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Abstract
We derive the strong subadditivity of the von Neumann entropy with a strict lower
bound, dependent on the distribution of quantum correlation in the system. We inves-
tigate the structure of states saturating the bounded subadditivity and examine its
consequences for the quantum data processing inequality. The quantum data process-
ing achieves a lower bound associated with the locally inaccessible information.

Keywords Quantum entanglement · Quantum correlation · Strong subadditivity of
the von Neumann entropy · Quantum data processing

1 Introduction

In information theory, the central constraints on how information can be distributed
among parties are given by the subadditivity inequalities [1,2]. Given two random
variables X : {x} and Y : {y}, assuming the values x and y with probabilities px and
py , respectively, the weak subadditivity is given by

H(X ,Y ) ≤ H(X) + H(Y ), (1)

in termsof theShannonentropiesH(X)=−∑
X :{x} px ln px ,H(Y ) = −∑

Y :{y} py ln
py , and the joint entropy H(X ,Y ) = −∑

X :{x},Y :{y} px,y ln px,y . In essence, this
inequality states the positivity of the mutual information, I (X : Y ) ≡ H(X) +
H(Y )− H(X ,Y ) ≥ 0, which bounds the correlations between X and Y . On the other
hand, the strong subadditivity

H(X ,Y , Z) + H(Y ) ≤ H(X ,Y ) + H(Y , Z), (2)
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imposes the positivity of the conditional mutual information defined by I (X : Z |Y )

≡ H(X ,Y )+H(Y , Z)−H(X ,Y , Z)−H(Y ) ≥ 0. As simple as they look, these two
positivity bounds govern what one can or cannot do in communication, since they are
related to the communication channel capacity and to all other relevant inequalities in
information theory [1].

Quantum information theory is concerned with information processing and tasks
performing in the quantum regime, and the main quantity for that is the von Neumann
entropy

S(ρ) = −Tr (ρ log ρ) , (3)

in terms of the system state ρ. Similarly to classical information theory, the subaddi-
tivity for the von Neumann entropy is enormously relevant. The weak subadditivity
states as

S(A, B) ≤ S(A) + S(B), (4)

being S(A) ≡ S(ρA), and S(A, B) ≡ S(ρAB). We may also define the mutual infor-
mation as

I (A : B) = S(A) + S(B) − S(A, B), (5)

being always positive. Moreover, the strong subadditivity (SSA) proved by Lieb and
Ruskai [3] gives that

S(A, B,C) + S(B) ≤ S(A, B) + S(B,C), (6)

being S(ABC) ≡ S(ρABC ). This inequality holds for a tripartite system with density
matrix ρABC living in HABC = HA ⊗ HB ⊗ HC , and each of the reduced density
matrices was taken by a partial trace of the density matrix of the whole system, such
that TrBC (ρABC ) = ρA. The SSA is fairly well studied and very important, since
it bounds the most relevant results inside quantum information theory, such as the
limiting bounds in the information transmitted in quantum channels [4]. Similarly to
the classical instance, the SSA of the von Neumann entropy reduces to the positivity
of the conditional mutual information in the form

I (A : C |B) = S(A, B) + S(B,C) − S(B) − S(A, B,C) ≥ 0. (7)

Its relevance is so extensive that it applies, e.g., to the search for lower bounds for
the free energy in many-body physics [5]. In fact, all other inequalities, but one, in
quantum information theory are equivalent to the SSA [6].

There are some implicit problems in the distinction of genuinely quantum from
classical correlation when the mutual information for quantum systems is given by
(5). This is because the mutual information can be more precisely defined as

123



Strong subadditivity lower bound and quantum channels Page 3 of 12 78

I (A : B) = S(A) − S(A|B), (8)

where S(A|B) is the conditional information on ρA given the knowledge of state ρB .
The form S(A|B) = S(A, B)−S(B) is an extension of the classical information theory
definition, and contrarily to the latter, it can be negative, indicating the presence of
entanglement. Strictly speaking, in quantum information, to obtain knowledge about
the quantum state, a measurement must be performed and therefore amore appropriate
form of conditional entropy must be employed [7]. It turns out that when such an
approach is considered some intriguing relations between entanglement and quantum
correlation in general emerge [6], leading to a weak monotonicity relation of the
von Neumann entropy [8] with additional restrictions on the balance of quantum
correlations in the system as measured by the entanglement of formation (Eof)[9] and
the quantum discord (QD) [7]. Since the standard weak monotonicity is equivalent to
the SSA, it would be interesting to extend the discussion to understand the existence
of possible new bounds.

In this work, we further investigate this problem by deriving a strong subadditivity
relation from the bounded weak monotonicity. We show that it intrinsically involves
new bounds which allows distinction of genuine quantum correlations. In [10] it was
shown that the structure of states saturating the SSA (6) is given by

ρABC =
⊕

j

q jρAbLj
⊗ ρbRj C

, (9)

where ρAbLj
∈ HA ⊗HbLj

and ρbRj C
∈ HbRj

⊗HC , with probability distribution {q j },
such that the Hilbert space be decomposable asHB = ⊕

j HbLj
⊗HbRj

. This structure

was enormously relevant for the derivation of a hierarchy of independent inequalities
for the von Neumann entropy [11]. Here we extend this analysis to understand the
structure of states saturating the bounded SSA. To show the extension of this bound,we
apply it to the quantumdata processing inequality. The paper is organized as follows. In
Sect. 2, we develop the new bounds on the SSA and discuss its implications in several
instances. In Sect. 3, we investigate the structure of states saturating the bounded-SSA.
Finally, in Sect. 4, we apply the bounded-SSA to understand the imposed restrictions
on the quantum data processing inequality [4]. In Sect. 5 a conclusion encloses the
paper.

2 Bounded strong subadditivity

The mutual information (MI) in terms of the von Neumann entropy measures the
amount of information shared by two quantum systems A and B. In other words, it
quantifies the total amount of correlations (quantum and classical) of a bipartite quan-
tum state ρAB . It is given by Eq. (8). Assuming the classical form for the conditional
entropy to the quantum case as being S(A|B) = S(A, B)− S(B), we end up with Eq.
(5). In contrast, by taking into account the fact that in quantum systems for the descrip-
tion of the conditional entropy, S(A|B), the prior knowledge about ρB is achieved by
a type of measurement one obtains
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J←
A|B = max{�k }

[

S(A) −
∑

k

pk S(A|k)
]

, (10)

where S(A|k) ≡ S(ρA|k) is the conditional entropy after a measurement in B, where
ρA|k = TrB(�kρAB�k)/TrAB(�kρAB�k) is the reducedpost-selected state of A after
obtaining the outcome k in B. {�k} is a complete set of positive operator valued mea-
surement (POVM) resulting in the outcome kwith probability pk = TrAB(�kρAB�k).
In this case, since a measurement might give different results depending on the basis
choice, a maximization is required. Thus, JA|B measures the amount of mutual infor-
mation accessible by local measurement in B only. Due to that distinction in its
definition, one can quantify the amount of information not accessible by local mea-
surements in B by

δ←
AB = I (A : B) − J←

A|B, (11)

the so-called quantum discord [7].
For an arbitrarily mixed tripartite system state, ρABC , there exists an important

relation known as the Koashi-Winter inequality [6,8] given by

EAB ≤ δ←
AC + SA|C , (12)

where EAB quantifies the entanglement of formation (Eof) between A and B

EAB = min{pi ,|ψi 〉}
∑

i

pi S(ρi
A), (13)

where the minimization is over all ensembles of pure states {pi , |ψi 〉AB}, and δ←
AC is

the quantum discord (QD) between A and C (given measurements in C). In fact it is
possible to show [8] that in general

S(B) + S(C) + � ≤ S(A, B) + S(A,C), (14)

where � is the balance of correlations in a tripartite system, and is given by � =
EAB + EAC − δ←

AB − δ←
AC . Equation (14) imposes an additional term in the weak

monotonicity of Entropy, which surely will affect the SSA. Pure quantum states,
ρABC , necessarily satisfy S(B) = S(A,C) and S(C) = S(A, B), and saturate (14) in
a way that � = 0, or

EAB + EAC = δ←
AB + δ←

AC . (15)

The balance of quantum correlations above can be viewed as a conservation relation,
indicating that the entanglement of formation of a bipartite system is going to be
increased or decreased by the same amount that the quantum discord of the same
bipartite system in relation to a part of the pure tripartite global state.
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We start by adding an ancilla R, which allow us to write Eq. (14) as

S(B) + S(R) + �̃ ≤ S(A, B) + S(A, R) (16)

and obtain a global pure state, ρABCR , where now

�̃ = EAB + EAR − δ←
AB − δ←

AR . (17)

Therefore, using that S(R) = S(A, B,C) and S(A, R) = S(B,C) we get

S(B) + S(A, B,C) + �̃ ≤ S(A, B) + S(B,C). (18)

To write �̃ we divide the system into a pure tripartite state ρA(BC)R and use the
conservation relation (15) for that partition

EA(BC) + EAR = δ←
A(BC) + δ←

AR, (19)

then,

�̃ = EAB − EA(BC) + δ←
A(BC) + δ←

AR − δ←
AB − δ←

AR

= EAB − EA(BC) −
(
δ←
AB − δ←

A(BC)

)
. (20)

Therefore, we end up with

S(A, B,C) + S(B) + �̃ ≤ S(A, B) + S(B,C). (21)

The inequality in Eq. (21) is similar to the SSA, but for the additional term �̃. Since
�̃ can take both positive and negative values it can be a stronger or weaker bound to
the SSA, and therefore we call it as the bounded SSA, or b-SSA for short. Since the
positivity of the conditional mutual information I (A : C |B) (7) was independently
proved by Lieb and Ruskai [3], in fact in (21) effectively one has to take it as

I (A : C |B) ≥ max{0, �̃}. (22)

It is important to note how �̃ now involves measurement over the partition BC . In
transitioning from (14) to (21), there is a change in sign in the balance of quantum
correlations. So that the difference of the positivity of the� to �̃ does not depend only
on the difference between the QD and the Eof of the same bipartitions, becomingmore
complex to evaluate in general. Remark that the entanglement of formation is ameasure
that will be null if the system state is separable, while the quantum discord, δ←

AB is null
only for states of the form [12] ρ = ∑

j p jρ
A
j ⊗|ψ j 〉〈ψ j |B .What we can precisely say

about �̃ is that it carries information on the residual entanglement and correlation of the
partition Awith BC , andwith B. Therefore whenever EAB−EA(BC) ≥ δ←

AB−δ←
A(BC),

then �̃ ≥ 0.

123



78 Page 6 of 12 L. R. S. Mendes, M. C. de Oliveira

3 Structure of states saturating the b-SSA

The structure of states that saturate the b-SSA (21) can be obtained by using a theorem
due to Petz [13], regarding situations when the quantum relative entropy remains
unchanged after the action of a certain map. That is possible because the conditional
mutual information, as well as the other measures of quantum correlation in Eq. (21)
can all be rephrased in terms of the quantum relative entropy. To begin this analysis,
let us remind that the quantum discord is defined as the difference between the total
correlations that a system shares and the classical correlations in the system, as in Eq.
(11). The mutual information is given by the relative entropy as

I (A : B) = S(ρAB ||ρA ⊗ ρB), (23)

while the classical correlation is given by Eq. (18). Here we will make use of non-
selective von Neumann measurements, following the previous section, if the state is
ρAB , the measurement will be on the B part of the state and if the state is ρABC it will
be on the BC part. Hence, we obtain

�B(ρAB) =
∑

i

(
1A ⊗ �i

B

)
ρAB

(
1A ⊗ �i

B

)

=
∑

i

piρ
i
A ⊗ |ψi 〉B〈ψi |, (24)

and similarly �B(ρB) = ∑
i pi |ψi 〉B〈ψi |. Enabling us to rewrite the classical corre-

lation as

J←
AB = S(�(ρAB)||ρA ⊗ �(ρB)). (25)

Therefore, from (11) we have that

δ←
AB = min{

�i
B

} [S(ρAB ||ρA ⊗ ρB) − S(�B(ρAB)||ρA ⊗ �B(ρB))] . (26)

In a similar fashion, for a tripartite system given by ρABC ,

δ←
A(BC) = min{

�i
BC

} [S(ρABC ||ρA ⊗ ρBC ) − S(�BC (ρABC )||ρA ⊗ �BC (ρBC ))] ,

(27)

with �BC (ρABC ) = ∑
i piρ

i
A ⊗ |ψi 〉BC 〈ψi | and �BC (ρBC ) = ∑

i pi |ψi 〉BC 〈ψi |.
The minimization over the projectors is maintained since it is necessary to get the

optimized value for the QD. Further on, the minimization is not going to be carried for
the lack of necessity, i.e., the main calculations work for any minimization performed,
so that the result is valid, and the minimization can be taken afterward.
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Since S(A|B) = −S(ρAB ||1A ⊗ ρB), we obtain

EAB = min{
�i

B

} S(�B(ρAB)||1A ⊗ �B(ρB)), (28)

and through a similar derivation,

EA(BC) = min{
�i

BC

} S(�BC (ρABC )||1A ⊗ �BC (ρBC )). (29)

By substituting Eqs. (26)–(29) in the b-SSA (21), we get

I (A : C |B) ≥ min{
�i

B

} S(�B(ρAB)||1A ⊗ �B(ρB))

− min{
�i

BC

} S(�BC (ρABC )||1A ⊗ �BC (ρBC ))

+ min{
�i

BC

} [S(ρABC ||ρA ⊗ ρBC ) − S(�BC (ρABC )||ρA ⊗ �BC (ρBC ))]

− min{
�i

B

} [S(ρAB ||ρA ⊗ ρB) − S(�B(ρAB)||ρA ⊗ �B(ρB))] . (30)

We can check that the mutual information, I (A;C |B), is also present in the RHS, so
it is easy to see that the condition for saturation of the b-SSA rests in the equality
condition of the remaining terms of Eq. (30), i.e., necessarily

S(�BC (ρABC )||ρA ⊗ �BC (ρBC )) = S(�B(ρAB)||ρA ⊗ �B(ρB)), (31)

and

S(�BC (ρABC )||1A ⊗ �BC (ρBC )) = S(�B(ρAB)||1A ⊗ �B(ρB)). (32)

As it turns out, these necessary equalities reduce the action of the maps to be relevant
only over a single party B. It is good to observe that in the relations written above, we
are not taking into account the minimizations that are taken on the POVM’s. This is
due to the fact that the same optimization is enacted in both terms for each equation,
so for a given optimum value the best basis is found, and we can proceed with our
analysis getting to the equations above. We know that the equality condition for the
monotonicity of the relative entropy is guaranteed if there exists a quantum operation
T̂ that maps Tρ to ρ. So assuming that there exists a quantum operation that takes B to
BC in the form of a recoverymap RB→BC [13], we actuate over the states�BC (ρABC )

and �B(ρAB) so that

RB→BC (�B(ρAB)) = RB→BC

(
∑

i

piρ
i
A ⊗ |ψi 〉B〈ψi |

)

, (33)
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and the structure of states that saturate the b-SSA will take the form

�BC (ρABC ) =
⊕

j

q j

∑

i

p j |iρi
A ⊗ |ψ̃ j 〉bLi 〈ψ̃ j | ⊗ ωbRi C

, (34)

where ωbRi C
∈ HbRi

⊗ HC , |ψ̃ j 〉bLi ∈ HbLi
and HB = ⊕

i HbLi
⊗ HbRi

. It is clear that
the possibility of recovering the state belonging to HABC from the state belonging to
HAB , makes a sufficient condition for us to call this kind of states as short Quantum
Markov chains, similarly to the states that saturate the SSA [10]. Equations (31)
and (32) demand that J←−

A(BC) = J←
AB , which does not present much relevancy, but

it also demands that EA(BC) = EAB , that is, the entanglement of formation must
be monogamous [14] for those states. This can be very interesting in a quantum
cryptographic setting, where we are trying to minimize the access of third parties in a
two-part protocol.

4 Quantum data processing

Now we are going to apply the findings about the b-SSA in a well-known inequality,
the quantum data processing inequality. The quantum data processing inequality was
first introduced by Schumacher and Nielsen [4], where they also introduce a measure
of entanglement—the coherent information, which obeys the data processing in the
quantum regime. The coherent information is defined as

Ic(A〉B) ≡ S(B) − S(A|B), (35)

, i.e., the negative of the conditional entropy, S(A|B) (which itself is negative when
the system AB is entangled). For the scheme in Fig. 1, the data processing is

Ic(A〉B1) ≥ Ic(A〉B2), (36)

where there are two parties Alice and Bob, and they share a bipartite state. Bob
is the one that operates in his part of the state in Fig. 1, and there are two stages
corresponding to two operations in Bob’s part. The first stage can be understood as
the action of encoding information and produces B1, the second stage could be some
error correction to extract the information and yields B2. Both environments start in a
pure state and each interaction is unitary, guaranteeing the purity of the global state in
all stages of the process. Also, there is a change in the global state at those different
stages—in the first the global system is AB1E1, and in the second part it is AB2E1E2.

The standard quantum data processing inequality (36) says that in processing a
quantum state we can only decrease the quantum correlations between two parts,
in agreement with its classical version. However, similarly to the SSA, the limiting
bounds might change if quantum correlations are properly taken into account as we
show now. By writing Ic(A〉B1) and Ic(A〉B1) explicitly in terms of the definition
(35), and noticing that the quantum conditional mutual information, after the second
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Fig. 1 An illustration of a two
stage noisy quantum channel.
Alice (A) and Bob (B) share a
bipartite state. Bob locally
operates his state, evolving as
B → B1 → B2 through the
interaction with environments
E1 and E2, respectively

B BB

A

E E1 2

1 2

process, is

I (A : E2|E1) = S(A, E1) + S(E1, E2) − S(E1) − S(A, E1, E2), (37)

we see that

Ic(A〉B1) − Ic(A〉B2) = I (A : E2|E1). (38)

By Eq. (14), and recalling that the global system (AB1E1, and AB2E1E2) is pure,
such that EAE1 − EA(E1E2) + δ←−

A(E1E2)
− δ←

AE1
= EAB2 − EAB1 − δ←

AB2
+ δ←

AB1
, we

can write

�̃ = (EAB2 − δ←
AB2) − (EAB1 − δ←

AB1), (39)

in terms of A, B1 and B2 to obtain

Ic(A〉B1) ≥ Ic(A〉B2) + �̃. (40)

This is the quantum data processing inequality when quantum correlations captured
in � are appropriately included. Different situations of the inequality can be analyzed
in terms of the quantum correlation shared between the subsystem A with B1 and B2.

We now analyze the balance of entanglement and QD in each of the stages between
A and B1, and A and B2. We can see that if the entanglement distributed in the
system balances the quantum correlations (besides entanglement) we get the standard
quantum data processing inequality. Otherwise, the lower bound could be weaker or
stronger. Therefore, if the Eof is equal to the QD in each stage, �̃ = 0, and we recover
the standard inequality. That happens when both the systems AB1 and AB2 are pure,
possible onlywhen the environments E1 and E2 are uncorrelated (not even classically)
from B1 and B2, respectively. Therefore, the evolution AB → AB1 → AB2 is
unitary. Of course, this is not the only situation where �̃ = 0—it might happen
that the exceeding correlation (entanglement) in one stage cancels out the exceeding
correlation (entanglement) at the other stage. There are many situations when this is
possible whenever the states of AB1 and AB2 alone are mixed. Therefore, we assume
that the standard result of the quantum data processing applies specifically in these
cases. The situation when �̃ > 0 is fascinating as it imposes a stronger lower bound on
the data processing inequality. Rephrasing its meaning, the quantum data processing
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Fig. 2 A schematic
representation of the cycle of the
Locally Inaccessible
Information (LII), measured by
Quantum Discord A B E

δ←
BA δ←

EB

δ→
EBδ→

BA

δ→
AE

δ←
AE

inequality (40) says that in processing a quantum state we can only decrease the
quantum correlations between two parts, and the amount of this decreasing is bounded
by the balance of quantumcorrelations in the process. In contrast, if �̃ < 0, in principle
the processing could be improved. However, since this lower bound is weaker than
the standard quantum data processing, it is not a relevant case, but it means that the
correlations at the final stage could be larger than initially, as if the environments were
contributing to the processing with an extra amount of quantum correlations making
the processing better. This last case can be considered non-physical, since there are
different proofs attesting the non-negativity of the quantum data processing inequality,
and the bound being smaller than zero would violate the standard inequality.

Lastly, an intuition can be given by a different lower bound for the data processing
in terms of the flow of locally inaccessible information[15], as in Fig. 2. Noting that
the difference between the Eof and the QD can be written as

EAB2 − δ←
AB2 ≡ 1

2
(LE1E2→A→B − LB→A→E1E2). (41)

The relation on the right-hand side of (41) represents the net flowof locally inaccessible
information (LII)

LR{E1E2} ≡ 1

2
(LE1E2→A→B − LB→A→E1E2), (42)

from {E1E2} to A to B and from B to A to {E1E2}. The notation R{E1E2} is there to
specify that the net flow of LII is in respect with both environments in each stage of the
processing, while R{E1} implies a net flow in respect to the environment in the first
stage only. By Eq. (30) we establish a lower bound for the quantum data processing
inequality based on the difference of the net flow of LII in an out of the environments
E1 and E2 as

Ic(A〉B1) − Ic(A〉B2) ≥ LR{E1E2} − LR{E1}. (43)

The flow of LII is based on measurements of the quantum discord viewed in tripartite
systems, where those measurements are taken from bipartite sides in both directions,
capturing only the quantum correlations. By those contributions, while most of the
exchange of LII is happening from B to the environments some exchange is happening
from the system A and the environments, even though there is no operation in A′s part
of the state.
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The intuition is that the locally inaccessible information in respect to the whole
processingLR{E1E2} should be greater than the locally inaccessible information on the
first stage LR{E1} since it should be harder to disturb the system after being processed
twice, and the bound should be greater than zero. However, noticing what the standard
quantum data processing inequality tells, we believe that while the bound is greater
than zero, the locally inaccessible information acquired after both stages is not usable
nor by Alice or by Bob, since it is not locally accessible. This is different from saying
that the LII is destroyed during the processing, because it is only not accessible by
both parts. The question then would be if there is a way to harness the extra LII in
order to strengthen the standard inequality.

5 Conclusion

Starting from the bounded weak monotonicity, we derived an equivalent inequality
that we called bounded strong subadditivity (SSA) of the von Neumann entropy.
We showed that the lower bound obtained for the SSA can take a range of values,
positive, negative, or null. Depending on the mixture of states utilized, it can give a
stronger bound than usual on the quantum conditional information, since the lower
bound is written as a balance of quantum correlations in the system described by the
entanglement of formation and quantum discord. Both measures, Eof and QD were
rewritten as relative entropies in order to use Petz’s theorem [13] and the Hayden et al.
[10] result to obtain the structure of states that would saturate the bounded quantum
conditional entropy. The resulting states exhibit the form of short quantum Markov
chains similarly to the states that saturate the standard strong subadditivity, in the
aspect that we can recover the global state from a reduced form. This structure also
demands the entanglement of formation to respect a monogamous relation, which
can make those states useful in cryptography protocols. In addition, we examined the
consequences of the bounded SSA in the quantum data processing inequality, although
it is not clear why the data processing should not be stricter than usual given the bound
in terms of the Eof and QD, a lower bound in terms of the difference in net flow of
locally inaccessible information was achieved given additional insight. Even though
the bound is greater than zero, it is possible that the locally inaccessible information
seen by Bob is not extractable or useful in the processing, being only possible to use
the locally accessible part. Whether it is conceivable a protocol where we can use
the LII in the system and the quantum data processing is violated remains for further
investigation.

After completion of this work, we became aware of an interesting alternative deriva-
tion of the SSA, taking the role of quantum correlations[16]. While in that work the
authors consider the implications of the weak monotonicity obtained in [8] when the
system is extended to a purified global state ρABCE , here we are concerned with the
implication for the states saturating the b-SSA for arbitrarily mixed tripartite states.
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