low
temperature limit.
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Fig. 15 For a strongly coupled system, the steady state coherence in contact with a super-Ohmic bath is
given through the figure. The low temperature limit (Ts = 0.1) for mean photon number n̄ = 0.1 and
n̄ = 2.0 is given through the plots a, b respectively. The high temperature limit (Ts = 20.0) of the system
for the mean photon number n̄ = 0.1 and n̄ = 2.0 is given in c, d repectively. Here the cut-off frequency
used is sω = 5.0ω0

super-Ohmic case The super-Ohmic case with spectral density J (ω) = η(ω/ωc)
3

exp(−ω/ωc) is studied for the displacement parameter (α) and squeezing parameter
(r ) in the long time limit and the results are shown through the plots in Fig. 15. For
the mean photon numbers n̄ = 0.1 and n̄ = 2.0 the low temperature plots are shown
through the figures in Fig. 15c, d respectively. As expected the coherence is zero when
the state is incoherent, i.e., when both the displacement and the squeezing parameters
are zero. On increasing the parameters the coherence increases and the rate of increase
is higher for the displacement parameter than the squeezing parameter. The results in
the low temperature limit maps similarly to the high temperature limit as well. This
can be observed from the study of the results in the plots Fig. 15c, d respectively.
The long time coherence in the high temperature limit exhibits the same qualitative
behavior as the one in the low temperature limit. But quantitatively the coherence is
lower for high temperature values than that of low temperature values. This is because
the system exhibits a thermal decoherence at higher values of temperature.

7 Conclusion

The quantum coherence dynamics of a single mode squeezed displaced thermal state
is analyzed in the present work. We adopt an open quantum system approach where
we consider the environment to be a collection of infinite number of bosonic modes
with varying frequencies. The coherence dynamics is studied in the finite tempera-
ture limit and considering different values for the system-bath coupling strength. The
coherence is measured using the relative entropy measure where the distance to the
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closest thermal state is used. The number operator of the continuous variable state
and the determinant of the covariance matrix completely characterizes the quantum
coherence. The time evolved covariance matrix elements are obtained by solving the
quantum Langevin equation for the bosonic mode operators. The two basic nonequi-
librium Green’s functions namely u(t) and v(t) are determined by the time evolution
of the field operators. The entire analysis is carried out under three different envi-
ronmental spectral densities viz Ohmic, sub-Ohmic and super-Ohmic densities. In
the weak interaction limit, when the bath and the system are weakly coupled with
each other, the quantum coherence decreases monotonically with time. Meanwhile
in the strong interaction limit, we observe that the coherence initially decreases but
then it increases mildly and shows an oscillatory behavior. This oscillatory nature,
signals the presence of non-Markovian behavior and is a characteristic feature of a
strongly coupled system. From our analysis we find that the system with lower mean
photon number has higher amount of initial coherence which falls faster. Apart from
investigating the dynamics in a finite time interval, we also look at the coherence
evolution in the long time (t → ∞) limit. In this steady state limit, we show the
dynamical variation of quantum coherence of the system when it is strongly coupled
to the environment. We find that the qualitative behavior of the quantum coherence
evolution in the steady state limit is same both in the low and high temperature limits.
But quantitatively it is different because of thermal decoherence. Our investigations
are important from the resource theory perspective in quantum information. It will
help us to understand the dynamics, long time behavior and susceptibility of quantum
coherence of different types of Gaussian states. These features are dependent on the
different system-environment parameters and for a strong system-reservoir coupling
we have calculated the steady state value of coherence that depends on the initial
state. In the present work we have been able to characterize a mixed Gaussian state
completely. A extension of the study of coherence dynamics to non-Gaussian will be
the focus of our future works. Such investigations will require methods beyond the
covariance matrix approach which works only for Gaussian systems.
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