
Quantum Information Processing (2022) 21:137
https://doi.org/10.1007/s11128-022-03478-w

Quantum Approach to Accelerate Finite VolumeMethod on
Steady Computational Fluid Dynamics Problems

Zhao-Yun Chen1 · Cheng Xue1 · Si-Ming Chen1 · Bing-Han Lu1 ·
Yu-Chun Wu1 · Ju-Chun Ding2 · Sheng-Hong Huang2 · Guo-Ping Guo1

Received: 5 August 2021 / Accepted: 2 March 2022 / Published online: 31 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Computational fluid dynamics (CFD) is a branch of fluid mechanics that solves fluid
flows by numerical methods. Recently, quantum computing has been proven to outper-
form a classical computer on specific computational tasks. However, using a quantum
computer to accelerate the CFD solver remains a challenge. Existed quantum differ-
ential equation solvers, which are limited to the linearity of the equation, cannot be
applied in the CFD because the fluid equations are highly nonlinear. Here, we pro-
pose a quantum approach to accelerate the finite volume method, which is typical
in the classical CFD domain. We focus on how a quantum computer handles clas-
sical input and output, designing a specific quantum data structure that allows fast
memory update throughout the calculation, resulting in an exponential speedup over
the classical counterpart. Numerical tests show that this algorithm adapts to various
CFD problems, including problems with high nonlinearity. This approach comple-
ments existed quantum methods for nonlinear differential equations and allows new
frontiers of the CFD by allowing a breakthrough of the cell number and the solution
speed.

Keywords Quantum computing · Quantum algorithm · Quantum random access
memory · Partial differential equation · Quantum data structure · Computational fluid
dynamics

B Yu-Chun Wu
wuyuchun@ustc.edu.cn

B Sheng-Hong Huang
hshnpu@ustc.edu.cn

B Guo-Ping Guo
gpguo@ustc.edu.cn

1 Key Laboratory of Quantum Information, CAS, University of Science of Technology of China,
Hefei, China

2 Department of Modern Mechanics, USTC, Hefei, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-022-03478-w&domain=pdf
http://orcid.org/0000-0002-8997-3030

137 Page 2 of 27 Z.Y. Chen et al.

1 Introduction

Computational fluid dynamics (CFD) is about solving partial differential equations
(PDEs) to obtain the physical properties of fluids, which plays a vital role in industrial
design. One of the most significant equations, the Navier–Stokes equation, models
the evolution of flow fields on the properties of density, momentum, and energy [1].
Solving such PDEs is a complicated task; thus, numerical methods are often applied
to provide approximate results.

Using the quantum computing approach to achieve a faster numerical solution is
promising. Quantum computing is a new computing paradigm that offers exponential
acceleration over classical computing approaches. Many quantum algorithms, includ-
ing quantum factorization [2], quantum simulation [3–6], and the linear system solvers,
[7–9] have already appeared to prove this idea. The quantum computing hardware is
also experiencing fast development. Tens of qubits are made in the superconducting
system [10, 11] and ion trap [12]. The quantum error correction and topological quan-
tum computing theories have also been developed to create a fault-tolerant quantum
computer [13–16].

The numerical solution of the fluid flow involves two kinds of problems: transient
problems, which require the system state at any given time, and steady problems,
which require the steady state after the system evolving an infinitely long time. In
this paper, we focus on the quantum speedup on steady problems. A no-go theorem
has proved that a nonlinear PDE cannot be solved efficiently even with quantum
computing approaches where time precision is considered, and the nonlinearity is
large. This theorem prohibits a fast quantum algorithm from solving a general range
of fluid flows,where the nonlinear behaviors are common. Instead, the steady problems
require to output a steady solution of the fluid flow. Thus, the time precision becomes
unimportant in steady problems, and the quantum speedup becomes expectable.

In steady problems, the first-order time-stepping schemes are usually applied. Such
schemes start from an arbitrary initial state, evolve with pseudo-time and targets to
efficiently converge the system to the stable state solution. In the first-order scheme,
one can either evaluate the variable at time tn or tn+1, named by the “explicit” or
“implicit” method, respectively. The explicit method can directly compute the next
step’s variable from this step, and the implicit method should solve a linear equation to
compute that. In practice, the explicit method is more suitable for parallel computing,
and the implicit method can converge faster [17].

The finite volumemethod (FVM) is a typical numericalmethod in the classical CFD
domain [18, 19]. In FVM, the computational space is split into small cells, and from
an initial state, one performs discrete time-stepping to evolve the system. The time
complexity of FVM is mainly dominated by the time of performing the time-stepping,
which involves solving large-scale linear algebra problems. For a sparse matrix linear
solver, Krylov’s subspace method is widely used in practice. The complexity can
be linear to the problem size (the number of grid cells) [20]. When the problem
size is large, the computing resource (including hardware resources and computing
time) will become expensive, for example, implementing large-scale CFD problem
on supercomputer and CPU/GPU clusters [21–23].

123

Quantum Approach to Accelerate... Page 3 of 27 137

Intuition is that applying the quantum linear solver (QLS) in the implicit method
exponentially accelerates the FVM.1 However, applying QLS to practical problems
is not apparent. It has been pointed out that the conversion between the classical and
the quantum data could become a bottleneck [26], which will fail to demonstrate any
quantum advantage.

This paper studies the case of using the implicit method to solve steady problems.
We propose a full recipe to accelerate FVM with the quantum approach. By only
assuming that the input and output are all classical data, we can still obtain exponential
speedupon the steadyproblemcases. To achieve this,we apply quantum randomaccess
memory (QRAM) [27, 28] and design a quantum memory layout. At the input stage,
the memory layout helps to implement quantum inputs required by the QLS. At the
output stage, we sample the output state and sparsely update the memory. We show
that these two processes, which act as the interface between classical and quantum
data, can both run in polylogarithmic time. As a result, they enable us to integrate
the quantum linear solver submodule into the classical FVM to achieve exponential
speedup.

The QLS and the l∞ tomography [24] method create a sparse update vector to
enable efficient time-stepping. Although such an update differs significantly from the
classical algorithm, the convergence stability is maintained if choosing appropriate
quantum error tolerance. To prove this, we analyze the error model resulting from the
quantum process and perform numerical experiments on various test cases. The result
shows that this method has broad applicability to general types of CFD problems with
the quantum advantage being kept.

There were some previous works about solving differential equations and partial
differential equations with the quantum computer [29–36]. The comparison and rela-
tion between this paper and the previous works are discussed in Appendix section
1.

2 Motivation: quantum algorithmwith classical input and output

When we use a quantum computer to cope with a practical problem, we should always
and only expect classical inputs and outputs. Many quantum algorithms have been
proposed and claimed to be faster (exponentially or polynomially) than their clas-
sical counterparts. However, a large portion of them only beats classical algorithms
under some theoretical limitations. A famous example is the quantum linear system
(QLS) algorithm: Harrow–Hassidim–Lloyd (HHL) algorithm [7], which can prepare
the state |x〉, encoding the solution of the linear equation Ax = b. This algorithm
uses O(log N) calls to linear equation oracles, where the classical counterpart has to
perform at least O(N) calls. Based on this work, many quantum machine learning
algorithms were proposed and claimed to have exponential speedup over their classi-
cal counterparts. However, most of these algorithms did not answer how to deal with

1 Although it is also viable to accelerate the explicit method quantumly, this will not provide a substantial
speedup against accelerating the implicitmethod.The reason is that the time complexity ofQLSandquantum
matrix multiplication are both polylogarithmic [24, 25]. Moreover, we can better enjoy the stability benefit
of the implicit method without extra sacrificing the time complexity.

123

137 Page 4 of 27 Z.Y. Chen et al.

real-world data to realize such oracles. Meanwhile, they did not answer how to output
the classical vector. In [26], the authors raised a series of obstacles for applying the
QLS on quantum machine learning algorithms with real-world data. The main prob-
lems include inputting the classical data into the quantum computer and extracting
information from the output state given by the QLS. If we hope to preserve quantum
speedup, two operations are forbidden. One is to prepare the input state |b〉 with an
encoded quantum circuit, where even reading all data entries requiresO(N) time. The
other is to perform sampling on the output state to extract the state to a classical vector
with O(N) times measurements.

We believe the obstacles that appeared in “QLS-based” quantum machine learn-
ing algorithms that are also challenging if we want to accelerate the FVM for CFD
problems quantumly. The physical variable should be updated at every time step. The
time complexity will become the multiplication of the Tx (the time complexity for
preparing |x〉) and M (the number of copies required for sampling). The M should
always be sublinear to the problem size N ; otherwise, we cannot achieve quantum
speedup. Our proposal will consider these obstacles, only assuming that the input and
output of this algorithm are all classical data.

3 Methods

3.1 Designated quantum data structure for the FVM

We store the interval data into the QRAM to allow quantum access. The quantum
random access memory (QRAM) is the particular storage device used by a quantum
computer. It stores classical data, which can be retrieved in quantum superposition.
Detailed descriptions of QRAM and our assumptions are shown in Appendix section
1.

Here we design a quantum data structure for integrating quantum approaches with
the FVM, as shown in Fig. 1. The data structure includes the geometry definition, the
physical variableU , and the residual vector R, which are identical to what the classical
FVM solver stores. All data in the QRAM are continuous storage, which allows it to
locate any of themwith simple computations. In the FVM, each cell is represented by a
C-sized tuple of several physical properties, such as a five-tuple (ρ, ρu, ρv, ρw, ρE)

in the compressible three-dimensional flow. (A detailed information about the FVM
is shown in Appendix 1.) Thus, we locate each element with an address pair (i, k).
The first is the node’s number, and the second locates the position in the tuple. For
example as shown in Fig. 1(c), Ui,k represents the kth variable of the i th node.

Besides those, we design a vital component for the quantum input and output, which
is the residual sum tree, depicted in Fig. 1d. We precompute the sum of the l2 norm of
the residual vector and its subvector and store them into the sum tree. Every node of the
binary tree stored the sum of two children nodes, except that the second bottom layer
stored the sum of the square of two children. This structure is maintained throughout
the whole FVM computing. Whenever the physical variable’s elements are changed,
the residual sum tree is also re-computed. The detailed method for updating the sum
tree is introduced in the following section (Sect. 3.3).

123

Quantum Approach to Accelerate... Page 5 of 27 137

Fig. 1 Schematic of the quantum data structure. a Three memory areas of the QRAM: geometry definition
area, which holds the input of the problem; physical variable area holding the Un ; and the residual sum
tree. b The linear structure of the geometry definition area. This area is formed with N blocks. The i th block
holds s related indices where each of i ′ = ik (0 ≤ k < s) satisfies Ci,i ′ = 1. c The linear structure of the
physical variable area. Each block of the physical variables Ui at the cell i. d The binary tree structure of
the residual sum tree. The tree’s leaves are the components of the residual vector Rn . Then for each level,
we sum up the square of every two nodes. The tree root is ‖R‖2.

Now we introduce the quantum functions enabled by such data structures. The
physical variable and the residual vector are common vectors. They can be queried by
inputting the addresses (or the indices) in a quantum superposition, denoted by PU :

PU |i, k〉|0〉 = |i, k〉|Ui,k〉. (1)

All tree nodes are also stored continuously. We define each node’s address as ar (p)
from the top of the sum tree. p is a binary string where every digit represents the
left/right branch with 0/1. For example, ar (0) is the address of the left child of the
root; ar (0, 1) is the right child of the node at ar (0). Specially, we directly use ar to
represent the root’s address. The binary tree’s size is determined, so that any address
ar (p) can be computed efficiently. The data contained in address ar (p) are denoted
by SR(p). We can perform such unitary transform:

PR |ar (p)〉|0〉 = |ar (p)〉|SR(p)〉. (2)

The geometry definition stores the geometry input of the CFD problem. From this,
we can query the position and the connection of all cells in a quantum parallel. These
are constant during the calculation and are used for computing the elements of the
equation. This part enables this unitary:

Ps |i〉| j〉 = |i〉|i j 〉, (3)

123

137 Page 6 of 27 Z.Y. Chen et al.

which is essential for the quantum linear solver.
To summarize, this data structure enables these following processes:

1 Initialization Initialize the residual sum tree will classically access the QRAM
O(N) times;

2 Quantum InputWith access to the QRAM, one can prepare |R〉 inO(log2 N) time.
3 QuantumOutput The quantum solver outputs the classical solution which sparsely
updating the physical variable U no more than O(ε−2 log N) times.

4 Result Time-stepping from Un to Un+1 will cost Õ((s3 + log N)sκε−2 log3 N)

time.

In the following text, we will introduce how quantum input and output are realized.
Then, we analyze the time complexity of all the above processes in the “run-time
analysis” section to prove these results.

3.2 Quantum input: constructing quantum subprocedures from the QRAM

The time-stepping of U is realized by solving linear equations while using an implicit
Euler time-stepping scheme. The linearization scheme of the finite volume method is
introduced in Appendix Sect. 1, where Eq. (18) is the typical form. In general, the
implicit Euler method derives

A�U = R. (4)

In this equation, A and R are the coefficient matrix and the vector, which subjects
to the U at a certain step. Solving this equation, we obtain �U , which is the update
vector to the U . The Euler method is a first-order timing scheme; thus,

Un+1 = Un + �Un (5)

performs a stepping from n to n + 1. Here we use the superscript n to denote the nth

iteration step. The main idea is to use the quantum approach to accelerate the linear
solver to achieve exponential speedup.

We introduce the quantum linear solver in Appendix Sect. 1. The input of the
quantum linear solver consists of three quantum subprocedures. For a general sparse
linear equation (like 4), we have the following three quantum processes which encode
the information of the linear equation:

PA|i, k, i ′, k′〉 = |i, k, i ′, k′〉|Ai ′,k′
i,k 〉, (6)

which encodes the matrix’s element, and

PR |i, k〉 = |i, k〉|Ri,k〉, (7)

which encodes the vector’s element, and

Pl |i, p〉 = |i,Ci (p)〉, (8)

123

Quantum Approach to Accelerate... Page 7 of 27 137

which encodes the pth related cell in the difference scheme.
In the original proposal of the quantum linear solver, these three processes are

viewed as “black-boxes”. They did not evaluate the time complexity for solving a
certain linear equation. Instead, they evaluated the query complexity to these black-
boxes, namely how many times the quantum linear solver calls these three processes.
Our task is to construct the input of the quantum linear solver by utilizing the quantum
data structure introduced above.

Using the data stored in QRAM to construct PA and Pl is straightforward. Con-
struction of Pl is equivalent to query the geometry definition data, which has been
prepared beforehand. To construct PA, we need to compute the value of a matrix
element with its position as the input (row and column). Constructing PA requires at
most O(s) queries. First, query Pl to find all related nodes, then query the physical
variables of these nodes, where only O(s) nodes are related. Computing the matrix
element is also gate-efficient because these computations are also efficient in classical
computing.

ConstructingPb requires the data in the residual sum tree. Inspired from [37], if we
use a sum tree storing all precomputed of a real-value vector in the QRAM, then with
the method introduced in [38], we can prepare such vector efficiently, time complexity
being O(log N). Using this method, Pb can be constructed with O(log N) times of
queries to the QRAM. A detailed implementation process is written in Appendix
Sect. 1.

Using this approach, we can also append a preconditioner to the linear equation.
The classical Krylov subspace method and the quantum linear solver are faced with
condition number problems. Both complexities have a linear dependency on the con-
dition number. One can use preconditioner, denoted by P , to construct a new equation
P Ax = Pb. If P A has a smaller condition number than A, and such precondi-
tioning processes can be implemented efficiently; then, the time complexity can be
reduced. Preconditioners are widely used in classical CFD solvers. There have also
been proposed several preconditioned quantum linear solvers [39–41]. Here, we inte-
grate Jacobi preconditioner in our method. The time complexity of constructing P′

A
and P′

R multiplies by an O(polys) which is preconditioned version A′ = P A and
A′ = PR correspondingly. The data stored in the residual sum tree are modified to
its preconditioned version. A detailed implementation process of the quantum Jacobi
preconditioner is written in Appendix section 1.

3.3 Quantum output: sampling the solution state and update the QRAM

With the quantum inputs, QLS outputs a solution |u〉 = | �Un+1

‖�Un+1‖ 〉, a normalized
solution of the linear equation, where ‖·‖ represents l2 norm of a vector in this paper.
Now we name the quantum linear solver process asAu .Au can prepare the |u〉 within
sublinear time. Our task is to callAu sublinear time to update the physical vector and
move to next iteration step.

Using l∞ tomography algorithm [42], we can convert the quantum state into a
classical vector within sublinear time. Taking Au as the input, running Au and its
controlled version byO(ε−2 log N)many times,we obtain a classical vector ũ which is

123

137 Page 8 of 27 Z.Y. Chen et al.

ε-close to the quantumsolution u.We introduce l∞ tomography algorithm inAppendix
Sect. 1. As a result, obtaining a classical vector ũ requires sublinear time.

The tomography algorithm only produces a normalized vector ũ. We should also
obtain all the normalized factors in the algorithm to get the actual update vector of
U . QLS produces two factors. First is cR , which is generated when preparing |R〉 and
can be obtained from the residual sum tree described above. The second is cl , which
is derived from the non-unitarity of the matrix inversion and the normalization factor
of the solution. With amplitude estimation [43] (also introduced in Appendix Sect. 1),
we can compute the probability pl and then obtain the factor by cl = α

√
pl , where

α is a constant in the QLS. Obtaining the normalization factors will not affect the
asymptotic time complexity of the algorithm. Combining these two factors c = cRcl ,
we obtain the norm of solution ‖�U‖, which implies the variation updated on the
target vector U in the CFD solver.

Toperform the time-stepping,weupdate the physical variableU with�U .Updating
the QRAM from the sampled vector ũ is also efficient. The l∞ tomography algorithm
produces a sparse classical vector with not more thanO(ε−2 log N) nonzero elements,
which means that the update of QRAM will be performed for less thanO(ε−2 log N)

times to update the physical variable.
Same as the computing R and its sum from U , when updating any element of the

physical variable, only the residual on the related cells would change. From the tree
leaves, we update the all residual Ri ′,k′ related to the updated Ui,k with Ci,i ′ = 1.
After these residual vector entries change, we again compute the sum tree from the
leaves to the root and update correspondingly. The number of updated nodes will not
exceed the number of the multiplication of the related residual entries O(s) and the
number of layers of the sum tree log N .

As a result, the cost of update one entry of U is less than O(s log N). Thus, both
sampling and updating processes can run in sublinear time.

For a steady problem, the computing stops in two cases. One is when the residual is
smaller than the convergence limit ε, which can be extracted from the top of the tree.
Another is when reaching the maximum iteration steps. After stopping, the output of
this algorithm is the classical vector stored in the physical variable area.

4 Run-time analysis

The time cost for the quantum approach has two main contributions. One is the cost
of initializing the data structures (initialization cost); the other is the time complexity
between two iteration steps (time-stepping cost).

4.1 Initialization cost

The initialization process fills the QRAM following the memory layout, which is
entirely a classical process. The first step is to write in the initial physical variable U
and fill the tree with the wanted sum. Along with these data, we should also fix the

123

Quantum Approach to Accelerate... Page 9 of 27 137

memory layout to quickly obtain the memory address of every data entry in constant
time.

There may be some concentrations about whether suchO(N) preparation time will
cause the vanishment of this algorithm’s speedup. However, after considering the time
consumption of initialization, the quantum speedup is still preserved. To support this,
we analyze the three things that contribute to initialization time.

The first is the calculation of the residual vector R. The calculation of this vec-
tor exists at every step of the classical FVM in a CFD problem. Even in classical
algorithms, this part is not the bottleneck of time. Our algorithm only calculates the
residual once initially, which will consume much less than a classical algorithm does.

The second is the fill of the sum tree. To fill a sum tree only requires repeatedly
adding the sum of the square of the residual vector. Therefore, it is natural to think
this process takes a shorter time than calculating the residual vector.

The third is about the cost of accessing theQRAMclassically.Aswehavementioned
in Appendix Sect. 1, we assume the QRAM has the near capability of RAM, which
allows the access to be performed in constant time.

As a result, under the assumption about the QRAM’s capability, the initialization
cost would not cost much more than the preprocessing stage of the classical FVM.
Also, the initialization of quantum memory only processes once, and we believe this
cost would not become the time’s bottleneck.

4.2 Complexity of time-stepping

The evolution cost is the time complexity at every evolution stage. In [9], the
authors provided a linear solver algorithm with logarithmic dependence on preci-
sion. They show that the query complexity of this algorithm of OA, Ol and Ob is
O

(
sκpolylog(sκ

ε
)
)
. Now we start to analyze the time complexity of constructing

these subprograms from the initial problem settings.
According to the results in the previous sections, the number of queries to QRAM

for implementing OA, Ol , and Ob is O(s), O(1), and O(log N), correspondingly.
The time complexity of preconditioned O ′

A has a multiplier of O(s3) contributed by
computing the inverse of the diagonal blocks of (A). The preconditioned O ′

b has the
same complexity as Ob.

Now consider the time cost of sampling and updating. We run the QLS with
O(ε−2 log N) times to obtain an l∞-close classical vector. This becomes another mul-
tiplier to the time complexity of the quantum procedure.

The last multiplier is the cost of querying the QRAM. As we have assumed, the
QRAM useO(log N) time to perform one query. By composing these results, the time
complexity of the quantum procedure is

O
(
(s3 + log N)sκ log3 Nε−2polylog(sκ/ε)

)
. (9)

The final step is to update the sum tree. Updating a preconditioned residual tree
has two steps. One is to compute the preconditioned residual, where each term will
involve in another inversion of the matrix A, which is O(s3); the other is to update

123

137 Page 10 of 27 Z.Y. Chen et al.

the tree from bottom to the top, which involves O(log N) times for one change in the
bottom of the tree. While at most O(ε−2 log N) terms of U changes, the time cost of
updating the tree isO(s3 log2 Nε−2). The total time complexity is the addition of the
quantum and the classical procedure. Because the quantum procedure’s complexity is
asymptotically greater than the classical’s, we conclude that the evolution time cost
has the time complexity shown in Eq. (9).

The classical counterpart’s time complexity is O(Nsκ log 1/ε) when using CG as
the linear solver. Our algorithm outperforms the classical algorithm on the problem
size’s dependency but has worse performance when the problem requires high preci-
sion.When the problem size N and the requirement of the precision ε has such relation
N � ε−2, the quantum algorithm will potentially have better performance on time.

5 Error analysis

The time complexity of the quantum approach has better performance on the num-
ber of grid cells N but worse on the precision ε, which implies that the problem
size should be large enough to show the quantum advantage. On the other side, the
numerical experiment shows that the precision should be small. Otherwise, the time
integration will not converge. There is the problem: if the precision requirement has
some dependency on the problem size, the quantum acceleration will decrease or even
vanish. In this section, we will provide evidence that the error threshold will not grow
with the problem size.

First, we calculate the total error generated by the quantum sampling with error
bound ε specified. At one step, we define the physical variable U and its update �U .
In our proposal, the quantum process outputs a quantum state |u〉which is proportional
to �U ,

�U = u‖�U‖. (10)

The l∞ tomography outputs a classical vector ũ which is ε-close to u. At any index
i , we have

ui = ũi + ei , (11)

where the error term |ei | < ε.
Now we consider the amplitude of the ei . When performing l∞ tomography, the

output vector is a sample from themultinomial distributionwhere the sampling number
M = C log N/ε2 and the probability distribution (|u0|2, |u1|2, ... |uN−1|2). At any
term, the standard error of such sample is: σi = √

M |ui |2(1 − |ui |2). When |ui | is
small enough, we have σi ∼ |ui |

√
N . Now we assume the error ei is approximately

linear dependent on the standard error σi , and thus, we have

ei = O(σi) ∼ O(|ui |
√
N). (12)

The update vector output by the quantum linear solver should be multiplied by
‖�U‖. As a result, the total error will be amplified by this coefficient.

Ei = ‖�U‖ei . (13)

123

Quantum Approach to Accelerate... Page 11 of 27 137

Compare two cases describing the sameproblemwhere one has N cells and the other
has kN (mark the variables with extra prime, e.g., u′). We can assume the distribution
of�U and�U ′ is the same because the physical characteristic does not change. From
this, we have

‖�U ′‖2 = k‖�U‖2, (14)

because only the vector size changes to k times. From the definition of u (equa-
tion (10)), this results in the decrease of the amplitude of the u, i.e.,

u′
i = 1√

k
ui . (15)

Combining Eqs. (12), (13), and (15), we obtain that Ei = O(Ui). This result
implies that the total error generated by the quantum sampling will not change over
the problem size N .

6 Numerical experiment

6.1 Numerical methods

The open-source classical CFD software, SU2 [44–46], is selected as the base CFD
solver. The SU2 mainly implements the finite volume method solver for unstructured
grids. The SU2 is highly configurable, supporting sorts of equations and algorithms.

Concentrating on the implicit Euler solver, we inserted codes to support the sim-
ulations of quantum error. This part of the code is written around the original linear
solver to emulate the errors introduced by quantum processes.

Here we ignored the error from the QLS and focused on simulating the error gen-
erated by l∞ tomography. As introduced in Appendix Sect. 1, the time complexity
increases polylogarithmic to the precision, which implies that we can set a sufficiently
high precision without much decelerating this process. In fact, the slowdown effect
on the quantum error complexity (see Run-Time Analysis Section) results from the
sampling process, namely the error setting from the l∞ tomography.

After the linear equation is generated, we classically solve this equation to obtain
an unnormalized output. Then, we divide this vector by its l2 norm to emulate the
output of the quantum linear solver. Then, we take this normalized vector as the input
of a classical sampling algorithm. The algorithm samples the probability distribution
Cε−2 log N times for the vector size N , error ε, and C = 32(consistent with the
original l∞ algorithm). The sample vector is finally multiplied by the above l2 norm to
obtain a quantum version solution. The whole computation process uses the quantum
solution instead of the classical solution, while other processes remain unchanged.

We chose a series of example test cases, appended different quantum errors, output
the evolution history and flow field. By comparing the quantum error biased results
to the classical solver, we study whether the quantum error effect will damage the
availability of the FVM.

123

137 Page 12 of 27 Z.Y. Chen et al.

Fig. 2 Results of the numerical experiment. The test case is the three-dimensional inviscid flow around the
Onera M6 airfoil. a Pressure coefficient around the airfoil. This result is calculated by the original classical
solver. b The simulation result of the quantum approach. The error is set to 1e-2. The quantum solver also
solves the flow field correctly. c Convergence history of the test case of the quantum solver with different
error settings, compared to the classical solver as the baseline. The error is set from 5e-2 to 1e-4. Except
ε=5e-2, all other cases converge correctly. The maximum stable error is between 5e-2 and 1e-2. d A cross
line with y=0.5 solution output by the classical solver and the quantum solver of error 1e-2.

6.2 Inviscid transonic flow

We select the inviscid flow around Onera M6 airfoil as the test case. Onera M6 airfoil
is a fundamental test case for a CFD solver. In this case, the problem is a three-
dimensional case with 108396 grid points.

We focus on comparison among the classical result with different error settings:
from 5e-2 to 1e-4. The definition of error settings is described above. A general view
of the convergence history is demonstrated in Fig. 2c.We can find that the computation
converges correctly when the error is smaller than 1e-2 and diverges quickly at 5e-2.

123

Quantum Approach to Accelerate... Page 13 of 27 137

The comparison of the flow field is shown in Fig. 2a and b, displayed by the pressure
coefficient of the surface flow on the airfoil. The “lambda”-shaped shock wave on the
airfoil is computed correctly with both classical and the quantum-accelerated solvers
with a certain amount of error. In Fig. 2, we pick a horizontal cross line on half of the
airfoil (y = 0.5d, where d is the length of the wing), showing that the result of error
1e-2 correctly matches the classical result. We can conclude that the result is correct
as long as the computation converges, even with a high quantum error closing to the
convergence threshold.

The convergence history of test cases implies an effective band in terms of the
quantum error settings. The lower bound is the maximum stable error, defined by
the maximum error setting where the computation can converge. The upper bound is
ε−2 < N , defined by the minimum error where the quantum advantage is preserved.
The quantum approach will overperform the classical when we set the error on this
band.

In this case, the maximum stable error is between 5e-2 and 1e-2, satisfying N �
ε−2, which suggests the existence of quantum advantage in cases like this.

6.3 Turbulent viscous flow

The turbulent flow, in contrast to laminar flow, is a complicated type of flow motion.
Due to its chaotic behavior, turbulence is hard to compute directly from the NS
equations. Instead, Reynolds-averaged Navier–Stokes (RANS) equations are used to
describe the turbulent flow, which provides approximate time-averaged solutions to
the Navier–Stokes equations [47].

The finite volume method with the implicit Euler time-stepping scheme is also
applied to the RANS equation. Similarly, the system evolves by solving a linear equa-
tion. SU2 code also supports setting RANS as the governing equation. We performed
experiments again on the Onera M6 airfoil problem where the Reynolds number is set
to 11.72E6.

The convergence histories are shown in Fig. 3a look different from those of the
above case. In this case, the system cannot keep converging, where a larger error leads
to a larger converged residual. We compare the converged results of 1e-2 and 5e-3,
which correspond to the largest converged residual and the second largest one among
all of our results, as demonstrated in Fig. 3b. The 5e-3 case, which is even converged
at a much higher residual than the classical one, closely matches the classical solution.
The 1e-2 also matches well, except for x > 0.8.

The result also shows that our approach also adapts to the RANS equation. We
believe that regardless of the type of the equation, the acceleration of FVM with the
quantum approach has broad adaptability. Because the classical algorithms share a
similar equation linearization method and implicit time-stepping scheme, using our
approach to achieve the quantum speedup is possible if we can construct the linear
equation efficiently.

The supersonic compressible flow will generate a shock wave characterized by
a discontinuous change in pressure, density, and temperature. This phenomenon is
visible by solving NS equations by the FVM. As shown in Fig. 4, we calculate the

123

137 Page 14 of 27 Z.Y. Chen et al.

Fig. 3 Results of the supersonic wedge test case. a Convergence history of quantum error set from 1e-2
to 1e-4 and the classical case. These cases terminate after reaching convergence conditions or over 1000
steps. b The pressure coefficient on the cross line at y = 0.5d of the airfoil where d is the length of the
wing. The green triangle and the blue circle are plotted of the cases 1e-2 and 5e-3 correspondingly. The
5e-3 case matches the classical correctly. The 1e-2 case matches the classical at most places but slightly
biases at x > 0.8.

Fig. 4 Results of the supersonic wedge. a Convergence history of quantum error set from 1e-5 to 1e-7 and
the classical case. b The pressure coefficient of this case after convergence, where a shock wave appears at
an angle over the wedge (i.e., the sudden change of pressure from the right bottom to left top). c The flow
field with error 1e-6 after 100 iteration steps. d The flow field of the classical case after 100 iteration steps.

123

Quantum Approach to Accelerate... Page 15 of 27 137

Fig. 5 Result of supersonic
wedge with error set to 1e-5
after 100 iteration steps

two-dimensional supersonic flow over a wedge. The initial flow is set horizontal with
Mach number 2.0, and the wedge is 10 degrees. After converged to the stable state, the
NS equation predicts that there will be a shock with certain angles above the wedge.

6.4 Inviscid supersonic flow

We compared the classical result with error set to 1e-5, 1e-6 and 1e-7, whose con-
vergence histories are displayed in Fig. 4a. In subfigure (b), we show the pressure
coefficient of the space with quantum error set to 1e-6. The right bottom area is the
wedge. The discontinuous change from blue (low pressure) to orange (high pressure)
forms an interface that is consistent with the theoretical prediction.

In this case, we tried to evaluate the effect of quantum error physically. Subfigures
(c) and (d) show the flow field after 100 steps of ε=1e-6 and the classical case cor-
respondingly. When both cases are at the early stage of computing, a small quantum
error does not affect the solver’s ability to capture the properties of the fluid. In this
test case, the discontinuous interface still appears even when the error is close to the
threshold (between 1e-5 and 1e-6). Instead, quantum error generates random fluctua-
tions at the blank space, such as the noise pattern at the left-upper space. This becomes
the main reason why quantum error will slow down the convergence. We also plot the
field at 100 steps of the 1e-5 case, shown in Fig. 5. The error over the threshold will
hinder capturing of the shock wave. These results provide possible optimizations to
our proposal, including the following two strategies.

First, use different quantum errors at different stages. The error analysis section
mentioned that the actual error has an extra multiplier to the l2 norm of the residual
vector due to the normalization of the quantum state. At the beginning of the com-
putation, the system’s residual is large, where a small quantum error can be applied.
Thus, the system can successfully capture the character of the flow. When the system
is converging and the residual decreases, we can then set a larger quantum error to
perform time-stepping rapidly. This strategy could potentially have higher stability
and faster convergence.

123

137 Page 16 of 27 Z.Y. Chen et al.

Second, treat different areas with different errors. The blank space highly con-
tributes to the global error; however, they are not crucial in determining the
computation’s correctness and stability. For example, if we concentrate on a small
area instead of the whole space (such as the airfoil test cases), the quantum error can
be set higher on this area and lower at others.

7 Conclusion

This paper developed a quantum approach for accelerating the classical FVM and
achieved exponential speedup on the time-stepping. The initial intuition is to use
the quantum linear solver to replace the classical one. The main problem is that the
quantum linear solver only accepts the quantum form of input and outputs a quantum
state. The conversion between the classical and the quantum data is the bottleneck,
and our paper mainly studied this. We apply the QRAM to store the interval data. A
data structure for this problem is specially designed. The most critical part is that we
always maintain a residual sum tree corresponding to the physical variable. On the one
hand, this tree can help the efficient preparation of the quantum input. On the other
hand, the tree can be efficiently updated throughout the time-stepping of the FVM. As
the result, the time complexity of performing a first-order implicit Euler time-stepping

isO
(

(s3+log N)sκ log3 N
ε2

polylog(sκ/ε)
)
. The time complexity depends logarithmically

on the grid points N , exponentially faster than the best classical case O(N).
The quantum error is additionally introduced. The quantum approach has a

quadratic slowdown in terms of quantum error. We analyzed the effect of the error,
concluding that a sufficiently small quantum error will not affect the correctness of
the quantum-accelerated solver. Numerical experiments are conducted on various test
cases to check the correctness of our approach. The error analysis and the numerical
results imply the possibility that our approach can be practically applied to large-size
CFD problems and demonstrates the quantum advantage.

Our future work will focus on optimizing the error setting on different stages and
different computation areas. We believe that the quantum computer will show its
advantage in solving a more complex CFD problem shortly.

Acknowledgements This work was supported by the National Natural Science Foundation of China
(Grants Nos. 11625419), the National Key Research and Development Program of China (Grant No.
2016YFA0301700), theStrategicPriorityResearchProgramof theChineseAcademyofSciences (GrantNo.
XDB24030600), and theAnhui Initiative inQuantum InformationTechnologies (GrantsNo.AHY0800000).

Code and data availability The code that can reproduce the results is open source at GitHub.
https://github.com/Agony5757/SU2-Quantum

Declarations

Conflict of interest The authors declared that they have no conflicts of interest to this work.

123

Quantum Approach to Accelerate... Page 17 of 27 137

A Finite volumemethod

The typical physical governing equations (Euler, NS, RANS) have to be linearized to
apply to the FVM. In this paper, we do not focus on the detail of the linearization.
Instead, we apply the identical linearization method to the classical algorithm and
analyze the relationships among the equation variables.

Herewe take a two-dimensionalNS equationwith compressible flowas an example.
First write down the differential form of the NS equation:

∂

∂t

∫

	

UdV +
∮

∂	

F · dS = 0, (16)

where

U =

⎡

⎢⎢
⎣

ρ

ρu
ρv

ρE

⎤

⎥⎥
⎦ Fx =

⎡

⎢⎢
⎣

ρu
ρu2 + p

ρuv

ρuH

⎤

⎥⎥
⎦ Fy =

⎡

⎢⎢
⎣

ρv

ρuv

ρv2 + p
ρvH

⎤

⎥⎥
⎦ , (17)

for any volumne 	 and its boundary ∂	.
To discretize it spatially and timely, we split the space and time into small grid

cells. An example of the space discretization is shown in Fig. 6. At the cell i and time
step n, the NS equation can be discretized to

	i

�t

(
Un+1
i −Un

i

)
= −

∑

∂	

Fn+1
i,∂	 · �Sn+1

i,∂	, (18)

where the implicit Euler method is applied. We define the right-hand side of Eq. (18)
as the residual of this point, denoted by Rn+1

i . The Fi is defined by the difference
scheme, which is calculated by variables U in the surrounding cells. The difference
scheme gives a relation between nodes. In this paper, we define a matrix C which has

Ci,i ′ = 1 (19)

Fig. 6 The grid cell around i th

point. F∂	 is the flux at the
certain boundary; �S∂	 is the
area. 	i is the volume of this
cell.

123

137 Page 18 of 27 Z.Y. Chen et al.

if i and i ′ are related in the difference scheme. In other words, Ci,i ′ = 1 means
calculating the residual at i th node uses the variables in j th node. Specially, we always
have Ci,i = 1.

Let �Un+1 = Un+1 − Un , we have

(
	i

�t
δi,i ′ + ∂Ri,k

∂Ui ′,k′

∣∣∣∣
U=Un

)
�Un

i ′,k′ = −Rn
i,k . (20)

Simply replacing A =
(

	i
�t δi,i ′ + ∂Ri,k

∂Ui ′,k′

∣∣∣
U=Un

)
, we obtain a linear equationwhose

solution implies the time evolution of the physical variable U .
The coefficient matrix A is a sparse matrix. From Eq. (18), the Ai,k,i ′,k′ is nonzero

when i and i ′ are related in the difference scheme (Ci,i ′ = 1). The sparse number
(number of nonzero element in a rowor column) is fixedbyhowwe select the difference
scheme, denoted by s.

Regardless of the physical governing equation, the discretization and the lineariza-
tion following the classical FVMmethod do not change. We will finally show that the
spatial or time difference scheme does not affect how this algorithm works, and only
the constant coefficient will change in the analysis of the time complexity.

B Quantum preliminaries

Quantum computing is a novel computational paradigm. We will briefly introduce
some basic ideas of quantum computing in this section, and we suggest the reader
refers to [48] for a complete overview of quantum computing.

B.1 Quantum states and register

Quantum states are the data representation in the quantum computer. The quantum
registers are the physical container of the quantum data. Similar to the classical regis-
ters, several binary digits are used to represent a number. The main difference between
quantum computing and classical computing is that quantum data can stay at a super-
position state. For example, for a 1-bit register, the classical data stores 0 or 1, while
the quantum data can be:

α|0〉 + β|1〉,

where α and β are two complex numbers. When the register is n-bit, the quantum
data can store all the superpositions from 0 to 2n − 1 (11...1 in binary form) with each
case has a complex coefficient. In a mathematical notion, the quantum state is a linear
combination of basis vectors in the Hilbert space.

123

Quantum Approach to Accelerate... Page 19 of 27 137

B.2 Quantum unitaries and gates

Quantum unitaries (a.k.a, quantum gates or quantum operations) operate the data in
the quantum registers. It has been proved that a universal quantum computer could
cover all computations that a classical computer can perform. This implies that any
arithmetic operation is available in quantum computers.

Operating quantum states also follow the rules of linear transformations in the
Hilbert space, which means the quantum operation applies equally to all superposition
states and generates a superposition output. Supposewe have a quantum register stored
a superposition of two integers α|x〉+β|y〉. After we perform an increment operation
on this register, we can obtain α|x + 1〉 + β|y + 1〉, where all data get increased in
parallel.

B.3 Quantummeasurements

Quantum measurement is a way to read out the data in the quantum register. When
the data are superposition states, the measurement result is random. The probability
of one outcome equals the square of the magnitude of the coefficient. For example,
when the quantum register stores α|x〉 + β|y〉, the measurement outcome will be x
with |α|2 probability, or y with |β|2 probability.

C Quantum algorithms used in this paper

In the following part, we will introduce several quantum algorithms which are used in
this paper.

C.1 Amplitude estimation and amplification

Producing a probabilistic result is common in many quantum algorithms. In these
algorithms, there will be a workspace and an ancillary register. The answer of the
workspace is correct only when the ancillary register is measured to 0. We denote an
algorithm as A, so we have:

A|0〉work |0〉anc = α|ψgood〉work |0〉anc (21)

+
√
1 − |α|2|ψbad〉work |1〉anc. (22)

The probability of producing a good state is |α|2. Amplitude estimation is the
algorithm that can estimate this probability, and amplitude amplification can produce
the good state at a sufficiently high probability with a known probability.

Theorem 1 (Amplitude estimation [43]) For any positive integer k, the algorithm
EstAmp(A, χ, M) outputs ã 0 ≤ ã ≤ 1 such that

123

137 Page 20 of 27 Z.Y. Chen et al.

|ã − a| ≤ 2πk

√
a(1 − a)

M
+ k2

π2

M2

with probability at least 8
π2 when k = 1 andwith probability greater than 1− 1

2(k−1)
for k ≥ 2. It uses exactly M evaluations of A. If a = 0, then ã = 0 with certainty, and
if a = 1 and M is even, then ã = 1 with certainty.

Theorem 2 (Amplitude amplification [43]) Let A be any quantum algorithm that
uses no measurements. There exists a quantum algorithm that, given the initial suc-
cess probability a > 0 of A, finds a good solution with certainty using a number of
applications of A and A† which is in �(1√

a
) in the worst case.

These two algorithms take the raw algorithm A as the input. With these two algo-
rithms, we are able to produce the good state (or the target state) with amplified
probability by iteratively calling the algorithm O(1/

√
a) times.

C.2 The l∞ tomography

Quantum tomography is a set of measurements taken on an unknown quantum state
to extract its information to a classical vector. It is required that the classical vector x̃
should be close enough to the quantum state |x〉. Given a small error bound, we have
the following relation:

‖x − x̃‖ < ε.

In the work of [49], producing a classical vector that is l2-close to the quantum state
requires O(N) measurements, while N is the dimension of the Hilbert space of the
quantum state. Here we will use an exponentially faster version which will produce
l∞-close classical version in logarithm time.

Theorem 3 (l∞ tomography [42]) Given U such that U |0〉 = |x〉 = ∑
i xi |i〉 and

its controlled version in time T (U), there exists a tomography algorithm with time
complexity O(T (U)

log d
δ2

) that produces a unit vector x̃ ∈ R
d such that ‖x̃ − x‖ <

(1 + √
2)δ with probability at least 1 − 1

poly(d)
.

C.3 Quantum linear solver

Using a quantum linear solver (QLS) is the core procedure to distinguish the quantum
algorithm from the classical one. The classical solver for an N dimensional matrix and
vector, even given in the sparse form, will definitely require O(N) time complexity.
The QLS uses sublinear time complexity, usually given in O(polylogN).

In this paper, we reference the version of Andrew Childs et al. [9], which provides
the fastest of state-of-the-art dependence on precision. The authors provided two ways
to realize aQLS, the Fourier approach, and theChebyshev approach.With the variable-
time amplitude amplification [8] and gapped phase estimation [9], we can build the

123

Quantum Approach to Accelerate... Page 21 of 27 137

algorithm which has a linear dependence on the conditional number κ , same as the
classical linear solver.

For linear equation Ax = b, such three oracles should be defined as the input of
the algorithm:

OA|i〉| j〉 → |i〉| j〉|Ai, j 〉,
Ol |i〉| j〉 = |i〉|g(i, j)〉,

and

Ob|i〉 → |i〉|bi 〉,

where i and j are indexes of the matrix or vector. g(i, j) represents the j th nonzero
element in row i . We have the following theorem.

Theorem 4 (Quantum linear solver with linear dependence on the condition number
[9]) Given oracles OA, Ol , Ob (as stated above), there exists a quantum linear solver
whose query complexity is O(dκpoly(log(dκ/ε))), and gate complexity exceeds the
query complexity by a multiplicative factor of O(log N + log2.5(κd/epsilon).

DQuantum random access memory

Quantum random access memory is the storage device for the quantum computer. As
the quantum analog of RAM, QRAM allows a quantum computer to obtain classical
data with given addresses in quantum parallel. In other words, QRAM could perform
such unitary transformation:

UQRAM|i〉A|0〉D = |i〉A|di 〉D, (23)

where A and D denote the address and the data registers. di is a classical data entry
stored at the address i .

A seminal architecture called “bucket-brigade” provides an efficient way for query-
ing. There have been many proposed physical implementations of such architecture,
such as optical system [27, 28], acoustics system [50], and circuit quantum electrody-
namics [51]. Our work is based on the QRAM with architecture implemented by any
of the physical systems. To eliminate the difference in understanding the availability
of the QRAM, we list all assumptions when we apply the QRAM to our algorithm.

First, the QRAM is general to all input addresses and their superpositions, namely∑
ci |i〉. The QRAM should be an arbitrary data loader rather than only allowing to

prepare the
∑ |i〉|di 〉 state.

Second, if the address register has been prepared, performing one query costs
O(log N) time where the full data length is N.

Third, we assume that a QRAM has at least a classical RAM capability, enabling
access to a single entry or overlaying it to another valuewith constant time.Meanwhile,

123

137 Page 22 of 27 Z.Y. Chen et al.

the QRAM should be compatible with a classical computer. A classical computer can
read the data in QRAM without extra cost.

Even though a real physical implementation of QRAM is hard, these assumptions
are reasonable because they do not exceed the capabilities of the previous physical
implementations.

We claim our algorithm as “classically input and output” under the sense that
the input and output of the algorithm are stored in the QRAM. Because we believe
in the compatibility of QRAM and classical computer, the problem definition, data
initialization, and post-processing of the calculation results can all be performed in a
connected classical computer.

E Preparation of the residual vector state

According to the method described in [38], the state |R〉 could be efficiently prepared
because we have access to all wanted sums of the vector. We precompute them in the
sum tree, so the preparation can be realized by querying the sum tree.

The first step is to query the tree root and its left child node and then calculate the
rotating angle at this step:

|ar (0)〉|SR(0)〉|ar 〉|SR〉|θ〉|0〉, (24)

where SR(0) = ∑
i∈[0..N/2−1] R2

i , SR = ∑
i∈[0..N−1] R2

i , θ = arccos SR(0)
SR

.
Now performing a conditional rotation and uncomputing, we have:

cos θ |0〉 + sin θ |1〉. (25)

Add another qubit, perform Hadamard gate on it, we have

(cos θ |0〉 + sin θ |1〉) 1√
2
(|0〉 + |1〉) (26)

= 1√
2
(cos θ |00〉 + sin θ |10〉) (27)

Then we iteratively perform the query, computing the rotating angles and condi-
tional rotation. At kth step, we have the state

∑
cki |i〉

1√
2
(|0〉 + |1〉). (28)

Computing the addresses of |i, 0〉, |i, 1〉 , we obtain the real addresses ar (i, 0) and
ar (i, 1) in the QRAM, that is

∑
cki |i〉

1√
2
(|0〉|ar (i, 0)〉 + |1〉|ar (i, 1)〉, (29)

123

Quantum Approach to Accelerate... Page 23 of 27 137

then query to the PR to obtain the rotating angles and uncompute extra registers.
Finally, after performing conditional rotation, we step to

∑
ck+1
i |i〉 (30)

Repeatedly performing this process, we can efficiently prepare the residual state

|R〉 = −∑
Ri |i〉/

√∑
j∈[0..N−1] R2

j with the help of the sum tree.

F Implementation of quantum preconditioner

The condition number of the linear equation represents to what extent the solution can
be affected by the perturbation on the right-hand-side vector. The condition number
is defined as:

κ(A) = |λmax |
|λmin| , (31)

where |λmax | and |λmin| is the maximum/minimum absolute of the eigenvalues
of A. When the condition number is large, we say the equation is ill-conditioned,
requiring high precision and time complexity to solve. The time complexity of the
classical sparse linear solver has a dependency on the condition number. For example,
the time complexity of the conjugate gradient method is O(κsN log 1/ε). The QLS
used in our algorithm also has a linear dependency on the condition number.

Preconditioner is a preprocessing method that can reduce the condition number of
the equation. If we have a matrix P such that κ(P A) < κ(A), we can transform this
equation as:

Ax = b ⇔ P Ax = Pb. (32)

Preconditioners are constructed from the original equation, and there have been
many types of preconditioners. However, not all classical preconditioners could be
directly transplanted to quantum versions. First, the matrix multiplication by the
preconditioner should be computed efficiently, namely within O(polylog(N)) time.
Second, the preconditioned matrix should also be sparse; otherwise, it cannot be effi-
ciently solved by the QLS. Some preconditioners suitable for QLS have already been
proposed in [39] and [40]. We here display an example preconditioner: the blockwise
Jacobi preconditioner, which is widely used in the classical CFD solver.We implement
the blockwise Jacobi preconditioner in our algorithm without affecting the asymptotic
complexity on the problem size N.

Apply Jacobi preconditioner to subprocedures Jacobi preconditioner uses the
inverse of the diagonal block. For the raw linear equation, we construct subproce-
dures as the input of the QLS. The preconditioned equation has a different matrix and
vector; therefore, these subprocedures should be modified.

Let Ã = P A and R′ = PR, where P is the Jacobi preconditioner of the matrix
A. The element of the P is

P i ′,k′
i,k = δi,i ′ B

i ′,k′
i,k , (33)

where Bi ′,_
i,_ represents the inverse of the block Ai ′,_

i,_ .

123

137 Page 24 of 27 Z.Y. Chen et al.

The element of Ã is

Ãi ′,k′
i,k =

∑

j∈[0..N−1];l∈[0..nvar−1]
P i ′,k′
j,l A j,l

i ′,k′ . (34)

The Jacobi preconditioner P is blockwise diagonal. We can simplify the equa-
tion (34) as:

Ãi ′,k′
i,k =

∑

l∈[0..nvar−1]
P i,k′
i,l Ai,l

i ′,k′ . (35)

This implies that computing a single element of Ã requires to queries nvar elements
of A. Another fact is that the sparsity matrices of Ã and A are the same when they are
symmetric to the diagonal line. This is often true because in the difference scheme, i
and i ′ are related so that Ai ′,k′

i,k and Ai,k′
i ′,k are all nonzero elements.

When it is efficient to implement OA, O ′
A will also be efficient to implement. That

is
P′

A|i, k, i ′, k′〉|0〉 = |i, k, i ′, k′〉| Ãi ′,k′
i,k 〉. (36)

First we query all elements required for computing the inverse at (i, i ′) block and
compute the inverse, we have

|i〉|Bi,_
i,_ 〉regs(A). (37)

We use Bi ′,_
i,_ to represent amatrix blockwith n2var elements. The subscript “regs(A)”

mean we require a group of quantum registers to hold this matrix, marked by A.
The corresponding block in A is also queried,

|i, i ′〉|Ai ′,_
i,_ 〉regs(B), (38)

Combining two register group A and B, we obtain the wanted element Ai,k,i ′,k′ .
Computing one element requires n2var times of calls to the PA, namely proportional to
O(s2).

From the above derivation, the sparsity of Ã is same with the A. Therefore, Ol

remains unchanged. The subprocedure Pb should also be modified. In the original
description of the data structures, the sum tree stores the precomputed residual vector.
In the preconditioned version, the R is replaced by R′. When theU changes according
to the sampling results, we need to compute the preconditioned residual vector and
update the sum tree. Computing any element of R′

i,k is still related to all connected
cells, which is

R′
i,k =

∑

k′∈[0..nvar−1]
P i,k
i,k′ Ri,k′ (39)

The complexity of this process is also contributed by computing the diagonal block’s
inverse of A. From the preconditioned sum tree, constructing such P ′

b is completely
same with the original method.

123

Quantum Approach to Accelerate... Page 25 of 27 137

G Relation to previous works

Linear problem is proved suitable for the quantum computer because of the linear
properties of the quantummechanics. Such as quantumalgorithms for linear equations,
linear differential equations, and linear PDEs. They achieved exponential speedup over
their classical counterparts.

Nevertheless, nonlinear problems remain a challenge. In a recent work [36], the
researchers propose an efficient algorithm for the dissipative nonlinear differential
equation. Besides proposing this algorithm, they also give a theorem that there is
no efficient quantum algorithm that can solve a general type of nonlinear differential
equation. They use a variable to scale the nonlinearity of the problem and show that the
timemust scale exponentially to T if using forward time-stepping in general problems.
This “no-go theorem” suggests that, evenwith a quantumcomputer, solving a nonlinear
differential equation like the NS equation is hard and non-efficient.

Now compare the transient problem and the steady problem. In transient problems,
we care about the history of evolution and pursue a high precision on time. In steady
problems, we only want to know about the given system’s stable state regardless of
the detailed history of evolution.

In this work, we focus on steady problems. In CFD, the steady problems are the
problems whose solution is time-independent. If we set an appropriate initial state,
the state will be stable after infinity long evolution time. Because we did not obtain a
high-precision time-stepping history, this work does not violate the “no-go theorem”
mentioned above and is complementary to previous work about nonlinear differential
equations.

References

1. Anderson, J.: Computational Fluid Dynamics?: The Basics with Applications. McGraw-Hill Science
Engineering, New York (1995)

2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Rev. 41(2), 303 (1999)

3. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86(1), 153 (2014)
4. Berry,D.W., Childs, A.M., Cleve,R., Kothari,R., Somma,R.D.: Exponential improvement in precision

for simulating sparse Hamiltonians. In: Proceedings of the Forty-sixth Annual ACM Sympo-
sium on Theory of Computing (ACM, New York, NY, USA, 2014), STOC ’14, pp. 283–292.
10.1145/2591796.2591854

5. Berry, D.W., Childs, A.M., Kothari,R.:Hamiltonian simulation with nearly optimal dependence on all
parameters, in 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (IEEE, 2015),
pp. 792–809

6. O’Malley, P., Babbush, R., Kivlichan, I., et al.: Scalable quantum simulation of molecular energies.
Phys. Rev. X 6(3), 031007 (2016)

7. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev.
Lett. 103, 150502 (2009). https://doi.org/10.1103/PhysRevLett.103.150502

8. Ambainis,A.:Variable time amplitude amplification and a faster quantumalgorithm for solving systems
of linear equations, Variable time amplitude amplification and a faster quantum algorithm for solving
systems of linear equations (2010)

9. Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with
exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920 (2017). https://doi.
org/10.1137/16M1087072

123

https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1137/16M1087072
https://doi.org/10.1137/16M1087072

137 Page 26 of 27 Z.Y. Chen et al.

10. Frank, A., Kunal, A., Babbush, R., et al.: Quantum supremacy using a programmable superconducting
processor. Nature 574(7779), 505 (2019)

11. Gong,M.,Wang, S., Zha,C., Chen,M.C.,Huang,H.L.,Wu,Y., Zhu,Q., Zhao,Y., Li,S.,Guo, S.:Quantum
walks on a programmable two-dimensional 62-qubit superconducting processor, Science (2021)

12. Pino, J.M., Dreiling, J.M., Figgatt, C., Gaebler, J.P., Moses, S.A., Allman, M.S., Baldwin, C.H., Foss-
Feig, M., Hayes, D., Mayer, K., et al.: Demonstration of the trapped-ion quantum CCD computer
architecture. Nature 592(7853), 209–213 (2021). https://doi.org/10.1038/s41586-021-03318-4

13. Gottesman,D.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of
Technology (1997)

14. Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2 (1997)
15. Knill, E., Laflamme, R., Viola, L.: Theory of quantum error correction for general noise. Phys. Rev.

Lett. 84(11), 2525 (2000)
16. Fowler, A.G.: Towards large-scale quantum computation, Physics (2005)
17. F. I.,Note on the Convergence of the Implicit Euler Method, in International Conference on Numerical

Analysis and Its Applications, vol. 8236 (Springer-Verlag New York, Inc., 2012), vol. 8236
18. Jameson, A., Schmidt,W., Turkel,E.: Numerical solution of the Euler equations by finite volume meth-

ods using Runge Kutta time stepping schemes, in 14th fluid and plasma dynamics conference (1981),
p. 1259

19. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite
Method. Pearson, London (2007)

20. Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain.
Carnegie Mellon University, Pittsburgh (1994)

21. Wang, Y.X., Zhang, L.L., Liu, W., Che, Y.G., Xu, C.F., Wang, Z.H., Zhuang, Y.: Efficient parallel
implementation of large scale 3D structured grid CFD applications on the Tianhe-1A supercomputer,
Comput. Fluids (2013)

22. Wang, Y.X., Zhang, L.L., Che, Y.G., Xu, C.F., Cheng, X.H.: Efficient parallel computing and per-
formance tuning for multi-block structured grid CFD applications on Tianhe supercomputer. Acta
Electron. Sin. 43(1), 36 (2015)

23. Xu, C., Zhang, L., Deng, X., Fang, J.,Wei, L.: Balancing CPU-GPU collaborative high-order CFD sim-
ulations on the Tianhe-1A supercomputer. In: IEEE International Parallel and Distributed Processing
Symposium (2014)

24. Kerenidis, I., Landman, Prakash, A.: Quantum algorithms for deep convolutional neural networks
(2019)

25. Chakraborty,S., Gilyén, A., Jeffery, S.: The power of block-encoded matrix powers: improved regres-
sion techniques via faster Hamiltonian simulation. In: In Proceedings of the 46th International
Colloquium on Automata, Languages, and Programming (ICALP 2019) (2018), pp. 33:1–33:14

26. Aaronson, S.: Read the fine print. Nat. Phys. 11, 291 (2015)
27. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access memory. Phys.

Rev. A 78(5), 052310 (2008)
28. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Physical Rev. Lett. 100(16),

160501 (2008)
29. Berry, D.W.: High-order quantum algorithm for solving linear differential equations. J. Phys. A: Math.

Theor. 47(10), 298 (2012)
30. Leyton,S.K., Osborne,T.J.: A quantum algorithm to solve nonlinear differential equations, Physics

(2008)
31. Zanger, B., Mendl, C.B., Schulz, M., Schreiber, M.: Quantum algorithms for solving ordinary differ-

ential equations via classical integration methods. Quantum 5, 502 (2021). https://doi.org/10.22331/
q-2021-07-13-502

32. Garcìa-Molina, P., Rodrìguez-Mediavilla, J., Garcìa-Ripoll, J.J.: Solving partial differential equations
in quantum computers (2021)

33. Lloyd, S., Palma, G.D., Gokler, C., Kiani, B., Palmer, T.: Quantum algorithm for nonlinear differential
equations (2020)

34. Arrazola, J.M., Kalajdzievski, T., Weedbrook, C., Lloyd, S.: Quantum algorithm for nonhomoge-
neous linear partial differential equations. Phys. Rev. A (2019). https://doi.org/10.1103/PhysRevA.
100.032306

35. Berry,D.W.,Childs,A.M.,Ostrander,A.,Wang,G.:Quantumalgorithm for linear differential equations
with exponentially improved dependence on precision. Commun. Math. Phys. 356(3), 1057 (2017)

123

https://doi.org/10.1038/s41586-021-03318-4
https://doi.org/10.22331/q-2021-07-13-502
https://doi.org/10.22331/q-2021-07-13-502
https://doi.org/10.1103/PhysRevA.100.032306
https://doi.org/10.1103/PhysRevA.100.032306

Quantum Approach to Accelerate... Page 27 of 27 137

36. Liu, J.P., Kolden, H.I., Krovi, H.K. , Loureiro, N.F., Trivisa, K., Childs, A.M.: Efficient quantum
algorithm for dissipative nonlinear differential equations (2020)

37. Kerenidis, I., Prakash., A.: Quantum recommendation systems (2016)
38. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability

distributions (2002)
39. Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system algorithm. Phys.

Rev. Lett. (2013). https://doi.org/10.1103/physrevlett.110.250504
40. Shao, C., Xiang, H.: Quantum circulant preconditioner for a linear system of equations. Phys. Rev. A

(2018). https://doi.org/10.1103/physreva.98.062321
41. Tong, Y., An, D., Wiebe, N., Lin, L.: Fast inversion, preconditioned quantum linear system solvers, fast

Green’s-function computation, and fast evaluation of matrix functions. Phys. Rev. A (2021). https://
doi.org/10.1103/physreva.104.032422

42. Iordanis, K., Jonas, L., Prakash, A.: Quantum algorithms for deep convolutional neural networks. In:
International Conference on Learning Representations (2020)

43. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum computation and information. Contemp. Math.
(2002). https://doi.org/10.1090/conm/305/05215

44. Economon, T.D., Palacios, F., Copeland, S.R., Lukaczyk, T.W., Alonso, J.J.: SU2: an open-source suite
for multiphysics simulation and design. AIAA J. 54(3), 828 (2016). https://doi.org/10.2514/1.J053813

45. Palacios,F., Economon,T., Aranake, A., Copeland, S., Lonkar, A., Lukaczyk, T., Manosalvas-Kjono,
D., Naik, K., Padrón, A., Tracey,B., Variyar, A., Alonso, J.: Stanford University Unstructured (SU2):
Analysis and Design Technology for Turbulent Flows (2014). https://doi.org/10.2514/6.2014-0243

46. Palacios, F., Colonno, M., Aranake, A., Campos, A., Copeland, S., Economon, T., Lonkar, A.,
Lukaczyk, T., Taylor, T., Alonso, J.: Stanford University Unstructured (SU 2): an open-source inte-
grated computational environment for multi-physics simulation and design. AIAA J. 2013, 1 (2013)

47. Osborne, Reynolds,On the Dynamical Theory of Incompressible Viscous Fluids and the Determination
of the Criterion, Philosophical Transactions of the Royal Society of London (1895)

48. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Am. J. Phys. 70(5), 558
(2002). https://doi.org/10.1119/1.1463744

49. Kerenidis,I., Prakash,A.: A quantum interior point method for lps and sdps (2018)
50. Hann,C.T., Zou,C.L., Zhang,Y., Chu,Y., Schoelkopf,R.J., Girvin,S.M., Jiang,L.: Hardware-Efficient

Quantum Random Access Memory with Hybrid Quantum Acoustic Systems,Physical Review Letters
123(25) (2019). 10.1103/physrevlett.123.250501. http://dx.doi.org/10.1103/PhysRevLett.123.250501

51. Naik, R., Leung, N., Chakram, S., Groszkowski, P., Lu, Y., Earnest, N., McKay, D., Koch, J., Schuster,
D.:Randomaccess quantum informationprocessors usingmultimode circuit quantumelectrodynamics.
Nat. Commun. 8(1), 1904 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1103/physrevlett.110.250504
https://doi.org/10.1103/physreva.98.062321
https://doi.org/10.1103/physreva.104.032422
https://doi.org/10.1103/physreva.104.032422
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.2514/1.J053813
https://doi.org/10.2514/6.2014-0243
https://doi.org/10.1119/1.1463744
http://dx.doi.org/10.1103/PhysRevLett.123.250501

	Quantum Approach to Accelerate Finite Volume Method on Steady Computational Fluid Dynamics Problems
	Abstract
	1 Introduction
	2 Motivation: quantum algorithm with classical input and output
	3 Methods
	3.1 Designated quantum data structure for the FVM
	3.2 Quantum input: constructing quantum subprocedures from the QRAM
	3.3 Quantum output: sampling the solution state and update the QRAM

	4 Run-time analysis
	4.1 Initialization cost
	4.2 Complexity of time-stepping

	5 Error analysis
	6 Numerical experiment
	6.1 Numerical methods
	6.2 Inviscid transonic flow
	6.3 Turbulent viscous flow
	6.4 Inviscid supersonic flow

	7 Conclusion
	Acknowledgements
	A Finite volume method
	B Quantum preliminaries
	B.1 Quantum states and register
	B.2 Quantum unitaries and gates
	B.3 Quantum measurements

	C Quantum algorithms used in this paper
	C.1 Amplitude estimation and amplification
	C.2 The linfty tomography
	C.3 Quantum linear solver

	D Quantum random access memory
	E Preparation of the residual vector state
	F Implementation of quantum preconditioner
	G Relation to previous works
	References

