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Abstract
In this article, we study the entanglement properties of multi-qubit quantum states
using a graph-theoretic approach. For this, we define entanglement and separability
form-qubit quantum states associatedwith aweighted graph on 2m vertices.We further
explore the properties of a block graph and a star graph to demonstrate criteria for
entanglement and separability of these graphs.

Keywords Graph Laplacian operators · Density operators · Quantum entanglement ·
Block graphs · Star graphs

List of symbols
1. ||x || Absolute value of x= (

√
x x̄).

2. Tr(A) Trace of a matrix A.
2. det(A) Determinant of a matrix A.
4. D(G) The degree matrix of (G, a).
5. ρG

PT Partial transpose of the density operator of a graph G.
6. ρ̄G

PT Conjugate partial transpose of the density operator of a graph G.
7. A∗ Conjugate transpose of A.
8. |E(G)| Number of edges in G.

1 Introduction

Quantum information and computation has emerged as an interdisciplinary research
platform offering several potential applications in diverse academic domains. The effi-
cient advantages offered by quantum resources are due to entanglement and nonlocal
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correlations existing between qubits as identified by entanglement measures, Bell-
type inequalities and quantum discord. Recent trends in quantum information and
computation have shown that applications of entanglement and nonlocality are being
recognized in computing, security, machine learning, deep learning, biology, compu-
tational chemistry, finance and image processing. With the ever-growing applications
of entanglement, there is also a need to classify and quantify entanglement and cor-
relations in multiqubit networks. For example, the entanglement versus separability
problem for two-qubit pure and mixed states are well established but the classifica-
tion and quantification of entanglement in multi-particle systems [2, 18, 31, 34, 35]
are increasingly complicated and hence require a much better physical interpretation
and understanding. For a three-qubit pure state, several effective criteria have been
defined, e.g., the entanglement criterion for states belonging to classes of three qubit
pure states has been achieved by a complete stochastic local operations and classical
communication (SLOCC) characterization [7, 9, 21]. Considering a multiuser net-
work, classifying entanglement in multi-qubit systems is an important problem and
has a special attribute in quantum theory [12, 17, 18]. However, with the increase
in number of qubits the complexity increases enormously and proposing a general
description to address entanglement versus separability becomes very challenging
even for multi-qubit pure states. Clearly, the analysis of multi-qubit mixed states is
even more intricate and demanding.

The graph-theoretic approaches are quite handy to solve numerous research prob-
lems [32, 33]. In one of its efficient approaches, the graph-theoretical approach has
shown its outstanding potential toward quantum physics [13, 18] and information
theory [3, 6, 8]. For this, the pictorial representation and physical interpretation of
quantum states are provided by graphs [1, 5, 15]. The theory has been further used to
model unitary operations and to interpret entanglement or separability properties of
quantum states [4, 5, 10, 11, 15]. One of the important ways to define quantum states
and their properties is to use the concept of density operators which can be further
characterized by normalized Laplacian matrices for graphs [14, 26]. Likewise, we can
relate any graph, to a particular quantum state by using its density operator. In partic-
ular, quantum states of simple and weighted graphs have been introduced in [5] and
[15], respectively, where density operators are normalized combinatorial Laplacians
having a unit trace. Moreover, a density operator—acting on a Hilbert space Rn×n or
C
n×n with respect to the weights of edges of a graph—carries a block structure which

can be associated with subsystems. In addition, an m-partite density operator acts on
a Hilbert spaceRq1 ⊗R

q2 ⊗ . . .⊗R
qm orCq1 ⊗C

q2 ⊗ . . .⊗C
qm , where ⊗ represents

a tensor product [15, 16].
In this article, we readdress entanglement versus separability problem using

the graph-theoretic approach for multi-qubit systems. For this, we explore graph-
theoretical interpretations of entanglement and separability for n-qubit states associ-
ated with weighted, block and star graphs. We start our discussion with demonstrating
a condition for the Laplacian of a weighted graph to be positive semi-definite and
then use this condition to introduce the notion of a density operator for a multi-qubit
graph/state. We further propose conditions for a density operator of a weighted graph
to represent a pure or a mixed state. In addition, we also analyze entanglement and
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separability of states associated with weighted graphs to demonstrate many interest-
ing conditions to characterize entanglement properties of weighted graphs. We further
study entanglement properties of block graphs and star graphs. Our analysis shows
that the state associated with a weighted graph (G, a) is entangled if at least one of
the blocks of graph is associated with an entangled state. Moreover, if every vertex
of a n-qubit graph G has degree k ≥ 2 such that G has no cut-vertex, then the graph
G is associated with a separable state. Interestingly, our results demonstrate that if r
vertices are deleted from a star graph on 2m vertices then the resulting graph on 2s ver-
tices is associated with an entangled quantum state such that 0 ≤ r ≤ 2(2(m−1) − 1).
We further analyze the degree of entanglement in a star graph G ′ obtained by adding
adjacent edges to the original graph G, and show that the resultant graph G ′ will have
at least one block which is associated with an entangled state such that the entan-
glement measure of blocks of G ′ would not exceed the entangled measure of blocks
of G.

The article is organized as follows: In Sect. 2, we briefly discuss the properties of
weighted graphs, the associated Laplacian operators and partial transpose of weighted
graphs. In Sect. 3, we propose a condition for the Laplacian of a weighted graph
(G, a) on n = 2m vertices to be positive semi-definite and address entanglement
and separability issues in multi-qubit weighted graphs. Section 4 is dedicated toward
characterizing entanglement properties of weighted, block and start graphs. In this
section, we demonstrate several effective criteria to study the separability of n-qubit
entangled states. Finally, in Sect. 5, we conclude the article.

2 Preliminaries

In this section, we first provide a brief review of weighted graphs and important
terminologies such as adjacency matrix, degree matrix and Laplacian matrix which
we will be using in the upcoming sections of the article to represent quantum states
associated with a given weighted graph.

2.1 Weighted graphs

A graph G on n vertices is a pair (V (G), E(G)), where V (G) = {v1, v2, . . . , vn} is
the set of vertices, and E(G) ⊆ V (G)×V (G) is the set of edges. Similarly, aweighted
graph (G, a) is a graph together with a weight function a : E(G) → F defined as
follows: let vi , v j ∈ V (G), and (vi , v j ) ∈ E(G), then a(vi , v j ) is weight from vi to
v j , 1 ≤ i, j ≤ n. If two distinct vertices vi and v j are connected with an edge, then
we denote it by vi ∼ v j . Clearly, vi = v j ; (vi , vi ) ∈ E(G), is a self-loop at vertex vi
having the weight a(vi , vi ). In the special case when all nonzero weights in (G, a) are
equal to 1, and there are no self-loops, it is called a simple graph. Further, if (G, a) is
a weighted graph on n vertices then the adjacency matrix of (G, a), denoted by A(G),
is a n × n matrix with (i, j)-th entry equals ai j = a(vi , v j ) if vi ∼ v j , otherwise 0.
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2.1.1 Laplacian matrix of a weighted graph onR

A weighted graph (G, a) is a graph together with a weight function a : E(G) → R

defined as follows,

1. a(vi , v j ) �= 0 if vi , v j ∈ E(G) and 0 otherwise.
2. a(vi , v j ) = a(v j , vi )

We can now proceed to define the Laplacian matrix of a weighted graph G as
[15, 20]

L(G) = D(G) − A(G) + D0(G), (1)

where D0(G) is a diagonal matrix with i-th diagonal entry equals to a(vi , vi ) and
D(G) is the degree matrix of (G, a). The degree matrix is a diagonal matrix with the
i-th diagonal entry equals to the sum of all entries of i-th row (or column) of A(G),
i.e.,

∑n
j=1 ai j . For a simple graph, the degree matrix D(G) of a vertex vi ∈ V (G) is

defined as the number of edges in E(G) incident on vi .

2.1.2 Laplacian matrix of a weighted graph onC

One can further define a weighted graph (G, a)with a weight function a : E(G) → C

as,

1. a(vi , v j ) �= 0 if vi , v j ∈ E(G) and 0 otherwise.
2. a(vi , v j ) = ¯a(v j , vi )

The generalizedLaplacian of a graph (G, a), which includes loops, is L(G) = D(G)+
A(G) − D0(G) [15] where the degree matrix with i-th diagonal entry of vertex vi is
given by [15]

dvivi =
∑

vi∈V (G),vi �=v j

||a(vi , v j )|| + a(vi , vi ).

In general, L(G) is not positive semi-definite, however, for a simple graph it is positive
semi-definite. For simple graphs, D0(G) = 0 and L(G) = D1(G)+D2(G)−A1(G)−
A2(G), where D1(G) and D2(G) are diagonal matrices, and diagonal entries are row
sum of A1(G) and A2(G), respectively. Therefore, the Laplacian of a simple graph
can be re-expressed as sum of Laplacian matrices of simple graphs. We utilize this
property to analyze separability and entanglement problems in star graphs. In order to
facilitate the discussion of our results, we also briefly discuss the decomposition of a
Laplacian matrix for simple graphs in the Appendix.

2.2 Conjugate partial transpose of a weighted graph

Let (G, a) be a graph on n = pq vertices and vertex set V (G) = {vi j |i =
1, 2, . . . p and j = 1, 2, . . . q}. Using (G, a), if one draws edges of the form (vil , vk j ),
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in place of all edges of the form (vi j , vkl) where the weight is ¯a(vi j , vkl), for all j �= l
then the resulting graph (G ′, a′) is called as the conjugate partial transpose of the
original graph (G, a) [11, 15, 19]. For example,

v11 v12 v13

v21 v22 v23

Partial transpose−−−−−−−−−−→

(G, a)

3i

-1 2

v11 v12 v13

v21 v22 v23

(G′, a′)

-3i

-1
2

It is important to note that for a graph (G, a), the conjugate partial transpose of
the Laplacian matrix L(G) may or may not be equal to the Laplacian matrix of the
conjugate partial transpose of (G, a). For example,

Example 1 Consider the following graph G1.

v11 v12

v21 v22

G1

i

i
1

Clearly, the Laplacian matrix of G1 is

L(G1) =

⎡

⎢
⎢
⎣

2 i 0 i
−i 2 0 1
0 0 0 0
−i 1 0 2

⎤

⎥
⎥
⎦ ,

and the conjugate partial transpose of L(G1) is

¯L(G1)
PT =

⎡

⎢
⎢
⎣

2 i 0 0
−i 2 −i 1
0 i 0 0
0 1 0 2

⎤

⎥
⎥
⎦ .
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Whereas, the conjugate partial transpose of the graph G1, i.e., G1
′ is

v11 v12

v21 v22

G1
′

−i

−i
1

and the Laplacian matrix of G1
′ is

L(G1
′) =

⎡

⎢
⎢
⎣

1 −i 0 0
i 3 −i 1
0 i 1 0
0 1 0 1

⎤

⎥
⎥
⎦

Therefore, L(G1
′) �= ¯L(G1)

PT
.

Example 2 Consider the following graph G2.

v11 v12

v21 v22

G2

1

1 11 1

1

The Laplacian matrix of G2 is

L(G2) =

⎡

⎢
⎢
⎣

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤

⎥
⎥
⎦ ,
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and the partial transpose of L(G2) is

L(G2)
PT =

⎡

⎢
⎢
⎣

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤

⎥
⎥
⎦ .

Similarly, the partial transpose of the graph G2 is

v11 v12

v21 v22

G2
′

1

1 11 1

1

and the Laplacian matrix of G2
′ is

L(G2
′) =

⎡

⎢
⎢
⎣

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤

⎥
⎥
⎦

Here, L(G2
′) = L(G2)

PT .

3 Density operator of a graph

In general, the state of a quantum systemmay not be in a pure state. Due to the inherent
statistical nature of quantum theory, the description of a quantum state using density
operator formalism provides a much better physical interpretation of the system under
study. The density operator formalism is also considered as an alternate representa-
tion for pure states, and finds its applications in quantum error correction, quantum
noise, quantum communication and measures of quantum entanglement [25, 34]. For
studying several interesting properties of entanglement and nonlocality, the concepts
of density operator, reduced density operator and partial transpose are widely utilized
[1, 5, 11, 15, 19] . Here, we propose a graph-theoretic study using a density operator
mechanism to understand entanglement and separability in multiqubit pure states.
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For this, we first define the density operator ρG of a graph (G, a) considering the
case where the Laplacian of the graph is a positive semi-definite matrix and is given
by the following expression

ρG = 1

Tr(L(G))
L(G)

We now proceed to demonstrate a necessary and sufficient condition for the Laplacian
matrix of a graph to be positive semi-definite. For a graphG associatedwith anm-qubit
state, vertices are column basis on Rq1 ⊗R

q2 ⊗ . . .⊗R
qm or Cq1 ⊗C

q2 ⊗ . . .⊗C
qm .

Theorem 3.1 Let (G, a) be a weighted graph on n vertices. If the Laplacian matrix

L(G) = [li j ]n×n is positive semi-definite then lii ≥ 0 and det

[
lii li j
l j i l j j

]

≥ 0 for all

i , j .

Proof L(G) is positive semi-definite if x∗L(G)x ≥ 0 for any vector x =
[x1, x2, . . . , xn]T ∈ C

n , where x∗ = [x̄1, x̄2, . . . , x̄n] is conjugate transpose of x ,
i.e.,

[
x̄1 x̄2 . . . x̄n

]

⎡

⎢
⎢
⎢
⎣

l11 l12 . . . l1n
l21 l22 . . . l2n
...

...
...

...

ln1 ln2 . . . lnn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x1
x2
...

xn

⎤

⎥
⎥
⎥
⎦

≥ 0,

or

x̄1(l11x1 + l12x2 + · · · + l1nxn) + · · · + x̄n(ln1x1 + ln2x2 + · · · + lnnxn) ≥ 0,

or

x̄1(l11x1 + l12x2 + · · · + l1nxn) + · · · + x̄n(ln1x1 + ln2x2 + · · ·
+lnnxn) + (n − 2)(l11 x̄1x1 + l22 x̄2x2 + · · · + lnn x̄nxn)

−(n − 2)(l11 x̄1x1 + l22 x̄2x2 + · · · + lnn x̄nxn) ≥ 0,

or

{x̄1(l11x1 + l12x2) + x̄2(l21x1 + l22x2)} + · · · + { ¯xn−1(ln−1n−1xn−1

+ln−1nxn) + x̄n(lnn−1xn−1 + lnnxn)}
≥ (n − 2)(l11 x̄1x1 + l22 x̄2x2 + · · · + lnn x̄nxn),
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which implies

[
x̄1 x̄2

]
[
l11 l12
l21 l22

] [
x1
x2

]

+ · · · + [ ¯xn−1 x̄n
]
[
ln−1n−1 ln−1n
lnn−1 lnn

] [
xn−1
xn

]

≥ 0.

Thus, we have

[
x̄i x̄ j

]
[
lii li j
l j i l j j

] [
xi
x j

]

≥ 0 for all i < j .

Therefore, lii ≥ 0 and det

( [
lii li j
l j i l j j

] )

≥ 0 for all i , j . 
�

Theorem 3.2 Let (G, a) be a weighted graph on n = 2m vertices associated with an
m-qubit state, and ρG = [ρi j ]n×n be its density operator. If (G, a) represents a pure
state, then

∑n−1
i=1

∑n
j>i ρi iρ j j = ∑

i< j ||ρi j ||2.
Proof If ρG is a pure state, then Tr(ρG

2) = 1, i.e.,

ρ11
2 + ρ22

2 + · · · + ρnn
2 + 2(||ρ12||2 + · · · + ||ρ1n||2 + · · · + ||ρn−1n||2) = 1,

which implies that,

ρ11ρ22 + · · · + ρ11ρnn + · · · + ρn−1n−1ρnn

= ||ρ12||2 + · · · + ||ρ1n||2 + · · · + ||ρn−1n||2.

Hence,

n−1∑

i=1

n∑

i< j

ρi iρ j j =
∑

i< j

||ρi j ||2.


�
Example 3 The following graph is associated with a pure state as Tr(ρG

2) = 1, and
ρ11(ρ22 + ρ33 + ρ44) + ρ22(ρ33 + ρ44) + ρ33ρ44 = ||ρ12||2 + ||ρ13||2 + ||ρ14||2 +
||ρ23||2 + ||ρ24||2 + ||ρ34||2 = 6.
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v11 v12

v21 v22

G

ρG = 1
4

⎡

⎢
⎢
⎣

1 i i 1
−i 1 1 −i
−i 1 1 −i
1 i i 1

⎤

⎥
⎥
⎦

i

i
1

-2

1
-i

-2

-i

-2 -2

If (G, a) represents a mixed state, then Tr(ρG
2) < 1, so the following result holds,

Corollary 3.3 Let (G, a) be a weighted graph on n = 2m vertices associated with an
m-qubit state, and ρG = [ρi j ]n×n be its density operator. If (G, a) represents a mixed
state, then

∑
i< j ||ρi j ||2 <

∑n−1
i=1

∑n
j>i ρi iρ j j .

Example 4 The following graph is associated with a mixed state as Tr(ρG
2) < 1, and

ρ11(ρ22 + ρ33 + ρ44) + ρ22(ρ33 + ρ44) + ρ33ρ44 > ||ρ12||2 + ||ρ13||2 + ||ρ14||2 +
||ρ23||2 + ||ρ24||2 + ||ρ34||2.

v11 v12

v21 v22

G

ρG = 1
8

⎡

⎢
⎢
⎣

2 i i 2
−i 2 2 −i
−i 2 2 −i
2 i i 2

⎤

⎥
⎥
⎦

i

i
2

-2

2
-i

-2

-i

-2 -2
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Theorem 3.4 Let (G, a) be a weighted graph on n = 2p+q vertices, where q is prime
and the associated density operator ρG is a block matrix of order 2q consisting of
blocks of order 2p. Then, a(vi j , vkl) = ¯a(vil , vk j ) and a(vi j , vkl) ∈ R for j = l if
and only if ρ̄G

PT = ρG = ρG ′ where ρG ′ is a density operator of conjugate partial
transpose of the graph (G, a).

Proof Let a(vi j , vkl) is a weight from vertex vi j to vkl .
Moreover, we have

ρG = 1

Tr(L(G))
L(G) = 1

Tr(L(G))

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

l11 l12 . . . l12n
l21 l22 . . . l22n
. . . . . .

. . . . . .

. . . . . .

l2n1 l2n2 . . . l2n2n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where,

L(G) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎢
⎣

l11 . . . a(v11, v12p )

a(v12, v11) . . . a(v12, v12p )

. . . . . .

. . . . .

a(v12p , v11) . . . l2p2p

⎤

⎥
⎥
⎥
⎥
⎦

. . .

⎡

⎢
⎢
⎢
⎢
⎣

a(v11, v2q1) . . . a(v11, v2q2p )

a(v12, v2q1) . . . a(v12, v2q2p )

. . . . .

. . . . .

a(v12p , v2q1) . . . a(v12p , v2q2p )

⎤

⎥
⎥
⎥
⎥
⎦

. . . . .

. . . . .

. . . . .⎡

⎢
⎢
⎢
⎢
⎣

a(v2q1, v11) . . . a(v2q1, v12p )

a(v2q2, v11) . . . a(v2q2, v12p )

. . . . .

. . . . .

a(v2q2p , v11) . . . a(v2q2p , v12p )

⎤

⎥
⎥
⎥
⎥
⎦

. . .

⎡

⎢
⎢
⎢
⎢
⎣

lrr . . . a(v2q1, v2q2p )

a(v2q2, v11) . . . a(v2q2, v2q2p )

. . . . .

. . . . .

a(v2q2p , v2q1) . . . l2n2n

⎤

⎥
⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and r = (2q − 1)2p + 1. If a(vi j , vkl) = ¯a(vil , vk j ) and a(vi j , vkl) ∈ R for j = l

then L̄i j
T = Li j = L(G ′)i j for all i and j , where Li j is i j th block of L(G), and

L(G ′) is the Laplacian matrix of conjugate partial transpose of (G, a). Therefore,
ρG ′ = ρG = ρ̄G

PT . The reverse implication is also true. 
�

4 Entanglement and separability of Weighted graphs

In this section, we discuss the separability and entanglement of weighted graphs on
n = 2m vertices, associated with m-qubit states. We further demonstrate the sepa-
rability and entanglement of quantum states corresponding to block graphs and star
graphs.
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It is evident that the density operator ρG of a graph (G, a) on n = pq vertices is
separable if it can be written as a convex combination of the tensor product of density
operators ρi

1 of order p and ρi
2 of order q, such that [18, 30],

ρG =
∑

i

piρ
i
1 ⊗ ρi

2, (2)

where 0 ≤ pi ≤ 1 and
∑

i pi = 1. Moreover, in order to evaluate the degree of
entanglement in a two-qubit state, concurrence is considered as one of the standard
measures. For example, concurrence of a two-qubit state ρG is defined as C(ρG) =
max(0,

√
μ1 −√

μ2 −√
μ3 −√

μ4) [35]. Here μ1 ≥ μ2 ≥ μ3 ≥ μ4 are eigenvalues
of the matrix ρG ρ̃G ; ρ̃G = PρG

∗P where asterisk represents complex conjugation
and

P = σy ⊗ σy =

⎡

⎢
⎢
⎣

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎤

⎥
⎥
⎦ .

The value of concurrence C(ρG) lies in [0, 1], i.e., if C(ρG) = 0, then the density
operator ρG represents a separable state otherwise it is considered as entangled; and
if C(ρG) = 1 then ρG represents a maximally entangled state.

Theorem 4.1 Let (G, a) be a weighted graph on 4 vertices. Suppose the Laplacian
L(G) is positive semi-definite having eigenvaluesλ1 ≥ λ2 ≥ λ3 ≥ λ4. Ifλ1 ≤ λ2+λ3,

then (G, a) is associated with a two-qubit separable state.

Proof As the Laplacian L(G) is positive semi-definite the density operator ρG =
1

Tr(L(G))
L(G) is also positive semi-definite. By the definition of ρ̃G , we have, Tr(ρG) =

Tr(ρ̃G) = 1 and ρ̃G is positive semi-definite. If ρG and ρ̃G are two positive semi-
definite matrices, then the following are equivalent [22, 29, 36]:

1. ρG ρ̃G is normal, that is, [ρG ρ̃G , (ρG ρ̃G)∗] = ρG ρ̃G(ρG ρ̃G)∗ − (ρG ρ̃G)∗ρG ρ̃G

= 0.
2. ρG ρ̃G is positive semi-definite.

The eigenvalues of ρG are λ1∑
λi

≥ λ2∑
λi

≥ λ3∑
λi

≥ λ4∑
λi
. Let ν1 ≥ ν2 ≥ ν3 ≥ ν4 be

the eigenvalues of ρ̃G and μ1 ≥ μ2 ≥ μ3 ≥ μ4 be the eigenvalues of matrix ρG ρ̃G .
Therefore, μ1 ≤ λ1∑

λi
ν1 ≤ (λ2+λ3+λ4)∑

λi
ν1 ≤ μ2 + μ3 + μ4 [29, 37] which implies the

concurrence for ρG is equal to 0 as C(ρG) = max(0,
√

μ1 − √
μ2 − √

μ3 − √
μ4).

Hence, (G, a) is associated with a separable state. 
�
Theorem 4.2 Let (G, a) be a weighted graph on n = 2m(m = p + q) vertices
associated with an m-qubit state. Let (n − 2) vertices are isolated and there is one
edge that lies between the remaining two vertices (loops can also be also considered
on them). Suppose, V (G) = {vi j } is the set of vertices, where i = 1, 2, . . . , 2q , and
j = 1, 2, . . . , 2p. The graph (G, a) is entangled if and only if the edge lies between
vi j and v2q−(i−1) 2p−( j−1) for any j .
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Proof Let (G, a) be a weighted graph on n = 2m(m = p + q) vertices associated
with an m-qubit state where (n − 2) vertices are isolated. If V (G) = {vi j } is the set
of vertices, where i = 1, 2, . . . , 2q , and j = 1, 2, . . . , 2p then for a two-qubit state,
there are four vertices |00〉, |01〉, |10〉, and |11〉. Therefore, a two-qubit quantum state
associated with a weighted graph on 4 vertices is entangled if the edge lies between
vertices vi j and v2−(i−1) 2−( j−1), where i = 1, 2 and j = 1, 2.

Similarly, for a three-qubit state, there are eight vertices (|000〉, |001〉, |010〉, |011〉,
|100〉, |101〉, |110〉, |111〉). Therefore, a quantum state associated with a weighted
graph on 8 vertices is entangled if the edge lies between vi j and v2−(i−1) 4−( j−1),
where i = 1, 2 and j = 1, 2, 3, 4. Likewise for an m-qubit state, there are 2m ver-
tices |000 . . . 0︸ ︷︷ ︸

m

〉, |000 . . . 0︸ ︷︷ ︸
m−1

1〉, . . . , |0 111 . . . 1︸ ︷︷ ︸
m−1

〉, |1 000 . . . 0︸ ︷︷ ︸
m−1

〉, . . . , |111 . . . 1︸ ︷︷ ︸
m−1

0〉, and

|111 . . . 1︸ ︷︷ ︸
m

〉 and hence a quantum state associated with a weighted graph on 2m vertices

is entangled if edge lies between vi j and v2q−(i−1) 2p−( j−1), where i = 1, 2, . . . , 2q

and j = 1, 2, . . . , 2p. 
�
Theorem 4.3 Let (G, a) be a weighted graph on n = 2m vertices associated with an
m-qubit state. If det(ρ1

G) = 0 then the state associated with (G, a) is separable, where
ρ1
G is a reduced density operator associated with the first qubit.

Proof Let ρG = [ρi j ]n×n be a density operator which can be represented as a 2 × 2
block matrix, i.e.

ρG =
[
A B
B∗ C

]

, (3)

therefore,

ρ1
G =

[
Tr(A) Tr(B)

Tr(B∗) Tr(C)

]

. (4)

Since det(ρ1
G) = 0,

(ρ11 + · · · + ρ n
2
n
2
)(ρ n

2+1 n
2+1 + · · · + ρnn)

− ||(ρ1 n
2+1 + ρ2 n

2+2 + · · · + ρ n
2 n

)||2 = 0, (5)

or

(ρ11 + · · · + ρ n
2
n
2
)(ρ n

2+1 n
2+1 + · · · + ρnn)

= ||(ρ1 n
2+1 + ρ2 n

2+2 + · · · + ρ n
2 n

)||2. (6)

From equation (6), if ||ρ1 n
2+1 + ρ2 n

2+2 + · · · + ρ n
2 n

||2 = 0 then either (ρ11 + · · · +
ρ n

2
n
2
) = 0 or (ρ n

2+1 n
2+1 + · · · + ρnn) = 0. Therefore, either ρG =

[
A 0
0 0

]
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or ρG =
[
0 0
0 C

]

which suggests that ρG is separable. On the other hand, if

||ρ1 n
2+1 + ρ2 n

2+2 + · · · + ρ n
2 n

||2 �= 0, thenρG = 1
2A

[
1 1
1 1

]

⊗A orρG = 1
2A

[
1 i
−i 1

]

⊗
A, hence, ρG is separable. 
�
Theorem 4.4 Let (G, a) be a weighted graph on n = 2m vertices associated to an
m-qubit state with at least two edges and the density operator ρG be a block matrix.
If Abc = Acb

∗, where Abc is bcth block of the density operator ρG then one cannot
identify whether the underlying state is an entangled or a separable state. If Abc =
ir Bbc + i sCbc + i t Dbc for b < c, r = 1 or 4, s = 2 or 3, t = 1 or 2 or 3 or 4, where
Bbc and Cbc are positive semi-definite matrices and Dbc is a positive semi-definite
diagonal matrix such that

Ebb = Abb −
∑

c �=b

(Bbc + Cbc + Dbc) ≥ 0,

then the graph G is associated with a separable state.

Proof Let (G, a) be a weighted graph on 2n (n = p + q) vertices associated with an
n-qubit state where the associated density operator ρG is a 2p × 2p block matrix such
that

ρG = 1

Tr(L(G))

⎡

⎢
⎢
⎢
⎣

A11 A12 . . . A12p

A21 A22 . . . A22p

...
...

...
...

A2p1 A2p2 . . . A2p2p

⎤

⎥
⎥
⎥
⎦

Here, Abc = Acb
∗, so for b < c, Abc can be decomposed as Abc = ir Bbc + i sCbc +

i t Dbc where r = 1 or 4, s = 2 or 3, t = 1 or 2 or 3 or 4. Further, Bbc and Cbc are
positive semi-definite matrices and Dbc is a positive semi-definite diagonal matrix.
Therefore, if Abc = Acb

∗ then Acb = (−i)r Bbc + (−i)sCbc + (−i)t Dbc. Hence,
one can evaluate that ρG can be written as convex combination of tensor products if
Ebb = Abb − ∑

c �=b
(Bbc + Cbc + Dbc) ≥ 0. 
�

Corollary 4.5 Let ρG = 1
Tr(L(G))

⎡

⎢
⎢
⎢
⎣

A11 A12 . . . A12p

A21 A22 . . . A22p

...
...

...
...

A2p1 A2p2 . . . A2p2p

⎤

⎥
⎥
⎥
⎦

be the density operator of

a weighted graph (G, a) on 2n=p+q vertices where Ai j are Hermitian matrices of
order 2q . If Ai j = Bi j − Ci j + (−1)mDi j for i �= j where Bi j and Ci j are positive
semi-definite matrices and Di j is a positive semi-definite diagonal matrix such that

Aii −
∑

j �=i

Ai j ≥ 0, for all i

123



Entanglement and separability of graph Laplacian quantum... Page 15 of 28 152

then the graph G is associated with a separable state where Tr(L(G)) =∑
i T r(Eii )+ 2

∑
i
∑

j>i T r(Bi j )+ Tr(Ci j )+ Tr(Di j ) and Eii = Aii − ∑

j �=i
(Bi j +

Ci j + Di j ).

Corollary 4.6 Let G be a weighted graph on n = 2m (m �= 0) vertices associated to
an m-qubit state and ρG be the density operator with ρG = ρ̄G

PT . If all off diagonal
blocks are either positive or negative semi-definite and Aii ≥ ∑

j �=i
Ai j , then the state

is associate to a separable state.

Theorem 4.7 Let (G, a) be a weighted graph on n = 2m vertices associated to an
m-qubit state with at least two edges and the density operator ρG be a block matrix.
The state associated with the graph G is entangled if and only if Ai j �= A ji

∗, where
Ai j is i j th block of ρG; and Ai j ′ �= A ji ′

∗ where Ai j ′ is i j
th block of ρG ′ where ρG ′ is a

density operator obtained after interchanging columns Ci with C j , and corresponding
rows Ri with R j in ρG.

Proof Let (G, a) be aweighted graph on n = 2m vertices associated to anm-qubit state

with at least two edges. The density operator ρG = 1
Tr(L(G))

⎡

⎢
⎢
⎢
⎣

A11 A12 . . . A12p

A21 A22 . . . A22p

...
...

...
...

A2p1 A2p2 . . . A2p2p

⎤

⎥
⎥
⎥
⎦

be a block matrix. Let us further assume that Ai j �= A ji
∗, where Ai j is i j th block of

density operator ρG , and Ai j ′ �= A ji ′
∗ where Ai j ′ is i j

th block of ρG ′ .
Clearly, if the density operator ρG of a graph (G, a) on n = 2m vertices is separable

then it can bewritten as a convex combination of the tensor product of density operators
ρi
1 and ρi

2, such that [18]

ρG =
∑

i

piρ
i
1 ⊗ ρi

2,

The separable representation clearly implies that Ai j = A ji
∗, which contradicts our

assumption. Therefore, graph G associated to the quantum state cannot be written
as a convex sum of tensor products of individual subsystems. Hence, the graph G
associated to the quantum state is not separable if Ai j �= A ji

∗ and Ai j ′ �= A ji ′
∗. 
�

Example 5 Consider the graph G1 associated with an entangled state, and represented
as
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v11

v12

v21 v22

G1

The density operator for the graph G1 is

ρG1 = 1

6

⎡

⎢
⎢
⎣

1 −1 0 0
−1 3 −1 −1
0 −1 1 0
0 −1 0 1

⎤

⎥
⎥
⎦ ,

and

ρG1
PT = 1

6

⎡

⎢
⎢
⎣

1 −1 0 −1
−1 3 0 −1
0 0 1 0

−1 −1 0 1

⎤

⎥
⎥
⎦ .

Here, ρG1 �= ρG1
PT and blocks of ρG1 are not symmetric matrix after interchanging

columns and corresponding rows. Hence, the state associated with G1 is entangled.

Example 6 Rigolin et al. [27, 28] have introduced maximally entangled four qubit
states, but following our Theorems (4.4) and (4.7), one can easily show that the states
are separable with an absence of genuine four-qubit entanglement. The graph G2
depicted below serves as an example of the above theorem.

v11 v12 v13 v14 v21 v22 v23 v24

v31 v32 v33 v34 v41 v42 v43 v44

G2

-1

1
1
1

1

-1

A brief description of Example 6 above is presented in the Appendix.
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Example 7 The graph G3 depicted below also serves as an example of the above
Theorem 4.7.

v11 v12 v13 v14 v21 v22 v23 v24

v31 v32 v33 v34 v41 v42 v43 v44

G3

-1

-1
1

2

-1
1

2

12 -2

Clearly, the state associatedwith the graphG3 is entangled as also briefly demonstrated
in the Appendix.

Example 8 As another illustration of the theorem, we consider the graph G4 where the
isolated vertices are not considered.

v11 v14

v26

v27

v35v38

v42

v43

G4

1

-1

1

-1
-1

-1

-1

4

1

-1

1
1

1

1

-4

1

-1-1

-1

-1
4

11

1

1

-4

-1

-1

-1

4

-1

-1

4

-1

4

4
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Similar to the previous example, in this case also the state associated with G4 is an
entangled state.

Example 9 Let us consider the state [23] |W 〉 = 1√
3
(|011〉 + ei

4π
3 |101〉 + ei

2π
3 |110〉).

Therefore, the density operator corresponding to the state |W 〉 can be represented as

ρ = 1

3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 e−i 4π3 e−i 2π3 0

0 0 0 0 0 0 0 0

0 0 0 ei
4π
3 0 1 ei

2π
3 0

0 0 0 ei
2π
3 0 e−i 2π3 1 0

0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Considering ρ to be a block matrix, one can clearly show that all blocks are not
Hermitian. Hence, using Theorem 4.7, the given state is an entangled state.

Example 10 We now consider another state represented in [23] as |z〉 = 1
2 (|001〉 +

|010〉+|100〉+e2iφ |111〉). Using the above state, one can express the density operator
as

ρ = 1

4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 e−2iφ

0 1 1 0 1 0 0 e−2iφ

0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 e−2iφ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 e2iφ e2iφ 0 e2iφ 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Similar to the previous example, if we consider ρ to be a 2× 2 block matrix, then the
blocks are not Hermitian. Therefore, using Theorem 4.7, the given state is an entangled
state.

Example 11 Here, we further extend our discussion by considering the state
ρ(T ) from [38], represented as ρ(T ) = 1

Z
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⎡

⎢
⎢
⎢
⎢
⎣

e
−β J
2 0 0 0

0 1
2e

β(J−δ)
2 (1 + eβδ) 1

2e
iθe

β(J−δ)
2 (1 − eβδ) 0

0 1
2e

−iθe
β(J−δ)

2 (1 − eβδ) 1
2e

β(J−δ)
2 (1 + eβδ) 0

0 0 0 e
−β J
2

⎤

⎥
⎥
⎥
⎥
⎦

where Z = 2e− β J
2 [1 + eβ J cosh βδ

2 ], β = 1
kT , and δ = 2J

√
1 + D2.

In this case also, if we consider ρ to be a 2× 2 block matrix then the resultant blocks
are not Hermitian. Clearly, the density operator cannot be written as a convex sum

of tensor products of density operators. Using Theorem 4.7, if e
β(J−δ)

2 (1 − eβδ) �= 0
then the state is entangled. Alternately, as discussed above, for separability we must

have e
β(J−δ)

2 (1 − eβδ) = 0 which is possible only if J = 0. Theorem 4.4 further
leads us to Ebb = Abb − Abc ≥ 0 confirming that the state is a separable state if

e
β(J−δ)

2 (1 − eβδ) = 0.
Similarly, using Theorem 4.1, for J = 0 the density operator ρ(T ) can be re-expressed

as ρ(T ) = 1
4

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦. Here λ1 = λ2 = λ3 = λ4 where λi are eigen values and

λ1 < λ2 + λ3, therefore, using Theorem 4.1, the state is a separable state for J = 0.

Corollary 4.8 Let G be a simple graph on 2n vertices with at least two edges associated
with an n-qubit state and ρG be the density operator. If ρG �= ρG

PT then G is
associated with an entangled state.

Corollary 4.9 Let G be a simple graph on 2n vertices associated with an n-qubit state.

If the Laplacianmatrix of G is expressed as L(G) =
[
L1 0
0 L2

]

+
[
D B
B D

]

, where D is

a diagonal matrix whose elements are row sum of −B, then the graph G is associated
with a separable state and L1 and L2 are Laplacian matrices of subgraph of G.

4.1 Entanglement and separability of Block graphs

We now proceed to discuss entanglement and separability in another important class
of graphs, i.e., block graphs. For a connected graph G, a vertex v ∈ V (G) is called a
cut-vertex if G − v is not connected. A maximal connected subgraph of G is called a
block if it has no cut-vertex. A graph G is known as a block graph if every block of G
is a complete graph. For example,
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Graph Blocks of graph

v11

v12

v21 v22

G

v11

v12

v12

v21 v22

G1

G2

L(G) =L(G1) + L(G2)

⎡

⎢
⎢
⎣

1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

0 0 0 00
0 2 −1 −1
0 −1 2 −1
0 −1 −1 2

⎤

⎥
⎥
⎦

Theorem 4.10 Let (G, a) be a weighted block graph on 2n vertices with k blocks,
associated with an n-qubit state. The state associated with the weighted graph (G, a)

is entangled if at least one of the blocks of graph is associated with an entangled state.

Proof Let (G, a) be a weighted block graph having 2n vertices with k blocks.
The Laplacian matrix of the graph (G, a) can be written as L(G) = LG1 +
LG2 + · · · + LGk . Therefore, the density operator of the graph (G, a) is, ρG =

1
Tr(LG1+LG2+···+LGk )

[LG1 + LG2 + · · · + LGk ]. The density operator ρG can be re-

expressed as

ρG = Tr(LG1)

Tr(LG1 + LG2 + · · · + LGk )

{ 1

Tr(LG1)
[LG1]

}

+ Tr(LG2)

Tr(LG1 + LG2 + · · · + LGk )

{ 1

Tr(LG2)
[LG2 ]

}

+ · · · + Tr(LGk )

Tr(LG1 + LG2 + · · · + LGk )

{ 1

Tr(LGk )
[Lk]

}
.

Assuming the r th block of the graph (G, a) to be associated with an entangled state
suggests that AGr i j �= (AGr ji )

∗ where AGr i j is i j
th block of ρGr which is a density

operator associatedwith the r th block of the graph (G, a). Similarly, AG ′
r i j

�= (AG ′
r i j

)∗
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where AG ′
r i j

is i j th block of ρG ′
r
such that ρG ′

r
is a density operator after interchanging

columnsCi withC j , and corresponding rows Ri with R j inρGr . Clearly, Ai j �= (A ji )
∗

and Ai j ′ �= (A ji ′)
∗, where Ai j is i j th block of ρG and Ai j ′ is i j th block of ρG ′

where ρG ′ represents a density operator after interchanging columns Ci with C j , and
corresponding rows Ri with R j in ρG . Therefore, using Theorem (4.7), the weighted
block graph is associated with an entangled state. 
�
Theorem 4.11 Let (G, a) be a weighted block graph on 2n vertices associated with
a (n = p + q) qubit state. The state associated with the weighted graph (G, a)

is separable if vertex sets of blocks are {v11, v12, . . . , v12q }, {v21, v22, . . . , v22q },
. . . ,{v2p1, v2p2, . . . , v2p2q }, and {vi j , vkl} for i �= k where k �= 2p − (i − 1) and
l �= 2q − ( j − 1).

Proof Let (G, a) be a weighted block graph on 2n vertices associated with a
(n = p + q) qubit state. For the vertex sets of blocks , i.e., {v11, v12, . . . , v12q },
{v21, v22, . . . , v22q },. . . ,{v2p1, v2p2, . . . , v2p2q }, and {vi j , vkl} for i �= k where k �=
2p − (i − 1) and l �= 2q − ( j − 1), the density operator can be expressed as

ρG = Tr(A)
Tr(L(G))

{
1

Tr(A)
[A]

}
+ Tr(B)

Tr(L(G))

{
1

Tr(B)
[B]

}
where A is a diagonal block matrix

which can therefore be expressed as a tensor product. Clearly B can also be expressed
as a tensor product by Theorem (4.2), hence the proof. 
�
Corollary 4.12 Let G be a simple graph on 2n vertices associated with an n-qubit
state. If every vertex of G has degree k ≥ 2 and G has no cut-vertex, then the graph
G is associated with a separable state

Proof Let G be a simple graph on 2n vertices associated with an n-qubit state. If every
vertex of G has degree k ≥ 2 and G has no cut-vertex, then the graph G is connected

and L(G) =
[
L1 0
0 L1

]

+
[
D1 B1
B1 D1

]

,

where L1 is the Laplacian of a subgraph of the simple graph G . D1 is a diagonal
matrix with the i-th diagonal entry equals to sum of absolute value of i-th row (or
column) of B1. Hence the proof. 
�

4.2 Entanglement and separability of Star graphs (Sn)

We further discuss the properties of star graphs where a star graph (Sn) is a complete
bipartite graph on n + 1 vertices or n edges, e.g.,
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S8

Theorem 4.13 Let G be a star graph on 2m vertices associated with an m-qubit state.
If r vertices are deleted from G then the resulting graph on 2s vertices is associated
with an entangled quantum state and 0 ≤ r ≤ 2(2(m−1) − 1).

Proof Let G be a star graph such that |V (G)| = 2m (m ≥ 2) and |E(G)| = 2m − 1.
Since a star graph has cut vertices, it will have blocks that are equal in numbers to
the number of edges. By Theorem (4.2) at least one of the blocks of the star graph is
associated with an entangled state because of the block containing an edge between
vi j and v2q−(i−1) 2p−( j−1), where i = 1, 2, . . . , 2q and j = 1, 2, . . . , 2p. Therefore,
following Theorem (4.10), the state associated with star graph is an entangled state.
If r vertices are deleted from G then the resulting graph G ′on 2s vertices will also be
a star graph. Since every star graph on 2m vertices is entangled, G ′ is also associated
with an entangled state. Clearly, r = 2m−2s = 2s(2(m−s)−1), where s = 1, 2, . . . ,m
which shows that 0 ≤ r ≤ 2(2(m−1) − 1). 
�
Theorem 4.14 Let G be a star graph on 2m vertices. Adding adjacent edges to the
graph G results in G ′ with blocks having either one edge or three edges. The resultant
graph G ′ will have at least one block which is associated with an entangled state and
entanglement measure of blocks of G ′ would not exceed the entangled measure of
blocks of G.

Proof Let G be a star graph on 2m vertices and G ′ be the resultant graph
after adding r adjacent edges to the graph G, where 1 ≤ r ≤ |E(G)|−1

2 .

G G ′
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The graph G ′ contains cut vertices and a minimum of |E(G)|+1
2 blocks. Since

one block Gk
′ of the graph G ′ contains the edge between vertices vi j and

v2q−(i−1) 2p−( j−1), where i = 1, 2, . . . , 2q and j = 1, 2, . . . , 2p, thus by Theo-
rem (4.2) and (4.7), Gk

′ is associated with an entangled state. Further, we know that
the degree of entanglement of a simple graph is equal to 1

|E(G)| for an entangled state
and 0 for a separable state [20]; therefore, the degree of entanglement for all blocks
of G ′ can either be 0, or 1 or 1

3 , where the degree of entanglement for all blocks of G
is either 0 or 1. Hence proved. 
�

5 Conclusion

In this article, we demonstrated effective entanglement and separability conditions for
weighted, block and star graphs associated with n-qubit states. Our analysis led us
to describe entanglement properties of multi-qubit states utilizing characteristics of
graphs and density operators. The study presented here is important from the perspec-
tive that characterization of weighted, block and star graphs in terms of entanglement
and separability is relatively unexplored in comparisonwith simple graphs.We believe
that the results obtained in this article will allow one to address entanglement and sep-
arability problem for these classes of graphs in an effective manner.
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6 Appendix

6.1 A brief explanation of Examples (6) and (7)

1. Explanation of the example (6)

v11 v12 v13 v14 v21 v22 v23 v24

v31 v32 v33 v34 v41 v42 v43 v44

G2

-1

1
1
1

1

-1
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The density operator for the graph G2 can be represented as

ρG2 = 1

4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Using ρG2 , one can verify that ρG2 �= ρG2
PT . Therefore, interchanging columns C9

with C11, and C14 with C16 and corresponding rows R9 with R11 and R14 with R16,
we have

ρG2
∼= ρG2

′ = 1

4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 1 0 0 −1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 −1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 −1 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 −1 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, we can see that blocks are symmetric, satisfying the Theorem 4.4. Hence, the
state associated with the graph G2 is separable.

123



Entanglement and separability of graph Laplacian quantum... Page 25 of 28 152

2. Explanation of the example (7)

v11 v12 v13 v14 v21 v22 v23 v24

v31 v32 v33 v34 v41 v42 v43 v44

G3

-1

-1
1

2

-1
1

2

12 -2

Similar to the previous case, the density operator for the graph G3 is expressed as

ρG3 = 1

4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

In this case, we can see that we cannot get the symmetric blocks by interchanging the
columns and corresponding rows. Therefore, the state associated with the graph G3 is
entangled.

6.2 Decomposition of the Laplacianmatrix of a simple graph G

Every Laplacian matrix can be decomposed as a sum of Laplacian matrices of sub-
graphs (G1, G2, and G3) of a graph G [24].
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We have

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑n
j=1 a1 j −a12 . . . −a1n

−a21
∑n

j=1 a2 j . . . −a2n
...

...
...

...

−an1 −an2 . . .
∑n

j=1 anj

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

It is easy to see that L(G) can be rewritten as

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑ n
2
j=1 a1 j −a12 . . . − a1 n

2
0 0 . . . 0

−a21
∑ n

2
j=1 a2 j . . . − a2 n

2
0 0 . . . 0

...
...

...
...

...
...

−a n
2 1

−a n
2 2

. . .
∑ n

2
j=1 a n

2 j 0 0 . . . 0

0 0 . . . 0 0 . . . 0

0 0 . . . 0 0 . . . 0
...

...
...

...
...

...

0 0 . . . 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...

0 0 . . . 0 0 . . . 0

0 0 . . . 0
∑n

j= n
2+1 a n

2+1 j −a n
2+1 n

2+2 . . . −a n
2+1n

0 0 . . . 0 −a n
2+2 n

2+1
∑n

j= n
2+1 a n

2+2 j . . . −a n
2+2n

...
...

...
...

...
...

0 0 . . . 0 −an n
2+1 −an n

2+2 . . . 0
∑n

j= n
2+1 anj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑n
j= n

2+1 a1 j . . . 0 −a1 n
2+1 . . . −a1n

...
...

...
...

...
...

0 . . .
∑n

j= n
2+1 a n

2 j −a n
2
n
2+1 . . . −a n

2 n

−a n
2+11 . . . −a n

2+1 n
2

∑ n
2
j=1 a n

2+1 j . . . 0

...
...

...
...

...
...

−an1 . . . −an n
2

0 . . .
∑ n

2
j=1 anj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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To summarize, L(G) =
[
L1 0
0 0

]

+
[
0 0
0 L2

]

+
[
D1 B1
B2 D2

]

,

where L1 and L2 are also Laplacian of simple graphs and D1 and D2 are diagonal
matrices with the i-th diagonal entry equals to the sum of absolute value of i-th row
sum of B1 and B2.
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