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Abstract
The Hamiltonian of a system of two successive Jaynes-Cummings cells (JCCs) indi-
rectly coupled through an optical fiber mode under the influence of an external
classical field (ECF) is simplified. In the framework of unitary transformations of
the atomic and bosonic delocalized operators, the simplification is carried out. Three
dispersive regimes, namely, large optical fiber coupling strength (OFCS), large detun-
ing, and comparable OFCS and detuning are considered. The analytical solutions of
Schrödinger equation for the different Hamiltonians when the fields are initially in
the vacuum states and initially the first and the second atoms are in the excited and
the ground states, respectively, are presented. The exploitation of the atomic popu-
lation inversion function (APIF) of a single atom to the track of the quantum state
transfer (QST) between the distant atoms is considered. The temporal evolution of the
APIF is investigated. Effects of the external classical fields couplings (ECFCs), and
the OFCS on the APIF are analyzed. Analysis of the resulted features based on the
difference between the ECFC and the localized and delocalized atomic frequencies is
presented. The collapses-revivals phenomenon (CRP) is clearer in absence of the ECF.
The behavior of both the APIF and the CRP follow those for the overlap of evanescent
fields model while the rates of the QST in the two schemes are un equiv. The ECFs
reformulate the initial quantum states and may augment the localized detuning. The
ECFs either accelerate the transfer of the quantum state or delecerte it.
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1 Introduction

Introducing the Jaynes–Cummings model (JCM) [1] was a key factor in understand-
ing and realizing the interaction of matter and quantized electromagnetic field. JCM
was designed for the study of the interaction of a two-level atom with a single mode
quantized field. The JCM has received an enormous number of theoretical [1–3] and
experimental [4, 5] studies. Such a studiousness attributes to its (i .e., JCM)mathemat-
ical solubility and its richness in displaying many phenomena, such as Rabi oscillation
[6–8], collapses-revivals phenomenon [2, 3, 9–20], the capability of producing non-
classical fields [15, 17, 18, 20–25].

In the main time many researchers have turned their attentions and devoted the
efforts towards the extensions and the generalizations of the JCM. As the JCM is
considered as a standard model in addition to the alternative models, introduced by
Dick [26] and Tavis and Cummings [27] in order to study the dynamics of N identical
two-level atoms resonantly interacting with a single mode of the electromagnetic field.
For instance, it has been extended and generalized to includemulti-photon,multi-mode
processes [28–40], multi-level systems [34–46], and the intensity-dependent JCM [19,
34–40, 44, 47] from theoretical point of view.

It is well known that the collapses-revivals phenomenon is a quite generic phe-
nomenon for the quantum systems. Also, it represents one of the most important
phenomena reported for the JCM since it manifests the granular nature of the initial
state of the field and a good evidence of discreteness of photons [2, 48]. Experimen-
tal realizations of JCM were observed in optical and radio frequency domains [49,
50]. Theoretically, the CRP has been extensively studied in the framework of various
aspects of quantum optics [38, 51–58]. The collapses-revivals behaviors in the inves-
tigation of the APIF represents the reversibility of the quantum states [2, 3, 59]. It was
shown that, within the JCM, the collapses and revivals periods of the APIF either result
in purely periodic behavior [60, 61] or display an irregular character [59] according
to the form of the interaction.

In some physical models, the situation is confined to trapping the atoms in a cav-
ity. Thus, the studies in the framework of cavity quantum electrodynamics (CQED)
have been devoted especially to the efforts of addressing the problems of quantum
networks and quantum states transfer (QST) in order to enhancing the quantum infor-
mation distribution. The quantum networks is a process by which the transportation
of quantum information between distant quantum systems can be accomplished. The
QST is ameasurement for the exchanged energy among the atomic systems in the form
of photons across large distances. The QST plays a central role in the quantum infor-
mation field due to its potential applications in many topics of the quantummechanics,
quantum cryptography, quantum computer, quantum purification, etc [62–74].

Recently, the researchers have studied the problem of remote cavities (completely
isolated), across the network; they may be interacting and communicated [75–86].

123



Quantum state transfer by electromagnetic fields initialized... Page 3 of 26 205

In fact, the remote cavities are considered as generalizations of the JCM. Coupled-
cavity arrays schemes "as generalization to the remote cavities" have attracted and
received much attention. Such attention is due to the easy handling of the individual
sites and the presence of relatively long-lived atomic states suitable for the purpose of
encoding a quantum information. Controlling the dynamics of the system in a better
way becomes easier with such systems due to their providing of a number of degrees of
freedom where photons can be hopping from cavity to another. These cavities may be
coupled through the overlap of evanescent cavity fields [87–90] and through an optical
fiber [94, 95]. Connecting the distant cavities through an optical fiber is considered a
fundamental setup for quantum networks [94, 95].

The purpose of the present article is to study the features and the phenomena of the
APIF due to the influences of the ECF and the OFCS in an extension to Ref [96] and
to assure that the entanglement dynamics in this model differs significantly from that
for the [97] in addition to reviewing the difference between the rates of the QST.

The structure of the article is as follows: In Sect. 2, we introduce the Hamilto-
nian of the considered system and proceed towards its interaction picture to obtain
the effective Hamiltonian for three approximate dispersive regime. In Sect. 3, we
solve the Schrödinger equation for all introduced Hamiltonians giving analytical
expressions for the final wavefunction. In Sect. 4, we employ the analytical results
formulated in Sect. 3 to investigate the properties of the APIF. We devote Sect. 5 to
discuss the influences of the relevant parameters on the evolution of the APIF. Finally,
in Sect. 6, we present our conclusion depending on the analytic and the numerical
results.

2 TheModel

The considered model is a two coupled JCCs indirectly connected via an optical fiber.
Each cavity contains a single two-level atom interact separately with a quantized
electromagnetic field and driven by an ECF (see Fig. 1). The total Hamiltonian of the
considered system can be cast as (we adopt � = 1):

Ĥ = Ĥ0 + Ĥint . (1)

|e〉1

|g〉1 |g〉2

|e〉2Δ0 Δ0

Cavity 2Cavity 1

Optical Fiber

Fig. 1 Scheme of two distant standard JCM indirectly connected by an optical fiber. The atoms are driven
by on resonance an ECF. The ket |e〉 j

(|g〉 j
)
represents the excited(lower) state of the j th¯ atom
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Generally, the Hamiltonian Ĥ can be written as follows:-

Ĥ =

Ĥ0︷ ︸︸ ︷
2∑

j=1

[
ω j â

+
j â j + � j

2
σ z
j + g j (σ̂

−
j + σ̂+

j )

]
+ ω f b̂

+b̂

+

Ĥint︷ ︸︸ ︷

ν
[
b(â+

1 + â+
2 ) + H .C .

]+ i
2∑

j=1

λ j (â j + â+
j )(σ̂+

j − σ̂−
j ), (2)

The Hamiltonian Ĥ , is a generalization of extensively studied earlier pictures [86,
98–103]. The parameters ω j , ω f , and � j represent the frequencies of the quantized
electromagnetic fields, the frequency of the fiber mode field and the frequencies of
the atomic energies differences, respectively. Moreover, the parameters λ j , g j , and

ν stand for the atom-field coupling in the j th¯ cavity, the external classical field cou-
plings (ECFCs), and the strength of the OFCS, respectively. The operators â+

j , and
â j are boson operators of the fields, they are controlled by the commutation relations
[â j , â

+
k ] = Î δ jk : Î denotes the unity operator while δ refers to the Kronecker delta.

The boson operators b̂+, and b̂ describe the fiber operators and behave as â+
j , and

â j . The operators σ̂−
j , σ̂

+
j , and σ z

j are Pauli operators defined by |g〉 j 〈e|, |e〉 j 〈g|, and
|e〉 j 〈e|-|g〉 j 〈g|, respectively.

2.1 Canonical transformations

The only motivation of the unitary canonical transformations is to obtain the wave-
function of the quantum systems. Treatment of the present quantum system is not an
easy task because of the presence of the rotating and counter-rotating terms, driving
terms, and cavity-cavity coupling term. The elimination of the ECFs couplings and
optical fiber mode coupling strengths and the counter-rotating parts is an essential
requirement for the simplification of the Hamiltonian of the considered model. The
elimination will be carried out through two common transformations [86, 98–103].
We shall review these canonical transformations in what follows:

2.1.1 The first transformation

The driven parts can be removed via the usage of the following canonical transforma-
tion

⎛

⎜
⎝

σ z
j

σ+
j

σ−
j

⎞

⎟
⎠ =

⎛

⎜
⎝

cos(2η j ) − sin(2η j ) − sin(2η j )

1
2 sin(2η j ) cos2(η j ) − sin2(η j )

1
2 sin(2η j ) − sin2(η j ) cos2(η j )

⎞

⎟
⎠

⎛

⎜
⎝

Szj
S+
j

S−
j

⎞

⎟
⎠ . (3)
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Which insures that σ̂+
j − σ̂−

j = S+
j − S−

j . The parameters η j are chosen to be:

η j = 1
2 arccos(

� j√
�2

j+4g2j
) = 1

2 arccos(
� j
ϕ j

). It is noted that the atomic frequency � j is

augmented to ϕ j =
√

�2
j + 4g2j which includes the classical field couplings g j . Also,

when the rotating wave approximation is considered, the Hamiltonian of Eq.(1) can
be written as follows:-

Ĥ =
2∑

j=1

[ω j â
+
j â j + ϕ j

2
Szj + iλ j (â j Ŝ

+
j − â+

j Ŝ
−
j )] + ω f b̂

+b̂ + ν(b(â+
1 + â+

2 ) + b̂+(â1 + â2)).

(4)

The atomic new operators Ŝ±
j = |±〉 j 〈∓| j , and Ŝzj = |+〉 j 〈+| j − |−〉 j 〈−| j , where,

the relations between the localized and localized atomic eigenstates are governed by

|+〉 j = cos ζ j |e〉 j + sin ζ j |g〉 j ,
|−〉 j = cos ζ j |g〉 j − sin ζ j |e〉 j . (5)

2.1.2 The second transformation

The elimination of the converter part is executed via the exploitation of the following

unitary canonical transformations b̂ = Ĉ1−Ĉ2√
2

, and â j = 1
2 (Ĉ1 + Ĉ2 − (−) j

√
2Ĉ0).

Then, Eq. (4) will be on the form

Ĥ =
2∑

�=0

ω̃�Ĉ
+
� Ĉ� +

2∑

j=1

[ϕ j

2
Ŝzj

]
+ i

2∑

j=1

λ j

2
[(Ĉ1 + Ĉ2 − (−) j

√
2Ĉ0)Ŝ

+
j − H .C .], (6)

For comprehensibility, we set ω j = ω0 = ω f ( j = 1, 2) which automatically leads
to ω̃� = ω0 − (−)�

√
2ν(1 − δ0�).

2.2 Interaction picture

The interaction picture of the Hamiltonian depicted in Eq.(6) is controlled by ĤI =
eit Ĥ0 Ĥint e−i t Ĥ0 , whereas

Ĥ =

Ĥ0︷ ︸︸ ︷
2∑

�=0

ω̃�Ĉ
+
�
Ĉ� +

2∑

j=1

[ϕ j

2
Ŝzj

]
+

Ĥint︷ ︸︸ ︷

i
2∑

j=1

λ j

2
[(Ĉ1 + Ĉ2 − (−) j

√
2Ĉ0)Ŝ

+
j − H .C .] . (7)

By using the Baker–Campbell–Hausdorff formula [104], we have

ĤI = Ĥint + (i t)[Ĥ0, Ĥint ] + (i t)2

2! [Ĥ0, [Ĥ0, Ĥint ]] + (i t)3

3! [Ĥ0, [Ĥ0, [Ĥ0, Ĥint ]]] + .....,(8)
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Due to some commutation relations, one can cast the interaction picture of the Hamil-
tonian ĤI as follows:-

ĤI =
2∑

k=1

iλk
2

[
⎛

⎝
2∑

j=1

Ĉ j e
−i t(ω̃ j−ϕk ) + √

2Ĉ0e
−i t(ω̃0−ϕk )

⎞

⎠ Ŝ+
k − H .C .]. (9)

2.3 The effective Hamiltonian

In this section we apply the method of Ref [105] to the current Hamiltonian in
order to get the effective Hamiltonian in different dispersive regimes approximations.
The effective Hamiltonian Ĥe f f can be written through the following relation [105],

Ĥe f f = ĤI (t) + 1
2

(
[ĤI (t), V̂1(t)] − [ĤI (t), V̂1(t)]

)
, the skew-Hermitian operator

V̂1(t) in its simplest form, is written as follows:-

V̂1(t) =
2∑

k=1

iλk
2

[(
2∑

j=1

Ĉ j

ω̃ j − ϕk
e−i t(ω̃ j−ϕk ) + √

2
Ĉ0

ω0 − ϕk
e−i t(ω0−ϕk ))Ŝ+

k + H .C .]

(10)

We are proceed to obtain the effective Hamiltonian in the language of the aforemen-
tioned limits i .e., (i) large optical fiber mode coupling strength (ii) large detuning, and
(iii) comparable optical fiber mode coupling strength and detuning. To make calcula-
tions more clearer and easier analytical computations, we again assume resonance of
the atomic subsystems i .e., � j = � besides symmetric couplings case i .e., λ j = λ,

and g j = g ⇒ ϕ j = ϕ. Consequently, the detuning between the atomic modes Ŝ j ,
and Ĉ j are �ι = ϕ − ωι, ι = 0, 1, 2.

2.3.1 For large cavity-fiber coupling strength limit

This approximation is applicable when the condition
√
2ν >> �0, λ is satisfied.

Moreover, we assume that �0 , �1, and �2 > λ. These conditions ensure vanishing
of the time average of both V̂1(t) and ĤI (t). The effective Hamiltonian is thus given

by the formula (�0 = λ2

4 [
2∑

j=1

1
� j

− 2
�0

])

Ĥ LC
e f f = Ĥ0 + λ2

4

⎡

⎣
2∑

j=1

Ĉ j Ĉ
+
j

� j
+ 2Ĉ0Ĉ

+
0

�0

⎤

⎦
2∑

j=1

|+〉 j 〈+|

−λ2

4

⎡

⎣
2∑

j=1

Ĉ+
j Ĉ j

� j
+ 2Ĉ+

0 Ĉ0

�0

⎤

⎦
2∑

j=1

|−〉 j 〈−| + �0
∑

<i j>

Ŝ−
i Ŝ+

j . (11)
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2.3.2 For large detuning limit

In this limit, the atom is highly detuned from the photonic modes: �0 >>
√
2ν, λ.

Also, both ĤI (t), and V̂1(t) vanish. The effective Hamiltonian takes the following
form:

Ĥ LD
ef f = λ2

8

[(√
2Ĉ2Ĉ

+
0

(
1

�0
+ 1

�2

)
+ H .C .

)

+
(√

2Ĉ0Ĉ
+
1

(
1

�0
+ 1

�1

)
+ H .C .

)] (
Ŝz1 − Ŝz2

)

+λ2

8

[(
Ĉ1Ĉ

+
2

(
1

�1
+ 1

�2

)
+ H .C .

)](
Ŝz1 + Ŝz2

)
+ Ĥ LC

e f f . (12)

2.3.3 For comparable OFCS and detuning limit

This approximation requires that the frequency of one of the two atoms is nearby equal
to that for the corresponding delocalized photonic modes. Such requirement can be
written mathematically as �1 ≈ 0. The effective Hamiltonian is reached and written
as:

ĤCSD
ef f = Ĥ0 + iλ

2

[
Ĉ1(Ŝ

+
1 + Ŝ+

2 ) − H .C .
]

+ λ2

4

[
Ĉ2Ĉ

+
2

�2
+ 2Ĉ0Ĉ

+
0

�0

] 2∑

j=1

|+〉 j 〈+|

−λ2

4

[
Ĉ+
2 Ĉ2

�2
+ 2Ĉ+

0 Ĉ0

�0

] 2∑

j=1

|−〉 j 〈−| + λ2

4

[
1

�2
− 2

�0

] ∑

<i, j>

Ŝ−
i Ŝ+

j . (13)

Now, we proceed to calculate the time-dependent wavefunction of the mentioned
different Hamiltonians.

3 The wavefunction

We consider the two modes and the fiber mode to be initially prepared in the vacuum
states, and the first atom is in its excited state while the second atom is in ground state.
Eventually, according to the delocalized modes, the initial wavefunction becomes of
the form

|�AF (0)〉 = A1(0)| + +000〉 + A2(0)| + −000〉 + A3(0)| − +000〉 + A4(0)| − −000〉. (14)

Based on the Hamiltonian (6) and the considered wavefunction (14) the time depen-
dent wavefunction of the considered system can be formed as follows [A j (0) =
sin η cos η δ1 j + cos2 η δ2 j − sin2 η δ3 j − sin η cos η δ4 j ]:
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|�AF (t)〉 =
19∑

j=1

A j (t)|ψ j 〉. (15)

The wavefunction is assumed initially normalized and according to Schrödinger’s

equation, it stays normalized as it evolves in time i .e.,
19∑

j=1
|A j (t)|2 = 1. Within the

delocalized bosonic modes, it is formed as follows:

|�AF (t)〉 =
19∑

j=1

B̧ j (t)|ψ j 〉. (16)

with

⎛

⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎝

B̧k

B̧5

B̧6

B̧7

B̧8

B̧9

B̧10

B̧11

B̧12

B̧13

B̧14

B̧15

B̧16

B̧17

B̧18

B̧19

⎞

⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

Ak , k = 1, .., 4
(

A5
2 + A6

2 + A7√
2

)

(
A5
2 + A6

2 − A7√
2

)

1√
2

(A5 − A6)
(

A8
2 + A9

2 + A10√
2

)

(
A8
2 + A9

2 − A10√
2

)

1√
2

(A8 − A9)
(

A11
2 + A12

2 + A13√
2

)

(
A11
2 + A12

2 − A13√
2

)

1√
2

(A11 − A12)

( A17

2
√
2

+ A14
2 + A18

2
√
2

− A19√
2
)

(
A15
2 − A16

2 + A17
2 − A18

2 )

(− A15
2 + A16

2 + A17
2 − A18

2 )

(
√
2A14
4 + A15

2 + A16
2 + A17

4 + A18
4 + A19

2 )

(
√
2A14
4 − A15

2 − A16
2 + A17

4 + A18
4 + A19

2 )

( −√
2A14
2 + A17

2 + A18
2 )

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

, while

⎛

⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎝

|ψ1〉
|ψ2〉
|ψ3〉
|ψ4〉
|ψ5〉
|ψ6〉
|ψ7〉
|ψ8〉
|ψ9〉
|ψ10〉
|ψ11〉
|ψ12〉
|ψ13〉
|ψ14〉
|ψ15〉
|ψ16〉
|ψ17〉
|ψ18〉
|ψ19〉

⎞

⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎝

| + +000〉
| + −000〉
| − +000〉
| − −000〉
| + −100〉
| + −010〉
| + −001〉
| − +100〉
| − +010〉
| − +001〉
| − −100〉
| − −010〉
| − −001〉
| − −110〉
| − −011〉
| − −101〉
| − −200〉
| − −020〉
| − −002〉

⎞

⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎠

.

(17)
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While the atomic density matrix for the two atoms, in the basis of | + + >, | + − >,
| − + >, and | − − >, is

ρ(12)(t) =

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎝

|B̧1(t)|2 B̧1(t)B̧∗
2(t) B̧1(t)B̧∗

3(t) B̧1(t)B̧∗
4(t)

B̧2(t)B̧∗
1(t) |B̧2(t)|2 +

7∑

j=5
|B̧ j (t)|2 B̧2(t)B̧∗

3(t) +
7∑

j=5
B̧ j (t)B̧∗

j+3(t) B̧2(t)B̧∗
4(t) +

7∑

j=5
B̧ j (t)B̧∗

j+6(t)

B̧3(t)B̧∗
1(t) B̧3(t)B̧∗

2(t) +
7∑

j=5
B̧ j+3(t)B̧∗

j (t) |B̧3(t)|2 +
10∑

j=8
|B̧ j (t)|2 B̧3(t)B̧∗

4(t) +
10∑

j=8
B̧ j (t)B̧∗

j+3(t)

B̧4(t)B̧∗
1(t) B̧4(t)B̧∗

2(t) +
7∑

j=5
B̧ j+6(t)B̧∗

j (t) B̧4(t)B̧∗
3(t) +

10∑

j=8
B̧ j+3(t)B̧∗

j (t) |B̧4(t)|2 +
19∑

j=11
|B̧ j (t)|2

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎠

.

(18)

Then, the atomic density matrix for 1st¯ -atom, in the basis of |+ >1, and |− >1, is

ρ[1](t) =

⎛

⎜
⎜⎜⎜
⎝

2∑

j=1
|B̧ j (t)|2 +

7∑

j=5
|B̧ j (t)|2

2∑

j=1
B̧ j (t)B̧

∗
j+2(t) +

7∑

j=5
B̧ j (t)B̧

∗
j+6(t)

2∑

j=1
B̧ j+2(t)B̧

∗
j (t) +

7∑

j=5
B̧ j+6(t)B̧

∗
j (t)

4∑

j=3
|B̧ j (t)|2 +

19∑

j=8
|B̧ j (t)|2

⎞

⎟
⎟⎟⎟
⎠

(19)

Then, the atomic density matrix for 2nd¯ -atom, in the basis of |+ >2, and |− >2, is

ρ[2](t) =

⎛

⎜
⎜⎜⎜
⎝

|B̧1(t)|2 + |B̧3(t)|2 +
10∑

j=8
|B̧ j (t)|2

∑

j=1,3
B̧ j (t)B̧

∗
j+1(t) +

10∑

j=8
B̧ j (t)B̧

∗
j+3(t)

∑

j=1,3
B̧ j+1(t)B̧

∗
j (t) +

10∑

j=8
B̧ j+3(t)B̧

∗
j (t) |B̧2(t)|2 +

7∑

j=4
|B̧ j (t)|2 +

19∑

j=11
|B̧ j (t)|2

⎞

⎟
⎟⎟⎟
⎠

(20)

The three roots of the cubic equation τ 3 + X1τ
2 + X2τ + X3 = 0, can be cast as

follows:-

τ j = − X1

3
+ 2

3

(√
X2
1 − 3X2

)
cos (θ j ), j = 1,2, 3

θ j =
(
1

3
cos−1

[
9X1X2 − 2X3

1 − 27X3

2(X2
1 − 3X2)

3
2

]

+ ( j − 1)
2π

3

)

. (21)
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3.1 For the full Hamiltonian

Because of the rather complicated calculations of the solution of the Schrödinger equa-
tions of the considered system, we only content with displaying analytical expressions
for the coefficients of the wavefunction of the full Hamiltonian depicted in Eq.(6).

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

A1(t)

A2(t)

A3(t)

A4(t)

A11(t)

A12(t)

A13(t)

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

e−i tϕ
10∑

j=1
K j eitn j

1
2

(

eit
�0
2

[

c0 cos

(

t

√(
�0
2

)2 + λ2

)

+ d0 sin

(

t

√(
�0
2

)2 + λ2

)]

+
3∑

j=1
M [3]

j ei tτ
[3]
j

)

−1
2

(

eit
�0
2

[

c0 cos

(

t

√(
�0
2

)2 + λ2

)

+ d0 sin

(

t

√(
�0
2

)2 + λ2

)]

+
3∑

j=1
M [3]

j ei tτ
[3]
j

)

A4(0)e−i tϕ

3∑

j=1
M [1]

j ei t(τ
[1]
j +�1)

3∑

j=1
M [2]

j ei t(τ
[2]
j +�2)

eit
�0
2

(

κ0 cos

(

t

√(
�0
2

)2 + λ2

)

+ κ1 sin

(

t

√(
�0
2

)2 + λ2

))

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

,

(22)

with [κ0, κ1, c0, d0]=[0, − λ
2 (A2(0)−A3(0))√(

�0
2

)2+λ2

, A2(0)−A3(0),
−i

�0
2 (A2(0)−A3(0))√(

�0
2

)2+λ2

].More-

over, the X1, X2, and X3 for the coefficients A j (t) ( j = 2, 3, 11, 12) are as follows:-

A11(t) A12(t) A2,3(t)
X1 2�1 − �2 2�2 − �1 −(�1 + �2)

X2 −(λ2 + �1�2 − �2
1) −(λ2 + �2�1 − �2

2) −(λ2 − �1�2)

X3
λ2

2 (�2 − �1)
λ2

2 (�1 − �2)
λ2

2 (�1 + �2)

(23)

Furthermore, the coefficients M [ j]
1 , M [ j]

2 , and M [ j]
3 , in the language of the matrices,

can be read as follows:-

⎛

⎜⎜
⎝

M [ j]
1

M [ j]
2

M [ j]
3

⎞

⎟⎟
⎠ =

⎛

⎜
⎝

1 1 1

ø[j]
1 i ø[j]

2 i ø[j]
3 i

−ø[j]
1 −ø[j]

2 −ø[j]
3

⎞

⎟
⎠

−1⎛

⎝

0

1

2

⎞

⎠ . (24)

Also, the parameters 
0, 
1, and 
2, for different j can be arranged as follows:-


0 
1 
2

j = 1 0 0 cos 2η
j = 2 -0.5 cos 2η -0.5 cos 2η 0
j = 3 0.5 iλ�1 cos 2η 0.5 iλ�2 cos 2η −λ2 cos 2η

(25)
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Fig. 2 The time evolution of the 1st -atom, W1(t), for the Hamiltonian Eq.(1) subject to the state Eq.(14)
while the system parameters values are ω0 = 10λ, η = 0 and in (a) υ0 = 0λ, (b) υ0 = 20λ, and (c)
υ0 = 25λ, with the blue curve ϑ0 = 5, the green curve ϑ0 = 10, and the red curve ϑ0 = 15 where in (1)

�0 = υ0, and ν = ϑ0√
2
, and in (2) ν = υ0√

2
, and �0 = ϑ0

More, the parameters n j are the eigenvalues of the 10th¯ degree algebraic equation
which is formed as follows:-

10∑

ι=0

n10−ιX ι = 0. (26)

This algebraic equation is the characteristic of the ODE of B̃1(t) which is formulated
as follows:-

[
ℵ11(

d

dt
− 2i�1)ℵ0

(
d

dt

)
− ℵ1(

d

dt
− 2i�1)ℵ00

(
d

dt

)]
B̃1(t) = 0. (27)

The differentiable operators ℵ00, and ℵ11 are not shown here. The parameters K j

can be determined in an easily manner was previously used in [106]. The analytical
expressions of the remainder coefficients can easily be derived. In what follows we
consider the cases of the different regimes.

3.2 For large OFCS and large detuning

For theHamiltonians in Eqs.(11, 12), the nonzero coefficients of the finalwavefunction
are written as follows:-

⎛

⎜⎜
⎝

A1(t)
A2(t)
A3(t)
A4(t)

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

A1(0) exp
(
−i t(ϕ + λ2

2 ( 1
�1

+ 1
�2

+ 2
�0

))
)

e
−i t λ2

4

(
1

�1
+ 1

�2
+ 2

�0

) [
A2(0) cos

(
tλ2
4

(
1

�1
+ 1

�2
− 2

�0

))
− i A3(0) sin

(
tλ2
4

(
1

�1
+ 1

�2
− 2

�0

))]

e
−i t λ2

4

(
1

�1
+ 1

�2
+ 2

�0

) [
A3(0) cos

(
tλ2
4

(
1

�1
+ 1

�2
− 2

�0

))
− i A2(0) sin

(
tλ2
4

(
1

�1
+ 1

�2
− 2

�0

))]

A4(0) exp (i tϕ)

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

.

(28)
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3.3 For comparable OFCS and detuning

For the Hamiltonian in Eq.(13), the nonzero coefficients of the final wavefunction can
be written as follows:-

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜
⎝

A1(t)
A2(t)
A3(t)
A5(t)
A8(t)
A11(t)
A17(t)

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

3∑

j=1
K j exp

(
i t
(
k j − ϕ − λ2

2 ( 1
�2

+ 2
�0

)
))

1
4 e

−i t λ2
2 ( 1

�2
+ 2

�0
)
(

+D23(0)e
it λ2

4 ( 1
�2

− 2
�0

) + e
0.5i t(�1+ λ2

�0
)
[e1 cos(t�) + e2 sin(t�)]

)

1
4 e

−i t λ2
2 ( 1

�2
+ 2

�0
)
(

−D23(0)e
it λ2

4 ( 1
�2

− 2
�0

) + e
0.5i t(�1+ λ2

�0
)
[e1 cos(t�) + e2 sin(t�)]

)

1
2

3∑

j=1
Mj exp

(
i t
(
m j − ω2 − λ2

4 ( 1
�2

+ 2
�0

)
))

1
2

3∑

j=1
Mj exp

(
i t
(
m j − ω2 − λ2

4 ( 1
�2

+ 2
�0

)
))

e
0.5i t(�1− λ2

2�2
)
[
e11 cos(t�) + e22 sin(t�)

]

3∑

j=1
L j exp

(
i t

(
l j − 2ω2 + ϕ

))

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

,

(29)

Based on the imposed constraints in the current work, one via minor algebra

operations, one can conclude that [
23 = A2(0) + A3(0)],
[
e1, e2, e11, e22, �

]
=

[

23,−0.5i�−1(�1 + λ2

2�2
)
23, 0,−0.5λ�−1
23, 0.5

√
�2

1 + λ4

4�2
2

+ �1λ2

�2
+ 2λ2

]
.

Moreover, the parameters k j , l j , and m j all are copy of τ j shown in (21). More-
over, the X1, X2, and X3 for the coefficients A j (t) ( j = 1, 17, 5, 8) are as follows

[s = �1 + λ2

4 ( 1
�2

+ 2
�0

)]:-
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Fig. 3 The time evolution of the APIF of the 1st -atom, W1(t), for the Hamiltonian Eq.(1) subject to the
state Eq.(14) while the system parameters values are ω0 = 10λ, η = 0 and in (a) �0 = 5λ, (b) �0 = 10λ,
and (c) �0 = 15λ, while in (1) �1 = 0, (2) �1 = −0.1λ, and (3) �1 = 0.1λ
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A1(t) A17(t) A5,8(t)

X1 −
(
3s − λ2

4 ( 1
�2

− 2
�0

)
) (

3s + λ2

4

(
1

�2
− 2

�0

))
λ2

4

(
1

�2
− 2

�0

)

X2 −
(
3λ2
2 − 2s

(
s − λ2

4

(
1

�2
− 2

�0

)))
−
(
3λ2
2 − 2s

(
s − λ2

4

(
1

�2
− 2

�0

)))
−
(
s2 + 3λ2

2

)

X3 λ2s −2λ2s − λ2

2

(
s + s2

2

(
1

�2
− 2

�0

))

(30)

The coefficients V j ≡K j , Mj , and L j are controlled by (v j ≡ k j , l j , and m j ):-

⎛

⎝
V1
V2
V3

⎞

⎠ =
⎛

⎝
1 1 1
v1 i v2 i v3 i
−v21 −v22 −v23

⎞

⎠

−1⎛

⎝

00

11

22

⎞

⎠ . (31)

K j (t) Mj (t) L j (t)

00 0 0 0

11 0 0 −λ sin(η) cos(η)


22 −0.5λ2 sin(η) cos(η) λ2√
2
sin(η) cos(η) iλ

(
s + λ2

4

(
1

�2
− 2

�0

))
sin(η) cos(η)

(32)

Due to the enumerated relations-above, one is in a position to discussmany quantum
aspects. But here we content to review the CRP in to the atomic inversion of a single
atom.

4 Collapses-revivals phenomenon (CRP)

The CRP represents one of the most important nonclassical phenomena in the field of
quantum optics. The observation of this phenomenon occurred during the course of
interaction between the field and the atom within a cavity. This phenomenon is a pure
quantummechanical effect and having its origin in the granular structure of the photon-
number distribution of the initial field [107]. TheCRPhas been seen in nonlinear optics
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Fig. 4 The time evolution of the APIF of the 1st -atom,W1(t), for the Hamiltonian Eq.(1) subject to the state
Eq.(14) while the system parameters values are ω0 = � = 100λ, and in (a) η = 0.900π

9 , (b) η = 1.000π
9 ,

and (c) η = 1.250π
9 , while in (1)

√
2ν = 5λ, (2)

√
2ν = 10λ, and in (3)

√
2ν = 15λ
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for the single-mode mean-photon number of the Kerr nonlinear coupler [108] when
the modes are initially prepared in coherent light, however, in this case the origin of
the occurrence of such a phenomenon is in the presence of nonlinearity in the system
(third-order nonlinearity specified by the cubic susceptibility).Also, the atomic density
operator elements for a one atom in the old basis have the forms

ρ[i]
ee = ρ

[i]
++ cos2 η − (ρ

[i]
+− + ρ

[i]
−+) sin η cos η − ρ

[i]
−− sin2 η,

ρ[i]
eg = ρ

[i]
+− cos2 η + (ρ

[i]
++ − ρ

[i]
−−) sin η cos η − ρ

[i]
−+ sin2 η,

ρ[i]
ge = ρ

[i]
−+ cos2 η + (ρ

[i]
++ − ρ

[i]
−−) sin η cos η − ρ

[i]
+− sin2 η,

ρ[i]
gg = ρ

[i]
++ sin2 η + (ρ

[i]
+− + ρ

[i]
−+) sin η cos η − ρ

[i]
−− cos2 η. (33)

TheAPIF,W (t), which represents the difference between the population of the excited
and the ground states. Approval of the APIF for the study of the QST is attributed to
the easiness of the determination of both the places of the perfect QST (PQST) and the
places of the synchronization of the two atoms (STAs): for specific times, the PQST is
possible when

∑2
i=1 Wi (ts) = 0 while the STAs is possible if

∑2
i=1(−)i+1Wi (tv) = 0

(W1(t) is for the 1st atomwhileW2(t) is for the 2nd atom). TheAPIF can be formulated
as follows:-

Wi (t) = cos(2η)(ρ
[i]
++ − ρ

[i]
−−) − sin(2η)(ρ

[i]
+− + ρ

[i]
−+). (34)

5 Numerical results and discussion

In the present section, our interest focuses on the investigation of the APIF in accor-
dance with different dispersive regimes. We give comments on the resulted features
due to the variation of the inputs of both the atomic and photonic subsystems. We
investigate the behavior of the APIF function on the basis of three categories. The first
case is that where the OFCS is much larger than the detuning parameter, is expressed
as

√
2ν >> �0, while the opposite is for the second case, is expressed as �0 >>√

2ν. The third case is that the OFCS is comparable to the augmented detuning, is
expressed as

√
2ν ≈ �0. The investigation of the current model is limited to the case

of starting the 1st¯ -atom initially from its excited state while the 2nd¯ -atom starts ini-
tially from its ground state. We numerically exhibit the cases of the appearance of the
CRP whether the action of the ECFs is (through the augmented frequency) considered
or not. Furthermore, we confine ourselves to handle the problem only with positive
parameters.

5.1 Absence of the ECF

Now, we discuss the time evolution of the APIF due to changes in both the detuning
and the strength of the optical fiber coupling in the numerical computations during the
absence of the ECF is considered. The strategy is to enable one of the two control-
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Fig. 5 Zoomed view of plots in Fig. 4

ling parameters (namely, the strength of the optical fiber coupling, and the localized
detuning) to exceed the other.

5.1.1 Large OFCS and large detuning

Visualization of the role played by the addition of large value of the strength of the
optical fiber coupling requires realizing the behavior of the APIF for two remote
cavities i .e., no an optical fiber mode and no a photon hopping. The figures and
the numerical computations show that increasing the value of the localized detuning
while the bosonic modes are uncorrelated shifts the minima of the atomic population
inversion function upward and gives rise to more compressed Rabi-frequency (see
frame(2a) in Fig. 2). This is an evidence that the rate of the quantum-information
transfer between the atomic subsystems declines as a result of the increase of the
value of the localized detuning. Generally speaking, the figures and the numerical
computations indicate that the increase of the strength of the optical fiber coupling
leads the APIF to exhibit periodic and regular oscillations of low frequency compared
with those for the absence case and makes the APIF to reach almost its minimum
extreme value in a periodic and a regular manner (compare frame(1a) with frame(a) in
Fig. 2). The detuning parameter is of zero value (i .e., �0 = 0), the contribution of the
continuity of the increase of the strength of the optical fiber coupling adds nothing to
the behavior of the APIF as long as the values of the OFCS overtake that for the atom-
field coupling (see frame(1a) in Fig. 2). It is observed that the numerical computations
showcase that the first atom spends longer time in its ground state compared with its
excited state when both the detuning and the strength of the cavity-fiber coupling are
not taken into account (see maxima and minima in frame(1a) in Fig. 2). The previous
remark is a great motivation for addressing the case of having nonzero detuning. The
pursuit to the controlling factor in the change of the rate of the quantum information
transfer is principle reason behind this choice. The figures show that the reduction
of the quantum-information transfer between the atomic subsystems is an inevitable
result of the growth of the detuning in the numerical computations regardless of the
absence and the presence of the optical fiber coupling although the associated features
to its growing in the numerical computations are completely different with the two
investigations (compare frame(1a) with frames(1b, 1c) in Fig. 2) and (compare among
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Fig. 6 The time evolution of the APIF of the 1st -atom,W1(t), for the Hamiltonian Eq.(1) subject to the state
Eq.(14) while the system parameters values are ω0 = � = 100λ, and in (a) η = 1.350π

9 , (b) η = 1.400π
9 ,

and (c) η = 1.450π
9 , while in (1)

√
2ν = 5λ, (2)

√
2ν = 10λ, and in (3)

√
2ν = 15λ

the different colored curves in frame(2) in Fig. 2). In detail, the factor ( 1
�1

+ 1
�2

− 2
�0

)

controls the frequency of the APIF (see Fig. 2). Thus, one canmanifest that the overlap
between the values of both the detuning and the optical fiber coupling does not accord
the same information (compare frame(1) with frame(2) in Fig. 2). All these results are
in a complete conformity with those introduced in [96].

5.1.2 Comparable OFCS and detuning

Now, we draw the attention to the discussion of the behavior of the time evolution
of the APIF when the difference between the localized detuning and the strength of
the optical fiber coupling its magnitude is either zero (i .e., the on resonance APIF, is
depicted in frame(1) in Fig. 3) or infinitesimal value (i .e., the near resonance APIF, is
depicted in frames(2, 3) in Fig. 3). Their equal values (i .e., �0, and

√
2ν) are on the

increase, interesting features are observed successively (i) modulating the amplitude
until show what the so-called ring modulation (see frame(1) in Fig. 3), (i i) elongat-
ing the revivals periods (compare frame(1a) with frames(1b, 1c) in Fig. 3). When the
detuning and the strength are of near resonance (say, �0 ≈ √

2ν with negative �1),
the resulted features are completely consistent with those for the on resonant case,
except for nonequivalent quantum-information transfer between the atomic subsys-
tems (compare frame(1) with frame(2) in Fig. 3). On the other hand, when �0 ≈ √

2ν
with positive �1, the CRP is absent while the atomic population inversion function
exhibits quasi-periodic oscillations (compare frame(1) with frame(3) in Fig. 3). The
assertion nonexhibiting the APIF a CRP with positive near resonance �1, is not even
remotely true, but it (i .e., the CRP) can be appeared with much larger values of the
detuning compared with those in on resonance and negative near resonance cases
(plots are not considered here). Again, one can assert that the behavior of the APIF
and the rate of the quantum-information transfer between the atomic subsystems may
be controlled by the difference of the detuning and the strength of the optical fiber
coupling (see Fig. 3). In other words, when the localized detuning and the strength of
the optical fiber mode are approximately equal, the quantum-information transfer and
the associated features are completely dependent on the change of �1. These three
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Fig. 7 The time evolution of the APIF of the 1st -atom,W1(t), for the Hamiltonian Eq.(1) subject to the state
Eq.(14) while the system parameters values are ω0 = � = 100λ, and in (a) η = 1.520π

9 , (b) η = 1.545π
9 ,

and (c) η = 1.570π
9 , while in (1)

√
2ν = 5λ, (2)

√
2ν = 10λ, and in (3)

√
2ν = 15λ

scenarios are in complete conformity with those appeared when the coupling between
the cavities was by the overlap of evanescent cavity fields [98, 103].

5.2 Presence of the ECF

In this subsection, we are moving on towards addressing the effects of the ECFs on
the time evolution of the APIF with giving essential differences between the current
evolutions and their counterparts for the absence of the external classical fields was
considered before. More clarification and fruitful investigation can be made through a
harmonization among the controlling and relevant parameters. The investigation will
be limited to the previously cited three investigated cases but with specific differences,
given the augmentation of the localized due due to including the actions of the external
classical fields.

5.2.1 Large OFCS and large detuning

– Large Delocalized Detuning
First of all, it is foreknown from the analytical results that the parameter η maps
the relation between the atomic frequency and the coupling of the ECFs. Also, for
a comprehensive investigation, we address two interesting categories, the first is
exceeding the localized atomic frequencies to the couplings of the ECFs while the
opposite is valid for the second category.
When η << 1

2 arctan
4
3 , the figures and the numerical computations show that the

increase of the ECFCnot only leads theAPIF to exhibit rapid and small oscillations
"superpositions of fast and slow oscillations", but also, tends to the low frequency
APIF and shift the minima of the APIF upward (compare frames(1a, 2a, 3a)
with frames(1b-1c, 2b-2c, 3b-3c) respectively in Fig. 4). It is noticed that the
action of the of the increase in the optical fiber coupling is immutable, its increase
leads to shortening the revivals time (compare frame(1) with frames(2, 3) in Fig.
4). One can emphasize that the increase of the ECF coupling hinders the atom
to populate its ground state (see Fig. 4). The aforementioned result is a direct

123



205 Page 18 of 26 S. A. Hanoura et al.

0 340 680 1020 1360 1700
−1

0

1

(a)

(1)

0 3400 6800 10200 13600 17000
−1

0

1

A
to

m
ic

  
in

v
e
rs

io
n

(b)

0 68 136 204 272 340
−1

0

1

Scaled time

(c)

x 104

0 72 144 216 288 360
−1

0

1

(a)
(2)

0 820 1640 2460 3280 4100
−1

0

1

A
to

m
ic

  
in

v
e
rs

io
n

(b)

0 17 34 51 68 85
−1

0

1

Scaled time

(c)

x 104

0 22 44 66 88 110
−1

0

1

(a)
(3)

0 350 700 1050 1400 1750
−1

0

1

A
to

m
ic

  
in

v
e
rs

io
n

(b)

0 7.4 14.8 22.2 29.6 37
−1

0

1

Scaled time

(c)

x 104

Fig. 8 The time evolution of the APIF of the 1st -atom,W1(t), for the Hamiltonian Eq.(1) subject to the state
Eq.(14) while the system parameters values are ω0 = � = 10λ, and in (a) η = 1.800π

9 , (b) η = 2.000π
9 ,

and (c) η = 2.200π
9 , while in (1)

√
2ν = 5λ, (2)

√
2ν = 10λ, and in (3)

√
2ν = 15λ

indication that the increase of the coupling of the ECFs hinders the effectiveness
of the strength of the optical fiber coupling (compare Figs. 3 and 4 with Fig. 4.
Finally, growth of the ECFC due to the variation of ηwith η << 1

2 arctan
4
3 reduces

in the quantum-information transfer rate between the atomic subsystems. Before
proceeding to further investigations, we should clarify what in Fig. 4, they are the
oscillations of the envelope of the revivals which carry fast oscillations (see Fig. 5).
Moreover, we intend to deal with another two intervals, 1

2 arctan
4
3 < < η < < π

3 ,
exhibited in Fig. 6, and π

3 << η << 1
2 arctan 2, depicted in Fig. 7. One can easily

observe that the action of the ECF coupling is somewhat similar to its counterpart
when the values η >> 1

2 arctan 2 were considered (compare Fig. 4 with Figs. 6
and 7).
The action of the increment of the ECF coupling not only it has the ability to lower
the frequency of theAPIF, but also, continuity of its increment leads to bringing the
minima of theAPIF upward (compare frames(1a, 2a, 3a)with frames(1b-1c, 2b-2c,
3b-3c) respectively in Figs. 4, 6 and 7). Being the atom is much far from its ground
state is one ofwhat differentiates the second interval from its predecessor (compare
Fig. 4 with Figs. 6 and 7). Furthermore, beginning with η >> 1

2 arctan 2, the time
evolution of the APIF shows the expected phenomenon, namely; the CRP. More-
over, increasing the ECF coupling delays the appearance of the revivals periods and
brings theminimaof theAPIFdownward i .e., increasing the coupling of theECF is
considered as an accelerator to the atom to reach its ground state (see Fig. 8).On the
other hand, the sustained growth to the strength of the optical fiber coupling leads
to shortening the revivals times (compare frame(1) with frames(2, 3) in Fig. 8).
This observation is not for a specific interval but for all considered intervals (com-
pare frame(1) with frames(2, 3) in Figs. 4, 6, 7 and 8).
Finally, it is obvious from the figures and the numerical computations that the rate
of the elongation of the revivals times occurs as a result of the increase of the
coupling of the ECFs and it is independent of the growth of the OFCS (compare
frames(1a, 2a, 3a) with frames(1b-1c, 2b-2c, 3b-3c) respectively in Figs. 4, 6, 7
and 8). On the other hand, the rate of the shrinkage of the revivals times occurs
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Fig. 9 The time evolution of the APIF of the 1st -atom,W1(t), for the Hamiltonian Eq.(1) subject to the state
Eq.(14) while the system parameters values are ω0 = � = 10λ, and in (a) η = 1.800π

9 , (b) η = 2.000π
9 ,

and (c) η = 2.200π
9 , while in (1)

√
2ν = 250λ, (2)

√
2ν = 500λ, and (3)

√
2ν = 1000λ

as a result of the growth of the OFCS and it is independent of the ECFs coupling
(compare frame(1) with frames(2, 3) in Figs. 4, 6, 7 and 8).

– Large OFCS
Generally speaking, when OFCS takes values far beyond its competitor (i .e., the
delocalized detuning), the features occur as a result of the growth of the ECFs in
perfect match to those in the previous case (see Fig. 9). On the other hand, the role
played by the continuity of the increase of the strength of the optical fiber coupling
results in elongating the revivals periods. In fact, as in the case of the absence of
the ECF, the strength of the optical fiber coupling adds no contribution when its
value is much larger than that for the detuning (compare frame(1) with frames(2,
3) in Fig. 9).

5.2.2 Comparable OFCS and detuning

To go a step further, we pay some attention to investigate the considered scheme when
the values of both the OFCS and augmented detuning are close to each others. Thus,
this investigation must be compatible with the previously cited two hypotheses. The
intelligibility of the present scenario may interrogate to stabilize the localized atomic
frequency (say, � = 10λ). Previously, we have mentioned that the argument η maps
the relation between the augmented detuning and the atomic frequency. Based on
the restrictions imposed in the current subsubsection, the strength of the optical fiber
coupling becomes one of the relevant and controlling parameters. Considering a small
value of the rotation angle η leads the APIF to show a chaotic behavior and the atom to
become nearer to its ground state than its excited state. Increasing η not only gives rise
to a shift upward of the mean of the APIF, but also causes an amplitude modulation.
Such an amplitude modulation continues until the APIF exhibits the CRP. These
collapses and revivals periods are greatly affected by the direct increase in the value
of the argument (η) The revivals periods are prolonged as a result of the continuity of
the increase of the rotation angle η. Finally, one can observe from the figures and the
numerical computations that the atom does not have the ability to reach its destinations
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Fig. 10 The time evolution of the APIF of the 1st -atom, W1(t), for the Hamiltonian Eq.(1) subject to the
state Eq.(14) while the system parameters values are ω0 = � = 10λ, and

√
2ν = �0, while in (1), (a)

η = 0.900π
9 , (b) η = 1.000π

9 , and (c) η = 1.250π
9 , in (2), (a) η = 1.350π

9 , (b) η = 1.400π
9 , and (c)

η = 1.450π
9 and in (3), (a) η = 1.520π

9 , (b) η = 1.545π
9 , and (c) η = 1.570π

9

(compare frames(1a, 2a, 3a) with frames(1b-1c, 2b-2c, 3b-3c) respectively in Fig. 10).
Ultimately, clearer collapses periods do not exist here. Thismay be attributed to having
the vacuum states as initial states of the fields and no photons distributions are involved.

5.3 The second atom information

As we have mentioned before, the purpose of the current work is to track the behavior
of the QST and to indicate the essential difference between the rates of the transfer
in the two schemes: The current scheme and the scheme in [97]. First, we intend
to introduce some differences between the time evolutions of the APIFs, W1(t), and
W2(t) in the numerical computations point of view. Second, through corresponding
inputs in the two schemes and the effective Hamiltonians, we review and state which
of the two schemes is of higher transfer rate?. It is preferable to address the numerical
computations in the framework of the large OFCS limit seeing its intelligibility. The
addressability will not only for the absence of the action of the ECFCs but also will be
for the case of its presence. Based on the numerical computations and Figs. 2, 3 and
Figs. 11, 12) one can approve what we have mentioned before: Perfect atomic states
transfer is possible when

∑2
i=1 Wi (t) = 0, while synchronization of the two atoms

is also possible when
∑2

i=1(−)i+1Wi (t) = 0. No need to call the corresponding
figure of the other scheme to give an essential difference, enough to state that the
rate of the energy transfer with the current scheme is higher compared with that for
the other scheme. Moreover, it is observable when no action for the ECFCs, there
is no a transfer for the energy between the atomic subsystems as long as there no a
transmission line (compare frame(2a) in Fig. 2 with frame(2a) in Fig. 11). It is worth
noting, when no a photons can be transfer from a cavity to another while the action of
the ECFCs is considered, there is a possibility for the energy transferred between the
atomic subsystems (plots are not shown here).
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Fig. 11 The time evolution of the APIF of the 2nd -atom, W2(t), for the Hamiltonian Eq.(1) with the same
parameters of the system which are exploited in the numerical computations for the Fig.(2)

6 Conclusion

In the aforementioned, we have investigated the CRP in the context of the APIF
due to the influences of the atomic frequencies, localized and delocalized detuning,
the couplings of the ECFs, and the OFCS. The investigation has been carried out
based on the condition that the atom-field coupling is small comparable with the other
parameters. The investigation has been analytically and numerically presented in the
context of three dispersive regimes approximations as stated in the text. The general
conclusions reached and illustrated by numerical results show that:

• The APIF is of a sinusoidal behavior as long as the action of the ECF is not
considered while both the detuning and the OFCS have big differences in this case
low increasing of the OFCS causes swinging the atom between its upper and lower
states through the time evolution of the APIF".

• Prolongation and shrinkage of the revivals periods are controlled by the differ-
ence between both the detuning and the OFCS or rather controlled by
the factor ( 1

�1
+ 1

�2
− 2

�0
). Compressing and broadening the frequencies of

the fluctuations of the APIF are also dependent on this difference or rather
controlled by the same factor ( 1

�1
+ 1

�2
− 2

�0
).

• The actions of the ECFs are not considered, the APIF exhibits a CRP provided the
detuning and the OFCS are having nonzero values but either on resonance or near
resonance.

• The actions of the couplings of the ECFs are of wider range. This is attributed to
the fact that they are not only confined to the inclusion of the augmented detun-
ing but also extend to the determination of their place values to those of atomic
frequencies.

• In consideration of the above-mentioned case, the minima of the APIF go down-
ward as a result of the continuous increase of the couplings the external fields and
their exceeding to a specific value of the localized atomic frequency.

• In contrast, theminima of theAPIF go upward as a result of the continuous increase
of the couplings ECFs: monotonically, (i) exceeding the delocalized detuning to

123



205 Page 22 of 26 S. A. Hanoura et al.

0 502 1004 1506 2008 2510 3012 3514
−1

0

1

(a)

(1)

0 1108 2216 3324 4432 5540 6648 7756
−1

0

1

A
to

m
ic

  
in

v
e

rs
io

n

(b)

0 0.679 1.358 2.037 2.716 3.395 4.074 4.753
x 104

−1

0

1

(c)

Scaled time

0 110 220 330 440 550 660 770
−1

0

1

(a)
(2)

0 255 510 765 1020 1275 1530 1785
−1

0

1

A
to

m
ic

  
in

v
e

rs
io

n

(b)

0 1670 3340 5010 6680 8350 10020 11690
−1

0

1

Scaled time

(c)

0 35 70 105 140 175 210 245
−1

0

1

(a)

(3)

0 96 192 288 384 480 576 672
−1

0

1

(b)

A
to

m
ic

  
in

v
e

rs
io

n

0 700 1400 2100 2800 3500 4200 4900
−1

0

1

Scaled time

(c)

Fig. 12 The time evolution of the APIF of the 2nd -atom, W2(t), for the Hamiltonian Eq.(1) with the same
parameters of the system which are exploited in the numerical computations for Fig. 3

the localized atomic frequency (i i) exceeding the localized atomic frequency to
both the delocalized detuning and the ECF coupling respectively (i i i) exceeding
the localized atomic frequency to both the ECF coupling and the delocalized
detuning.

• The APIF exhibits the CRP when the couplings of the ECFs exceed the localized
atomic frequency whether the OFCS exceeds the augmented detuning or not.

• When the augmented detuning is on resonance or near resonance to the OFCS,
incomplete CRP rises compared with its counterparts whether in the presence of
the ECFs or not.

• The dispersive regimes are ones of the controlling factors for the rate of the energy
transfer between the atomic subsystems:Eachoneof them is associated to a specific
rate; no one of them is commensurate to the other.
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