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Abstract
Energy levels are considered for the two-photon parity λ-deformed Jaynes–Cummings
model of a single two-level atom interacting with a single-mode cavity field corre-
sponding to para-Bose oscillator algebra of order p = 2λ + 1. Time evolution of
the atom-field states with the initial states of the excited and even cat for the atom
and field is used to indicate that not only the minimal and maximal closeness of the
states in the fidelity is dependent on the deformation parameter λ but also the height
of the peaks in quasi-oscillations in the case of off- and on-resonance increases and
decreases by increasing λ, respectively. It has been shown that the partial revivals in the
Rabi oscillations of the λ-deformed atomic population inversion become less distinct
and thinner as well as more periodic in the cases of resonance and out-of-resonance,
respectively. The decay term in the interaction Hamiltonian causes the oscillating
behavior of revivals in atomic population inversion at the initial moments to res-
onate by increasing λ. Furthermore, we show that for both deformed and undeformed
fields, the statistics of the states in the resonant case becomes more sub-Poissonian
with respect to off-resonant one. Finally, it is deduced that the number and height of
the peaks for the quasi-oscillations of the time evolution of the atomic entropy are
increased by increasing λ, which is a sign of more entanglement.
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1 Introduction

A system consisting of a single-mode quantized field corresponding to the harmonic
oscillator interacting with an ensemble of two-level systems described by the spin- 12
operators was first considered by Dicke under a series of approximations [1]. The
simplest case of this model is the interaction between an electromagnetic radiation
field and a single two-level atom, which has nowadays attracted great attention in
many areas of physical applications such as quantum optics, condensed matter, and
quantum information. This model that was previously introduced by Rabi [2] in the
rotating wave approximation is known as the one-photon Jaynes–Cummings model
(JCM) [3]. The quantum effects in such systems with an optical field inside a cavity
have been extensively studied both analytically and experimentally by many authors
over the past decades (see, e.g., [4–9] and references therein). The JCM, which is an
exactly solvable model, was first used to consider the classical effects of spontaneous
emission and to follow traces of Rabi oscillations of the atomic population inversion
[10]. Next, it was turned out that the Rabi oscillations collapse and revival repeatedly
in a complicated pattern when the initial conditions are chosen appropriately [11–14].
This, in turn, provided a strong justification for the quantum behavior of radiation field
excitation (the discreteness of photon). The results of the subsequent studies elucidated
the other nonclassical properties of the JCM cavity field for which there is no classical
counterpart such as vacuum Rabi oscillations [15], collapse and revival in the atomic
excitation [16–18], entanglement between light and an optical atomic excitation (quan-
tum correlation) in the course of time [19], sub-Poissonian statistics, squeezing of the
radiation field [17,18,20–22] and the tendency of the photons to antibunch. One main
reason for the high interest in studying the dynamics predicted by JCM is the fact that
the interaction of the light wave with an atom can be realized and verified experimen-
tally in the cavity-QED setups, optical lattices, laser-cooled trapped ions, and so on
[23–25]. It must be emphasized that the temporal evolution of JCM is sensitive to the
statistical properties of the initial state of the quantized radiation field. In other words,
this model can be used as a scheme to produce the nonclassical states by considering
appropriate initial states [26]. There exist a variety of extensions and generalizations
of the original-JCM with alternative interactions between the field and atom, due to
the importance of the nonclassical states in quantum optics and laser physics. The q-
deformed, f -deformed and the parity λ-deformed one-photon JCMs are three different
kinds of generalizations of the original-JCMwith the cavity field operators replaced by
the q-, f - and λ-deformed partners, respectively [27–30]. A quantum system consist-
ing of a single two-level atom interacting with single-mode quantized cavity-field with
two-photon coupling is the simplest extension of the original-JCM which has been
studied in great detail during the past decades [31–40]. The boson annihilation and
creation operators of this field represent the su(1, 1) Lie algebra with the Bargmann
indices 1

4 and 3
4 for the even and odd parity states, respectively. For example, for the

time evolution of the mean photon number and the variance of the field quadratures
corresponding to a two-photon JCM (TPJCM) of a single two-level atom interacting
with the squeezed vacuum one can refer to Ref. [34]. Furthermore, Jaynes–Cummings
models with intensity-dependent coupling interacting with Holstein–Primakoff su(2)
and su(1, 1) coherent states have been analyzed in [36,38,40] as other extensions
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of the original-JCM. Moreover, numerous other extensions have been suggested and
investigated, such as multi-photon transitions [41], two- or three-cavity modes for
three-level atoms [32], the Jaynes–Cummings-Hubbard model [42,43], the Tavis-
Cummings model [44] and driven Jaynes–Cummings model [45]. The aim of the
present work is to consider the two-photon parity λ-deformed JCM of a single two-
level atom interactingwith a para-Bose oscillator cavity-field instead of the simple one.
The para-Boson oscillator algebra, which has recently attracted considerable attention
(see, for example, [46–50]), is a deformation of the harmonic oscillator algebra by the
reflection operator in the context of integrability in the Calogero–Sutherland models
[51–53].

The paper is organized as follows: Sect. 2 contains a brief review of para-Bose
oscillator algebra of order p = 2λ + 1 and its unitary lowest weight (Fock) rep-
resentation. In Sect. 3 we introduce the parity λ-deformed version of two-photon
Jaynes–Cummings Hamiltonian and obtain its eigenstates and energy levels. Time
evolution of the atom-field states with the initial states of the even cat and excited for
the field and atom is obtained in Sect. 4. Dynamics of the fidelity, atomic inversion,
and cavity damping on the collapse and revival phenomena are studied in Sect. 5.
Moreover, sub-Poissonian statistics, quadrature squeezing of the cavity field, and von
Neumann entropy are investigated in Sect. 6. Finally, the results are summarized in
Sect. 7.

2 The para-Bose oscillator algebra and its associated Lie algebra
su(1, 1)

Let us fix the unital simple harmonic oscillator algebra by the annihilation and creation
operators a = 1√

2

(
x + d

dx

)
and a† = 1√

2

(
x − d

dx

)
with the commutation relation

[a, a†] = 1. For the sake of simplicity, we have set the constant �/mω to 1. Also,
it has been assumed that x is non-zero and real. Suppose that λ is an arbitrary real
parameter and R is the Hermitian and unitary parity operator, i.e. R† = R−1 = R. If
we define the following annihilation and creation operators

A ≡ a − λ√
2x

R, A† ≡ a† + λ√
2x

R, (2.1)

then we shall get the para-Bose (pseudo harmonic) oscillator algebra of order p =
2λ + 1 as follows

[
A, A†

] = 1 + 2λR, {R, A} = {R, A†
} = 0. (2.2)

This is a parity-deformed version of the simple harmonic oscillator algebra so that in
the limit λ → 0 we lose the anti-commutation relations given in the last two equations
of (2.2). The para-Bose oscillator algebra allocates itself a number self-adjoint operator
as N ≡ A†A + λ(1 − R) subject to the commutation relations

[N , A] = −A, [N , A†] = A†, [N , R] = 0. (2.3)
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It is supposed that the generators of the algebra (2.2) are the linear operators on the
infinite-dimensional Hilbert space H = Lin. Span {|n〉 | n ∈ N0; 〈n|m〉 = δn m, I ≡∑∞

n=0 |n〉〈n|}with 〈.|.〉 as a scalar product and I as the identity operator on that space.
The space H can be split into a direct sum of two orthogonal infinite-dimensional
Hilbert subspacesHe = Lin.Span {|n〉e ≡ |2n〉|n ∈ N0} andHo = Lin.Span {|n〉o ≡
|2n+1〉|n ∈ N0}with the positive and negative parities, respectively. According to the
last relation of (2.3), the basis states of the Fock spaceH are the common eigenstates
of parity operator, R |n〉 = (−1)n |n〉, as well as number operator, N |n〉 = n |n〉.
The irreducible Fock representation of the para-Bose oscillator algebra (2.2) with the
lowest weight onH is given by

A |2n〉 = √
2n |2n − 1〉, A†|2n〉 = √

2n + 2λ + 1 |2n + 1〉,
A|2n + 1〉 = √

2n + 2λ + 1 |2n〉, A†|2n + 1〉 = √
2n + 2 |2n + 2〉. (2.4)

The Fock vectors |2n〉 and |2n + 1〉 in x-representation are expressed in terms of the
associated Laguerre polynomials as (λ > −1

2 ) [54]

〈x |2n〉 = (−1)n
√

n!
�(n + λ + 1

2 )
|x |λe− x2

2 L
λ− 1

2
n (x2),

〈x |2n + 1〉 = (−1)n
√

n!
�(n + λ + 3

2 )
x |x |λe− x2

2 L
λ+ 1

2
n (x2). (2.5)

It is necessary to recall that the Hamiltonian for the parity λ-deformation of the har-
monic oscillator is the so-called Calogero-Sutherland one:

H (λ) = 1

2
{A, A†} = 1

2

[
− d2

dx2
+ x2 + λ(λ − R)

x2

]
. (2.6)

R is substituted by +1 and −1 depending on which of the Hilbert subspaces He and
Ho is used to measure the energy value: 〈n| H (λ) |n〉 = n + λ + 1

2 .
It is now straightforward to show that the su(1, 1) Lie algebra commutation rela-

tions, which are

[K+, K−] = −2K0, [K0, K±] = ±K±, (2.7)

are realized by the following operators

K+ ≡ 1

2
A†2 , K− ≡ 1

2
A2, K0 ≡ 1

2

(
N + λ(2R − 1) + 1

2

)
, (2.8)

in which, K0 is a self-adjoint operator, and the operators K+ and K− are the Hermitian
conjugate of each other with respect to the scalar product 〈.|.〉. For a given positive
real number λ, it is straightforward to conclude that the Hilbert subspaces He and
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Ho form the irreducible positive discrete ( 14 + λ
2 )- and ( 34 + λ

2 )-representations of the
su(1, 1) Lie algebra, respectively:

K+|n〉e(o) =
√

(n + 1)(n + λ + 1 ∓ 1

2
)|n + 1〉e(o),

K−|n + 1〉e(o) =
√

(n + 1)(n + λ + 1 ∓ 1

2
)|n〉e(o),

K0|n〉e(o) = 1

2
(2n + λ + 1 ∓ 1

2
)|n〉e(o). (2.9)

The positive discrete series of su(1, 1) with the Bargmann indices 1/4 and 3/4 (see,
for example, [55,56]), as the limiting cases of the positive discrete ( 14 + λ

2 )- and
( 34 + λ

2 )-representations, are obtained by the limiting process λ → 0.

3 Two-photon Jaynes–Cummingsmodel by a two-level atom
interacting with the para-Bose field

We use the generators of su(1, 1) Lie algebra defined in (2.8) to generalize TPJCM
Hamiltonian (assuming � = 1) by the parity operator as below

H (λ,g) ≡ 2ωK0 + ω0

2
σ3 + 2g(K+σ− + K−σ+). (3.1)

The two first and third term are the free and interaction parts of the Hamiltonian which
are usually denoted by H0 and Hint in the literature, respectively: H0 = 2ωK0 + ω0

2 σ3

and Hint = 2g(K+σ− + K−σ+). The first term of H (λ,g) is the parity λ-deformed
free-field Hamiltonian (without the zero-point energy term) that describes the energy
of each photon by the parameter ω and an infinite number of the states |n〉e and
|n〉o, introduced in the previous section. The second term is the free Hamiltonian
corresponding to a two-level atom with ω0 as the energy splitting between the ground
and excited atomic states in the Hilbert spaceHatom = Lin. Span{|−〉, |+〉}. The atom
is described by the three generators σ3 = |+〉〈+| − |−〉〈−| and σ± = σ1 ± iσ2 =
|±〉〈∓| that obey the su(2) commutation relations [σ+, σ−] = σ3 and [σ3, σ±] =
±2σ± (σ1, σ2 and σ3 are the well-known Pauli matrices). The third term of H (λ,g)

refers to a parity λ-deformed version of the atom-field interaction with the coupling
constant g. Using Eq. (2.1), the Hamiltonian H (λ,g) is written as

H (λ,g) = H (g)
T P JCM +

(ω

2
− g
) λ2

x2
+ (gσ1 − ω)

λ

2x2
R, (3.2)

in which

H (g)
T P JCM = ω

2
{a, a†} + ω0

2
σ3 + g(a2σ+ + a†

2
σ−) (3.3)
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is the known Hamiltonian of the two-photon Jaynes–Cummings model [17,18,20,57]
obtained by the limiting processes λ → 0. The λ-dependent terms of the time-
independent Hamiltonian (3.2) can be considered as the inversely quadratic potential
and the radial external classical field, respectively. In continuation of our investiga-
tions, we will focus on the role of these terms via the deformation parameter λ in
strengthening or weakening the nonclassical behaviors of the atom-field system. As it
is known, the eigenstates of the Hamiltonian H (g)

T P JCM are made by the even and odd
subspaces of the unitary Fock representation space of the simple harmonic oscillator
that themselves form the positive discrete series of su(1, 1)with the Bargmann indices
1/4 and 3/4, respectively. Here in this article, we are going to obtain the eigenstates
of the Hamiltonian H (λ,g) by using the even and odd subspaces corresponding to the
positive discrete ( 14 + λ

2 )- and ( 34 + λ
2 )-representations of su(1, 1). One can show

that the free Hamiltonian (corresponding to g = 0) is an integral of motion provided
that the detuning parameter � = 2ω − ω0 between the radiation field and the atomic
transition is zero, or, equivalently, the exact resonance condition holds.

Let us now use the positive discrete ( 14 + λ
2 )- and ( 34 + λ

2 )-representations of su(1, 1)
and fix the bases |n,±〉e ≡ |n〉e ⊗ |±〉 and |n,±〉o ≡ |n〉o ⊗ |±〉 for the Hilbert space
corresponding to λ-deformed TPJCM Hamiltonian H (λ,g), respectively. Its matrix
representation with respect to an orthonormal basis ordered as {|n,+〉e , |n + 1,−〉e}
is given by

H (λ,g)
n =

⎛

⎜
⎜
⎝

ω(2n + λ + 1
2 ) + ω0

2 2g
√

(n + 1)(n + λ + 1
2 )

2g
√

(n + 1)(n + λ + 1
2 ) ω(2n + λ + 5

2 ) − ω0
2

⎞

⎟
⎟
⎠ . (3.4)

The energy eigenvalues of H (λ,g)
n are calculated as

E (λ,g)
n,± =

(
2n + λ + 3

2

)
ω ± �

(λ,g)
n

2
, (3.5)

in correspondence with the eigenstates

∣∣
∣E (λ,g)

n,+
〉
= cos θn|n,+〉e + sin θn|n + 1,−〉e,

∣∣∣E (λ,g)
n,−
〉
= sin θn|n,+〉e − cos θn|n + 1,−〉e, (3.6)

respectively, with

sin θn = �
(λ,g)
n + �

√
(�

(λ,g)
n + �)

2 + 8g2(n + 1)(2n + 2λ + 1)

. (3.7)

�
(λ,g)
n is the λ-generalization form of the quantum electrodynamics Rabi frequency

[57], and its magnitude is given by �
(λ,g)
n = (�2 + 8g2(n + 1)(2n + 2λ + 1)

)1/2
. If
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(a) (b)

Fig. 1 Variations of energies a E(λ,0.7)
n,− /ω0 and b E(λ,0.8)

n,− /ω0 versus detuning parameter −5ω0 ≤ � ≤
5ω0 for ω = 0.5ω0, n = 1, 2 and λ = 0, 10. The solid and dashed lines correspond to n = 1 and n = 2,
respectively

there is no coupling between the photon and atom, that is, g = 0, then the ener-
gies E (λ,0)

n,+ and E (λ,0)
n,− will be same for the case of exact resonance. Otherwise,

for any nonvanishing value of g, it is straightforward to conclude that E (λ,g)
n,+ >

E (λ,g)
n,− . Furthermore, by direct calculation, we find that E (λ1,g)

n,+ > E (λ2,g)
n,+ > 0 and∣∣

∣E (λ1,g)
n,+ − E (λ1,g)

n,−
∣∣
∣ >
∣∣
∣E (λ2,g)

n,+ − E (λ2,g)
n,−

∣∣
∣ for λ1 > λ2. That is, not only the magnitude

of the energy E (λ,g)
n,+ but also the gap between energies E (λ,g)

n,+ and E (λ,g)
n,− increase by

increasing the deformation parameter λ. Again, for λ1 > λ2, it is easy to show that
E (λ1,0)
n,− > E (λ2,0)

n,− . The Rabi frequency �
(λ,g)
n with g �= 0 suggests that the influence

of the deformation parameter λ on E (λ,g)
n,− is more complex, it makes it possible to con-

clude that the nonzero λ causes the energy to be increased or decreased. Figure 1a, b
respectively exhibit variations of the energies E (λ,0.7ω0)

n,− and E (λ,0.8ω0)
n,− in terms of the

detuning parameter−5ω0 ≤ � ≤ 5ω0 forω = 0.5ω0, n = 1, 2 and λ = 0, 10. As it is
seen from the plots, for g = 0.7ω0 and for both values 1 and 2 of the quantum number
n the energy is increased by increasing the λ-deformation parameter from 0 to 10.
Whilst, when g is 0.8ω0, for n = 1 and n = 2, the energy is increased and decreased
respectively by increasing λ from 0 to 10. One can directly use the ordered orthonor-
mal basis {|n,+〉o , |n + 1,−〉o} and get the energy levels E (λ+1)

n,± for the Hamiltonian
H (λ,g), which is only a shift in the deformation parameter λ. For this reason, we do not
consider the eigenvalues of H (λ,g) in the positive discrete ( 34 + λ

2 )-representations of
su(1, 1) and will focus on the role of λ in the behaviors and properties of the solutions
in terms of the basis {|n,+〉e , |n + 1,−〉e}, in what follows.

The even cat states that will be considered as initial ones of the field in the next
section are superpositions of the kets of the even-photon numbers, the eigenstates
for the Hamiltonian (2.6) with the eigenvalue +1 instead of the parity operator R.
The authors of Rodriguez-Lara [58,59] have investigated the possibility of physical
realization of the interaction of a single two-level atomwith a single-mode cavity field
in nonlinear two-photon transitions, a JCM that conserves parity symmetry. Therefore,
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we can propose the faithful realization propounded by them to reconstruct the mean
value of quantum optics measurements, such as photon number and atomic excitation
energy, from the intensity and from the field strength, such as von Neumann entropy
and fidelity, at the output facet of the photonic lattices.

4 Time evolution of the atom-field states with the initial states of the
even cat and excited for the field and atom

The dynamics of the λ-deformed two-photon Jaynes–Cummings system is achieved
by transforming into the interaction picture with respect to the free Hamiltonian H0
as follows

HI = eiH0t Hinte
−i H0t

= 2g(ei�tσ−K+ + e−i�tσ+K−), (4.1)

the so-called time-dependent interaction Hamiltonian. If we propose an infinite expan-
sion as

|ψ(t)〉e =
∞∑

n=0

(
Ce
n,+(t)|n,+〉e + Ce

n+1,−(t)|n + 1,−〉e
)

(4.2)

for the solutions of the time-dependent Schrödinger equation i ∂
∂t |ψ(t)〉e = HI |ψ(t)〉e,

then we get two linear-coupled first-order differential equations as follows (dot is for
derivative with respect to time)

Ċe
n,+ = −2ig

√

(n + 1)(n + λ + 1

2
)e−i�tCe

n+1,−,

Ċe
n+1,− = −2ig

√

(n + 1)(n + λ + 1

2
)ei�tCe

n,+. (4.3)

The following two recursion relations are immediate:

Ce
n,+(t) = e−i �t

2

{

Ce
n,+(0)

(

cos(
�

(λ,g)
n t

2
) + i(

�

�
(λ,g)
n

) sin(
�

(λ,g)
n t

2
)

)

−Ce
n+1,−(0)

(
4ig

�
(λ,g)
n

√

(n + 1)(n + λ + 1

2
) sin(

�
(λ,g)
n t

2
)

)}

,

Ce
n+1,−(t) = ei

�t
2

{

Ce
n+1,−(0)

(

cos(
�

(λ,g)
n t

2
) − i(

�

�
(λ,g)
n

) sin(
�

(λ,g)
n t

2
)

)

−Ce
n,+(0)

(
4ig

�
(λ,g)
n

√

(n + 1)(n + λ + 1

2
) sin(

�
(λ,g)
n t

2
)

)}

, (4.4)
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whereCe
n,+(0) andCe

n+1,−(0) are determined from the initial conditions of the system.
In what follows, we assume that the field and atom are initially in a parity-deformed
even cat state given in [54] as well as the excited state, respectively. Therefore, the
initial state of the atom–field is

|ψ(0)〉e ≡ |z〉λ,e ⊗ |+〉 =

√√√
√√

( |z|√
2

)2λ−1

Iλ− 1
2
(|z|2)

∞∑

n=0

z2n
√
22n n! �(n + λ + 1

2 )

|n,+〉e, (4.5)

in which, Iλ(x) refers to the modified Bessel function of the first type [60] and z is
an arbitrary complex variable with the polar form z = |z|eiθ so that 0 ≤ |z| < ∞
and 0 ≤ θ < 2π . The authors in Ref. [54] have shown that the even cat state |z〉λ,e
exhibit super-Poissonian statistics for any λ ≥ 0, except for the negative values of
− 1

2 < λ < 0 where a sub-Poissonian distribution appears for |z| > 1. Moreover, the
even cat states |z〉λ,e for λ > 0 and θ = π

2 exhibit squeezing effect in the position
coordinate so that the degree of squeezing is enhanced by increasing λ. Whilst, for
− 1

2 < λ < 0, squeezing disappears when we begin to increase the amount of |z|
from small values to larger ones. Using the x-representation of the even cat states,
namely 〈x |z〉λ,e, we have evaluated the Wigner quasi probability distribution function
Wλ,e(x, p) ≡ 1

π

∫∞
−∞〈x + q|z〉λ,e λ,e〈z|x − q〉e−2i pq dq and then plotted its changes

in region−5 ≤ x, p ≤ 5 of the phase space for z = 1 in Fig. 2a–e for λ = 0, 1, 2, 3, 4,
respectively. Indeed, Fig. 2a is for the even cat states corresponding to the undeformed
harmonic oscillator, and Fig. 2b–e are for those of the parity (λ = 1, 2, 3, 4)-deformed
harmonic oscillators to be compared and to show how the classical and quantum
features of those states are influenced by the deformation parameter λ. The Wigner
functions of those states in Fig. 2 exhibit different features on both positive and negative
probability distributions depending on the deformation parameter λ. Contrary to the
cases λ = 1, 3, for λ = 2, 4 just similar to λ = 0 (undeformed oscillator), the phase-
space distributions of even cat states contribute the most positive probability precisely
at the origin of the phase space. The number of positive humps increases by two units
when λ changes from an even number to the next higher one, while it remains constant,
equal to one, for the odd values of λ. The width and height of the negative humps of
the Wigner function, which make a detour from classical behavior, exhibit a quantum
interference phenomenon. As it is seen from Fig. 2a–e, the interference patterns for
λ = 0, 2, 4 are different from those of λ = 1, 3, the first items with the two negative
humps and the latter items with the one negative hump. Despite the first cases, the
positive and negative probability distributions of the second ones interchange under
the parity operation x → −x . Furthermore, both negative and positive values of the
Wigner functions of the first cases remain unchanged under the change in sign of
both x and p. The initial state (4.5) leads to the initial probability amplitudes of the
atom–field state being

Ce
n,+(0) = |z|λ− 1

2 z2n
√
22n+λ− 1

2 n! � (n + λ + 1
2

)
Iλ− 1

2
(|z|2)

, Ce
n+1,−(0) = 0. (4.6)
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Fig. 2 Density (contour) plots of theWigner quasi probability distribution functionWλ,e(x, p) correspond-
ing to the even cat state |z〉λ,e with z = 1 for a λ = 0, b λ = 1, c λ = 2, d λ = 3 and e λ = 4

5 Time evolution of the fidelity, atomic inversion and level damping

Fidelity, which is here considered as a transition probability from the initial state
of atom-field to another state in every next moment, indicates perfect and no overlap
between the states when it takes themost and least values 1 and 0, respectively. Indeed,
it is a criterion to measure the closeness and distance between the initial state and
the dynamically evolved state, a characterization of distinguishability of two states.
Therefore, the oscillating patterns in time for the fidelity denote how the atom-field
state returns periodically to its initial state. In general, the trends of the changes in
the fidelity and entropy of entanglement are not exactly opposite to each other which,
in turn, implies that there exists a complicated relationship between entanglement
and decoherence in the framework of quantum information theory. However, the high
fidelity leads to the low entropy value that is associated with energy consumption. The
fidelity (transition probability) between the initial state |ψ(0)〉e and the time evolved
state |ψ(t)〉e is calculated as [61]

F ≡ |e〈ψ(0)|ψ(t)〉e|2 =
∣∣
∣∣∣

∞∑

n=0

|Ce
n,+(0)|2

[

cos

(
�

(λ,g)
n t

2

)

+ i

(
�

�
(λ,g)
n

)

sin

(
�

(λ,g)
n t

2

)]∣∣
∣∣∣

2

.

(5.1)
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(a) (b) (c)

Fig. 3 Fidelity as a function of 0 ≤ gt ≤ 10 for a � = 0, b � = 0.05ω0 and c � = 0.09ω0 with
g = 0.001ω0 (Color figure online)

Figure 3a–c indicate fidelity as a function of gt in the range 0 ≤ gt ≤ 10 for � =
0, 0.05ω0, 0.09ω0, respectively, with g = 0.001ω0. Figure 3a, b have been plotted for
|z| = √

30 and different three values λ = 0, 10 and 20 of the deformation parameter
while Fig. 3c is for |z| = 0.6 and only one value of λ, namely λ = 20. One can see that
the larger peaks for fidelity are obtained from the larger λ in the case of off-resonance,
and vice versa for the resonance case. This is confirmed by comparing the plots in
Fig. 3a, b. Also, from the comparison of Fig. 3a–c, it is found that for λ = 20, the
average of fidelity becomes stronger when� is increased. Finally, Fig. 3a–c show that
the amplitude and period of the fluctuations between the values 0 and 1 (the minimal
and maximal closeness of the states) is dependent on the deformation parameter λ.

At this stage, it is necessary to investigate the temporal evolution of the criterion
for the population inversion of collective two-level atoms. Temporal evolution of the
atomic inversion for the parity λ-deformed TPJCM with the initial condition (4.5) of
the atom–field state is calculated as

e 〈ψ(t)|σ3|ψ(t)〉e =
∞∑

n=0

[
|Ce

n,+(t)|2 − |Ce
n+1,−(t)|2

]

=
∞∑

n=0

|Ce
n,+(0)|2

⎧
⎨

⎩

(
�

�
(λ,g)
n

)2
+
(

4g

�
(λ,g)
n

)2
(n + 1)

(
n + λ + 1

2

)
cos(�(λ,g)

n t)

⎫
⎬

⎭
.

(5.2)

The quasi-periodic collapse and revival phenomena in atomic population inversion
of the parity λ-deformed TPJCM as a function of the scaled time 0 ≤ gt ≤ 6 with
|z| = √

30, g = 0.001ω0 and� = 0, 0.05ω0, 0.09ω0 have been depicted in Fig. 4a, b
for λ = 0 and 20, respectively. Figure 4a, b show that, as expected from formula (5.2),
the amplitude of atomic population inversion decreases by increasing the detuning
parameter �. These two figures also show that for the case of exact resonance, the
partial revivals of the Rabi oscillations corresponding to nonzero deformation param-
eter λ (contrary to the value λ = 0 of the simple harmonic oscillator which is regular
and complete) become less distinct as time increases. Furthermore, the partial revivals
in the case of out-of-resonance for λ-deformed field become more periodic in com-
parison with the undeformed one. Moreover, the revivals of λ-deformed fields in the
resonance and out-of-resonance cases become broader and narrower with respect to
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(a) (b)

Fig. 4 Plots of the atomic inversion e〈ψ(t)|σ3|ψ(t)〉e for the parity λ-deformed TPJCM against the 0 ≤
gt ≤ 6 for a λ = 0 and b λ = 20 with |z| = √

30 and g = 0.001ω0

the undeformed field, respectively. Finally, the mean values of the atomic inversion
increase by increasing the detuning parameter in both deformed and undeformed cases
of the field.

There are several phenomena such as spontaneous emission [62,63], collisions [64]
and scattering [65] which lead to decay in the populations of excited atomic levels.
The finite level lifetimes are described by adding phenomenological decay terms to
the equations of motion or, equivalently, the appropriate non-Hermitian terms to the
Hamiltonian. Here, it is again assumed that the atom is initially in the excited state
and thus the population inversion dynamics at time t is analyzed by adding decay
term −i γ

2 |+〉 〈+| to the Hamiltonian in order to consider dissipation phenomenon of
energy into the environment. The real parameter γ is interpreted as the rate of energy
dissipation. So, by this way, the dampedHamiltonian of the parity λ-deformed TPJCM
is obtained as follows:

Hdam = eiH0t (Hint − i
γ

2
|+〉 〈+|)e−i H0t

= 2g(ei�tσ−K+ + e−i�tσ+K−) − i
γ

2
|+〉 〈+| . (5.3)

For the solutions of the time-dependent Schrödinger equation i ∂
∂t |ψ(t)〉e =

Hdam|ψ(t)〉e the second relation of (4.3) appears exactly as it is. Whilst, the first
relation of that is converted to the following equation

Ċe
n,+(t) = −2ig

√

(n + 1)(n + λ + 1

2
) e−i�tCe

n+1,−(t) − γ

2
Ce
n,+(t). (5.4)

The second equation of (4.3) together with (5.4) have the following solutions:

Ce
n,+(t) = Ce

n,+(0)

[

cos(
�

(λ,g)
n t

2
) + (

2i� − γ

2�(λ,g)
n

) sin(
�

(λ,g)
n t

2
)

]

e− 2i�+γ
4 t ,

Ce
n+1,−(t) = Ce

n,+(0)
−4ig

�
(λ,g)
n

√

(n + 1)(n + λ + 1

2
) sin(

�
(λ,g)
n t

2
)e

2i�−γ
4 t , (5.5)
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(a) (b) (c)

Fig. 5 Plots of the atomic inversion e〈ψ(t)|σ3|ψ(t)〉e for the parity λ-deformed TPJCM versus 0 ≤ gt ≤ 6
for a γ = 0, b γ = 0.001ω0 and c γ = 0.05ω0 with |z| = √

30, g = 0.001ω0 and � = 0.05ω0. The solid
lines in any of the three figures are for λ = 0 (undeformed oscillator) and the dotted lines in a and b are for
λ = 20 and in c for λ = 1000

where�
(λ,g)
n =

(
(� + i γ

2 )
2 + 8g2(n + 1)(2n + 2λ + 1)

)1/2
. For given values |z| =√

30, g = 0.001ω0 and � = 0.05ω0, we have plotted the changes of the atomic
inversion versus the scaled time in the interval 0 ≤ gt ≤ 6, in Fig. 5a for γ = 0
and Fig. 5b for γ = 0.001ω0 and both of them for λ = 0 (solid line) and λ = 20
(dotted line) as well as Fig. 5c for γ = 0.05ω0, λ = 0 (solid line) and λ = 1000
(dotted line). When we compare Fig. 5a–c, we conclude that a nonzero value for γ in
both undeformed and deformed cases causes the Rabi oscillations of the revivals to be
destroyed in time. A comparison of Fig. 5b, c shows that the revivals will disappear
sooner when γ is increased. For γ = 0.05ω0, the close-up of Fig. 5c indicates that
the oscillating behavior of revivals in atomic population inversion for the short time
regime (just after t = 0) intensifies by increasing the deformation parameter λ.

6 Sub-Poissonian light, quadrature squeezing of the cavity field and
von Neumann entropy

The relevant non-zero expectation values for the evaluation of nonclassical properties
of the cavity field over the time-evolved atom-field state (4.2) with the expansion
coefficients given by (4.4) and (4.6) are

e〈ψ(t)|A2|ψ(t)〉e = 2
(
η+

λ (t) + η−
λ (t)
)
,

e〈ψ(t)|A†A|ψ(t)〉e = 2
(
ξ+
λ (t) + ξ−

λ (t)
)
,

e〈ψ(t)|(A†A)
2|ψ(t)〉e = 4

(
ζ+
λ (t) + ζ−

λ (t)
)
, (6.1)

where

ξ±
λ (t) =

∞∑

n=0

(
n + 1

2
∓ 1

2

)
|Ce

n+ 1
2 ∓ 1

2 ,±(t)|2,
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ζ±
λ (t) =

∞∑

n=0

(
n + 1

2
∓ 1

2

)2
|Ce

n+ 1
2 ∓ 1

2 ,±(t)|2,

η±
λ (t) =

∞∑

n=0

√(
n + 1 + 1

2
∓ 1

2

)(
n + λ + 1 ∓ 1

2

)
C∗e

n+ 1
2 ∓ 1

2 ,±(t)Ce
n+1+ 1

2 ∓ 1
2 ,±(t).

(6.2)

It is clear that e〈ψ(t)|N |ψ(t)〉e = e〈ψ(t)|A†A|ψ(t)〉e and e〈ψ(t)|N 2|ψ(t)〉e =
e〈ψ(t)|(A†A)

2|ψ(t)〉e.
The statistical features of the light field are characterized by evaluating the λ-

deformedMandel parameter for the normalized time-evolved atom-field state |ψ(t)〉e:

Q(λ,g)(t) ≡ e〈ψ(t)|N 2|ψ(t)〉e − e〈ψ(t)|N |ψ(t)〉e2
e〈ψ(t)|N |ψ(t)〉e − 1

= 2
ζ+
λ (t) + ζ−

λ (t) − (ξ+
λ (t) + ξ−

λ (t)
)2

ξ+
λ (t) + ξ−

λ (t)
− 1. (6.3)

In order to consider the time evolution of the photon counting statistics, we have
depicted quasi periodic plots of the λ-Mandel parameter Q(λ,g)(t) versus the scaled
time 0 ≤ gt ≤ 3 for � = 0, � = 0.05ω0 and � = 0.09ω0 in Fig. 6a–c, respectively.
Each of the parts (a), (b) and (c) involves three different curves corresponding to the
deformation parameters λ = 0, 1, 2, respectively, with |z| = √

30 and g = 0.001ω0.
As it is seen from these figures, the fluctuations in the quasi-periodic plots are increased
as detuning parameter � and deformation parameter λ are allowed to increase. For
both resonant and out-of-resonant cases, the sub-Poissonian statistics as a nonclassical
behavior of the cavity field becomes weaker when the deformation parameter λ is
increased from 0 to 2. Furthermore, the behavior of the states in the resonant case
with respect to the off-resonant one becomes more nonclassical in both deformed and
undeformed fields. Therefore, the model can be used as a source for generating the
sub-Poissonian light when both the deformation parameter λ and detuning parameter
� are small enough.

In order to consider the squeezing of the cavity field, we introduce the two gen-
eralized quadrature operators as x = 1√

2

(
A† + A

)
and p = i√

2

(
A† − A

)
with the

commutation relation [x, p] = i(1 + 2λR). The squeezing of the quadratures of the
field in any arbitrary moment t is rooted in Heisenberg–Weyl uncertainty inequal-
ity σ e

xx (t)σ
e
pp(t) ≥ 1

4 | e〈ψ(t)|[x, p]|ψ(t)〉e|2 with σ e
OO(t) ≡ e〈ψ(t)|O2|ψ(t)〉e −

e〈ψ(t)|O|ψ(t)〉2e forO = x, p as the variance of the position andmomentumoperators
with respect to the time-evolved atom-field state (4.2). This means that the realiza-
tion of squeezing in any of the quadratures, which is a purely quantum mechanical
phenomenon, leads to the spreading in the other quadrature. Therefore, the degree
of squeezing of the quadrature O on the state |ψ(t)〉e is defined by the following
parameter [38,66]:

S(λ,g)
O (t) ≡ 2σ e

OO(t)

| e〈ψ(t)|[x, p]|ψ(t)〉e| − 1, (6.4)
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(a) (b) (c)

Fig. 6 Time evolution of the Mandel parameter Q(λ,g) versus the scaled time 0 ≤ gt ≤ 3 for a � = 0, b
� = 0.05ω0 and (c) � = 0.09ω0 with |z| = √

30 and g = 0.001ω0. Each of the parts a–c involves three
different plots for λ = 0, 1, 2

which for the most squeezing corresponds to the minimum value, i.e. −1. We imme-
diately derive the following results from Eq. (6.1):

S(λ,g)
x (t) = 4

1 + 2λ

[(
ξ+
λ (t) + ξ−

λ (t)
)+ Re

(
η+

λ (t) + η−
λ (t)
)]

, (6.5)

S(λ,g)
p (t) = 4

1 + 2λ

[(
ξ+
λ (t) + ξ−

λ (t)
)− Re

(
η+

λ (t) + η−
λ (t)
)]

. (6.6)

Evolution of the squeezing parameters of cavity field quadratures versus 0 ≤ gt ≤ 20
with |z| = 2, θ = 0, g = 0.01ω0 and � = 0.09ω0 has been depicted in Fig. 7a–d for
λ = 0 (undeformed oscillator), λ = 2, λ = 5 and λ = 10, respectively. As it is seen,
the squeezing parameters of the quadratures x and p oscillate in completely oppo-
site phases to each other but with the same amplitudes. Contrary to the undeformed
oscillator case, parity λ-deformed atom-filed states exhibit a squeezing effect in the
cavity field quadratures x and p and the largest magnitude of squeezing in both of
them become weaker and happens over a long period of time when λ is increased.

Consider the density operator for the atom-field system as ρAF (t) as well as the
reduced density matrices of the atom and field as partial traces of ρAF (t) over Hatom

and H, respectively: ρA (t) = trFρAF (t) and ρF (t) = trAρAF (t). The dimensionless
partial entropies of vonNeumann for the atom and field in terms of their corresponding
density matrices are given by

SA (t) = −trA (ρA (t) ln ρA(t)), SF (t) = −trF (ρF (t) ln ρF (t)). (6.7)

The densitymatrix for the pure state (4.2)with the initial probability amplitudes (4.6) is
ρAF (t) = |ψ(t)〉e e〈ψ(t)|which exhibits a disentangled state for the atom-field system

at the initial moment. The real positive Schmidt weights λ+ =
∞∑
n=0

∣∣Ce
n,+(t)

∣∣2 and

λ− =
∞∑
n=0

∣∣∣Ce
n+1,−(t)

∣∣∣
2
are the common eigenvalues of the reduced density matrices

ρA (t) and ρF (t) so that they obey λ+ +λ− = 1 which, in turn, shows that the Schmidt
rank of the bipartite pure state |ψ(t)〉e is 2 in any next time. Therefore, entanglement
between the atom and field creates as time goes far away from the initial moment.
The degree of entanglement can be characterized by the same entropy for the reduced
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(a) (b)

(c) (d)

Fig. 7 Time evolution of the squeezing parameters of cavity field quadratures x and p in terms of the scaled
time in the interval 0 ≤ gt ≤ 20 with |z| = 2, θ = 0, g = 0.01ω0 and � = 0.09ω0 for a λ = 0, b λ = 2,
c λ = 5 and d λ = 10, respectively

density matrices of the atom and field:

SA (t) = SF (t) = −λ+ ln λ+ − λ− ln λ−. (6.8)

From (6.8), it is clear that SA (0) = 0 and the system of atom-field is separable at the
initial moment, which is also verified by Fig. 8a, b. Figure 8a–c have been devoted
to consider the entropy against the scaled time gt with g = 0.001ω0. Figure 8a, b
contain plots for |z| = √

30, 0 ≤ gt ≤ 6.5 and three different values of detuning
parameter � = 0, 0.05ω0, 0.09ω0 with the deformation parameters λ = 0 and λ =
20, respectively. Figure 8c contains only one plot for λ = 20, |z| = 0.6, 6 ≤ gt ≤ 6.5
and � = 0.09ω0. As it is seen from Fig. 8a–c, the time evolution of atomic entropy
has quasi-regular oscillatory behaviors in both resonant and off-resonant conditions
as well as in both λ-deformed and undeformed cases. A comparison between Figs. 4a,
b and 8a, b shows that the partial revivals and the partial entropies of the atom-field
system have the same oscillation patterns and are modulated in the Rabi frequency.
From the comparison of Fig. 8a with Fig. 8b, we conclude that the increase in λ causes,
in a given time interval, the number of the peaks for the quasi-oscillations of the von
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(a) (b) (c)

Fig. 8 Plots of the entropy versus gt with g = 0.001ω0 for a λ = 0, |z| = √
30, b λ = 20, |z| = √

30 and
c λ = 20, |z| = 0.6. The ranges of the scaled time for figures a–c are 0 ≤ gt ≤ 6.5 and 6 ≤ gt ≤ 6.5,
respectively

Neumann entropies as well as their height to increase. This, in turn, implies that more
entanglement occurs by increasing the deformation parameter λ. Furthermore, Fig. 8c
shows that entanglement between the two-level atom and para-Bose oscillator field
disappears periodically in time when we take into account appropriate values for our
parameters. For example, the entropy vanishes at gt = 6.433 where the fidelity is
around 1 [see red lines in Fig. 3c and the close-up of Fig. 8c]. This result is exactly in
linewithwhatwe have said earlier at the beginning of Sect. 5 regarding the relationship
between fidelity and entropy.

7 Concluding remarks and summary

In this work, we have studied TPJCM by using the para-Bose oscillator of order p =
2λ + 1 for the cavity field mode interacting with a two-level atom. The energy levels
and eigenstates of atom-field have been derived in terms of a λ-deformed version of
the quantum electrodynamics Rabi frequencies �

(λ,g)
n . The Rabi frequencies allocate

themselves two different desired energy levels, and we have analyzed and compared
them with each other, especially in a way that illustrates the role of the deformation
parameter λ. The dependence of one of these desired levels on λ is complex and its
variations with the detuning parameter for λ = 0 and 10 have been depicted and
compared in Fig. 1a, b. In continuation of our considerations, we have assumed that
the cavity field and atom are initially in an even cat state and excited state, respectively,
and have obtained a time-evolved atom-field state. In Fig. 2a–e, λ-dependency of the
interference patterns of the initial light field has been investigated and cleared by
evaluating the Wigner quasi probability distribution function. We have considered the
fidelity for some special values of λ in Fig. 3a–c and shown that the minimal and
maximal closeness of the states is dependent on the deformation parameter λ. The
height of the peaks in the quasi-oscillations of the fidelity in the case of off- and on-
resonance increases and decreases by increasing λ, respectively. We have compared
the quasi-periodic collapse and revival features in atomic population inversion of the
parity λ-deformed TPJCM in Fig. 4a, b for λ = 0 and 20. It has been shown that the
partial revivals of the Rabi oscillations in the case of resonance for λ = 20 become
less distinct with increasing the time, whilst those for the simple harmonic oscillator
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with λ = 0 are regular and complete. The partial revivals of out-of-resonance become
thinner and more periodic in case that λ does not vanish. Figure 5a–c indicate that
the evolution of atomic inversion for non-resonance case � = 0.05ω0 exhibit Rabi
oscillations with quasi-periodicity of the population revivals in both undeformed and
deformed models (λ = 0, 20, 1000), while after a certain time period, the revivals
completely disappearwith growing theγ -parameter of the decay term in the interaction
Hamiltonian. It has been found out that for a non-zero value of γ the oscillating
behavior of revivals in atomic population inversion at the initial moments just after
t = 0 resonates by increasingλ. The quasi-periodic plots of the (λ = 0, 1, 2)-deformed
Mandel parameters for the values� = 0,� = 0.05ω0 and� = 0.09ω0 of the detuning
parameter have been depicted respectively in Fig. 6a–c. It has been observed that the
sub-Poissonian character of the cavity field decreases with increasing λ from 0 to 2 in
both resonant and out-of-resonant cases. However, the statistics of the states become
more sub-Poissonian in the first case for both deformed and undeformed fields. The
time evolution of the squeezing parameters between cavity field quadratures x and p
oscillate with opposite phases but the same amplitudes. This has been found out from
Fig. 7a–d with the detuning parameter � = 0.09ω0 for λ = 0, 2, 5, 10, respectively.
Plots in Fig. 8a–c demonstrate the time evolution of the atomic entropy for deformation
parameters λ = 0 and λ = 20, with the values � = 0, 0.05ω0, 0.09ω0 as well as
� = 0.09ω0 for detuning parameter in Fig. 8a–c, respectively, so that all of them have
quasi-regular oscillatory behaviors. An important result is that the oscillation patterns
are the same for both partial revivals and the partial entropies of the atom-field system,
and are modulated in the Rabi frequency. Furthermore, the number of the peaks for the
quasi-oscillations of the von Neumann entropies as well as their height is increased
by increasing λ, which, in turn, is an indication for more entanglement.

References

1. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954). https://doi.org/
10.1103/PhysRev.93.99

2. Rabi, I.I.: Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652 (1937). https://doi.org/
10.1103/PhysRev.51.652

3. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semi-classical radiation theories with
application to beam maser. Proc. Inst. Elect. Eng. 51, 89 (1963). https://doi.org/10.1109/PROC.1963.
1664

4. Allen, L., Eberly, J.H.: Optical Resonance and Two-Level Atoms. Wiley, New York (1975)
5. Phoenix, S., Knight, P.L.: Establishment of an entangled atom-field state in the Jaynes-Cummings

model. Phys. Rev. A 44, 6023 (1991). https://doi.org/10.1103/physreva.44.6023
6. Shore, B.W., Knight, P.L.: The Jaynes-Cummings model. J. Mod. Opt. 40, 1195 (1993). https://doi.

org/10.1080/09500349314551321
7. Moya-Cessa,H., Buzek,V.,Kim,M.S.,Knight, P.L.: Intrinsic decoherence in the atom-field interaction.

Phys. Rev. A 48, 3900 (1993). https://doi.org/10.1103/PhysRevA.48.3900
8. Joshi, A., Xiao, M.: Atomic-coherence effect on the Jaynes-Cummings model with atomic motion. J.

Opt. Soc. Am. B 21, 1685 (2004). https://doi.org/10.1364/JOSAB.21.001685
9. Haroche, S., Raimond, J.M.: Exploring the Quantum: Atoms. Cavities and Photons. Oxford University

Press, Oxford (2006)
10. Meystre, P.: Elements of Quantum Optics. Springer, Berlin (1998)

123

https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1103/physreva.44.6023
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1103/PhysRevA.48.3900
https://doi.org/10.1364/JOSAB.21.001685


Two-photon Jaynes–Cummings model: a two-level atom... Page 19 of 21 398

11. Gea-Banacloche, J.: Collapse and revival of the state vector in the Jaynes-Cummingsmodel: an example
of state preparation by a quantum apparatus. Phys. Rev. Lett. 65, 3385 (1990). https://doi.org/10.1103/
PhysRevLett.65.3385

12. Phoenix, S.,Knight, P.L.:Comment on “Collapse and revival of the state vector in the Jaynes-Cummings
model: an example of state preparation by a quantum apparatus”. Phys. Rev. Let. 66, 2833 (1991).
https://doi.org/10.1103/PhysRevLett.66.2833

13. Quang, T., Knight, P.L., Bue, V.: Quantum collapses and revivals in an optical cavity. Phys. Rev. A 44,
6092 (1991). https://doi.org/10.1103/PhysRevA.44.6092

14. Fu, S., Luo, S., Zhang, Y.: Dynamics of field nonclassicality in the Jaynes-Cummings model. Quant.
Inf. Proc. 20, 88 (2021). https://doi.org/10.1007/s11128-020-02963-4

15. Sanchez, J.J., Narozhny, N.B., Eberly, J.H.: Theory of spontaneous-emission line shape in an ideal
cavity. Phys. Rev. Lett. 51, 550 (1983). https://doi.org/10.1103/PhysRevLett.51.550

16. Eberly, J.H., Narozhny, N.B., Sanchez-Mondragon, J.J.: Periodic spontaneuous collapse and revival in
a simple quantum model. Phys. Rev. Lett. 44, 1323 (1980). https://doi.org/10.1103/PhysRevLett.44.
1323

17. Puri, R.R., Agarwal, G.S.: Collapse and revival phenomena in the Jaynes-Cummingsmodel with cavity
damping. Phys. Rev. A 33, 3610(R) (1986). https://doi.org/10.1103/PhysRevA.33.3610

18. Alsing, P., Zubairy, M.S.: Collapse and revivals in a two-photon absorption process. J. Opt. Soc. Am.
B 4, 177 (1987). https://doi.org/10.1364/JOSAB.4.000177

19. Fang, M.F., Zhou, P.: Quantum entropy and entanglement in the Jaynes-Cummings model without the
rotating-wave approximation. Phys. A: Stat. Mech. Appl. 234, 571 (1996). https://doi.org/10.1016/
S0378-4371(96)00295-6

20. Puri, R.R., Bullough, R.K.: Quantum electrodynamics of an atom making two-photon transitions in
an ideal cavity. J. Opt. Soc. Am. B 5, 2021 (1987). https://doi.org/10.1364/JOSAB.5.002021

21. Gerry, C.C., Moyer, P.J.: Squeezing and higher-order squeezing in one-and two-photon Jaynes-
Cummings models. Phys. Rev. A 38, 5665 (1998). https://doi.org/10.1103/physreva.38.5665

22. Buzek, V., Quang, T.: Squeezing of spectral components in the Jaynes-Cummings model. J. Mod. Opt.
38, 1559 (1991). https://doi.org/10.1080/09500349114551721

23. Meschede, D., Walther, H., Muller, G.: One-atom maser. Phys. Rev. Lett. 54, 551 (1985). https://doi.
org/10.1103/PhysRevLett.54.551

24. Rempe, G., Walther, H., Klein, N.: Observation of quantum collapse and revival in a one-atom maser.
Phys. Rev. Lett. 58, 353 (1987). https://doi.org/10.1103/PhysRevLett.58.353

25. Brune, M., Schmidt-Kaler, F., Maali, A., Dreyer, J., Hagley, E., Raimond, J.M., Haroche, S.: Quantum
Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800 (1996). https://
doi.org/10.1103/PhysRevLett.76.1800

26. Knight, P.L., Milonni, P.W.: The Rabi frequency in optical spectra. Phys. Rep. 66, 21 (1980). https://
doi.org/10.1016/0370-1573(80)90119-2

27. Chaichian, M., Ellinas, D., Kulish, P.: Quantum algebra as the dynamical symmetry of the deformed
Jaynes-Cummings model. Phys. Rev. Lett. 65, 980 (1990). https://doi.org/10.1103/PhysRevLett.65.
980

28. Buzek, V.: The Jaynes-Cummings model with a q analogue of a coherent state. J. Mod. Opt. 39, 949
(1992). https://doi.org/10.1080/09500349214550981

29. de los Santos-Sanchez, O., Recamier, J.: The f -deformed Jaynes–Cummings model and its nonlinear
coherent states. J. Phys. B 45 015502 (2012). https://doi.org/10.1088/0953-4075/45/1/015502

30. Dehghani, A., Mojaveri, B., Shirin, S., Faseghandis, S.A.: Parity deformed Jaynes-Cummings model:
robust maximally entangled states. Sci. Rep. 6, 38069 (2016). https://doi.org/10.1038/srep38069

31. Buck, B., Sukumar, C.V.: Exactly soluble model of atom-phonon coupling showing periodic decay
and revival. Phys. Lett. A 83, 132 (1981). https://doi.org/10.1016/0375-9601(81)90042-6

32. Singh, S.: Field statistics in some generalized Jaynes-Cummingsmodels. Phys. Rev. A 25, 3206 (1982).
https://doi.org/10.1103/PhysRevA.25.3206

33. Sukumar, C.V., Buck, B.: Some soluble models for periodic decay and revival. J. Phys. A: Math. Gen.
17, 885 (1984). https://doi.org/10.1088/0305-4470/17/4/029

34. Gerry, C.C.: Two-photon Jaynes-Cummings model interacting with the squeezed vacuum. Phys. Rev.
A 37, 2683 (1988). https://doi.org/10.1103/PhysRevA.37.2683

35. Buzano, C., Rasetti, M.G., Rastello,M.L.: Dynamical superalgebra of the “dressed” Jaynes-Cummings
model. Phys. Rev. Lett. 62, 137 (1989). https://doi.org/10.1103/PhysRevLett.62.137

123

https://doi.org/10.1103/PhysRevLett.65.3385
https://doi.org/10.1103/PhysRevLett.65.3385
https://doi.org/10.1103/PhysRevLett.66.2833
https://doi.org/10.1103/PhysRevA.44.6092
https://doi.org/10.1007/s11128-020-02963-4
https://doi.org/10.1103/PhysRevLett.51.550
https://doi.org/10.1103/PhysRevLett.44.1323
https://doi.org/10.1103/PhysRevLett.44.1323
https://doi.org/10.1103/PhysRevA.33.3610
https://doi.org/10.1364/JOSAB.4.000177
https://doi.org/10.1016/S0378-4371(96)00295-6
https://doi.org/10.1016/S0378-4371(96)00295-6
https://doi.org/10.1364/JOSAB.5.002021
https://doi.org/10.1103/physreva.38.5665
https://doi.org/10.1080/09500349114551721
https://doi.org/10.1103/PhysRevLett.54.551
https://doi.org/10.1103/PhysRevLett.54.551
https://doi.org/10.1103/PhysRevLett.58.353
https://doi.org/10.1103/PhysRevLett.76.1800
https://doi.org/10.1103/PhysRevLett.76.1800
https://doi.org/10.1016/0370-1573(80)90119-2
https://doi.org/10.1016/0370-1573(80)90119-2
https://doi.org/10.1103/PhysRevLett.65.980
https://doi.org/10.1103/PhysRevLett.65.980
https://doi.org/10.1080/09500349214550981
https://doi.org/10.1088/0953-4075/45/1/015502
https://doi.org/10.1038/srep38069
https://doi.org/10.1016/0375-9601(81)90042-6
https://doi.org/10.1103/PhysRevA.25.3206
https://doi.org/10.1088/0305-4470/17/4/029
https://doi.org/10.1103/PhysRevA.37.2683
https://doi.org/10.1103/PhysRevLett.62.137


398 Page 20 of 21 H. Fakhri et al.

36. Buzek, V.: Jaynes-Cummings model with intensity-dependent coupling interacting with Holstein-
Primakoff SU(1, 1) coherent state. Phys. Rev. A 39, 3196 (1989). https://doi.org/10.1103/PhysRevA.
39.3196

37. Buzek,V., Jex, I.: Emission spectra for the Jaynes-Cummingsmodelwith intensity-dependent coupling.
Quantum Opt. 2, 14 (1990). https://doi.org/10.1088/0954-8998/2/2/005

38. Buzek, V.: SU(1,1) squeezing of SU(1,1) generalized coherent states. J. Mod. Opt. 37, 303 (1990).
https://doi.org/10.1080/09500349014550371

39. Buzek, V.: Light squeezing in the two-photon Jaynes-Cummings model: far-off-resonant limit. Phys.
Let. A 151, 234 (1990). https://doi.org/10.1016/0375-9601(90)90762-D

40. Gerry, C.C., Welc, R.F.: Dynamics of a two-mode two-photon Jaynes-Cummings model interacting
with correlated SU(1,1) coherent states. J. Opt. Soc. Am. B 9, 290 (1992). https://doi.org/10.1364/
JOSAB.9.000290

41. Sukumar, C.V., Buck, B.: Multi-phonon generalization of the Jaynes-Cummings model. Phys. Lett. A
83, 211 (1981). https://doi.org/10.1016/0375-9601(81)90825-2

42. Greentree, A.D., Tahan, C., Cole, J.H., Hollenberg, L.C.L.: Quantum phase transitions of light. Nat.
Phys. 2, 856 (2006). https://doi.org/10.1038/nphys466

43. Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Strongly interacting polaritons in coupled arrays of
cavities. Nat. Phys. 2, 849 (2006). https://doi.org/10.1038/nphys462

44. Tavis, M., Cummings, F.W.: Exact solution for an N -molecule-radiation-field Hamiltonian. Phys. Rev.
170, 379 (1968). https://doi.org/10.1103/PhysRev.170.379

45. Dutra, S.M., Knight, P.L., Moya-Cessa, H.: Large-scale fluctuations in the driven Jaynes-Cummings
model. Phys. Rev. A 49, 1993 (1994). https://doi.org/10.1103/PhysRevA.49.1993

46. Sharma, J.K., Mehta, C.L., Sudarshan, E.C.G.: Para-Bose coherent states. J. Math. Phys. 19, 2089
(1978). https://doi.org/10.1063/1.523564

47. Sharma, J.K., Mehta, C.L., Mukunda, N., Sudarshan, E.C.G.: Representations and properties of para-
Bose oscillator operators. II. Coherent states and the minimum uncertainty states. J. Math. Phys. 22,
78 (1981). https://doi.org/10.1063/1.524756

48. Alderete, C.H., Rodriguez-Lara, B.M.: Quantum simulation of driven para-Bose oscillators. Phys. Rev.
A 95, 013820 (2017). https://doi.org/10.1103/PhysRevA.95.013820

49. Alderete, C.H., Vergara, L.V., Rodriguez-Lara, B.M.: Nonclassical and semiclassical para-Bose states.
Phy. Rev. A 95, 043835 (2017). https://doi.org/10.1103/PhysRevA.95.043835

50. Mojaveri, B., Dehghani, A., Jafarzadeh-Bahrbeig, R.: Excitation on the para-Bose states: nonclassical
properties. Eur. Phys. J. Plus 133, 346 (2018). https://doi.org/10.1140/epjp/i2018-12163-2

51. Calogero, F.: Solution of a three-body problem in one dimension. J. Math. Phys. 10, 2191 (1969).
https://doi.org/10.1063/1.1664820

52. Sutherland, B.: Exact results for a quantum many-body problem in one dimension. Phys. Rev. A 4,
2019 (1971). https://doi.org/10.1103/PhysRevA.4.2019

53. Fakhri, H., Dehghani, A., Mojaveri, B.: Approach of the associated Laguerre functions to the SU(1, 1)
coherent states for some quantum solvable models. Int. J. Quantum Chem. 109, 1228 (2009). https://
doi.org/10.1002/qua.21944

54. Dehghani, A., Mojaveri, B., Shirin, S., Saedi, M.: Cat-states in the framework of Wigner-Heisenberg
algebra. Ann. Phys. 362, 659 (2015). https://doi.org/10.1016/j.aop.2015.08.031

55. Brif, C., Vourdas, A., Mann, A.: Analytic representations based on SU(1, 1) coherent states and their
applications. J. Phys. A: Math. Gen. 29, 5873 (1996). https://doi.org/10.1088/0305-4470/29/18/017

56. Fakhri, H., Sayyah-Fard,M.: sl(2)-modules by sl(2)-coherent states. J.Math. Phys. 57, 091704 (2016).
https://doi.org/10.1063/1.4963171

57. Wanga, J.M., Fang, H.H., Xu, X.X.: Two-photon Jaynes-Cummings model interacting with the
squeezed vacuum state solved by dressed-state method. Optik 169, 180 (2018). https://doi.org/10.
1016/j.ijleo.2018.05.057

58. Rodriguez-Lara, B.M., Soto-Eguibar, F., Cardenas, A.Z., Moya-Cessa, H.M.: A classical simulation
of nonlinear Jaynes-Cummings and Rabi models in photonic lattices. Opt. Express 21, 12888 (2013).
https://doi.org/10.1364/OE.21.012888

59. Rodriguez-Lara, B.M.: Intensity-dependent quantum Rabi model: spectrum, supersymmetric partner,
and optical simulation. J. Opt. Soc. Am. B 31, 1719 (2014). https://doi.org/10.1364/JOSAB.31.001719

60. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic, San Diego (2000)
61. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315 (1994). https://doi.org/10.1080/

09500349414552171

123

https://doi.org/10.1103/PhysRevA.39.3196
https://doi.org/10.1103/PhysRevA.39.3196
https://doi.org/10.1088/0954-8998/2/2/005
https://doi.org/10.1080/09500349014550371
https://doi.org/10.1016/0375-9601(90)90762-D
https://doi.org/10.1364/JOSAB.9.000290
https://doi.org/10.1364/JOSAB.9.000290
https://doi.org/10.1016/0375-9601(81)90825-2
https://doi.org/10.1038/nphys466
https://doi.org/10.1038/nphys462
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRevA.49.1993
https://doi.org/10.1063/1.523564
https://doi.org/10.1063/1.524756
https://doi.org/10.1103/PhysRevA.95.013820
https://doi.org/10.1103/PhysRevA.95.043835
https://doi.org/10.1140/epjp/i2018-12163-2
https://doi.org/10.1063/1.1664820
https://doi.org/10.1103/PhysRevA.4.2019
https://doi.org/10.1002/qua.21944
https://doi.org/10.1002/qua.21944
https://doi.org/10.1016/j.aop.2015.08.031
https://doi.org/10.1088/0305-4470/29/18/017
https://doi.org/10.1063/1.4963171
https://doi.org/10.1016/j.ijleo.2018.05.057
https://doi.org/10.1016/j.ijleo.2018.05.057
https://doi.org/10.1364/OE.21.012888
https://doi.org/10.1364/JOSAB.31.001719
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1080/09500349414552171


Two-photon Jaynes–Cummings model: a two-level atom... Page 21 of 21 398

62. Goy, P., Raimond, J.M., Gross, M., Haroche, S.: Observation of cavity-enhanced single-atom sponta-
neous emission. Phys. Rev. Lett. 50, 1903 (1983). https://doi.org/10.1103/PhysRevLett.50.1903

63. Loudon, R.: The Quantum Theory of Light. Oxford University Press, New York (2000)
64. Masakuni, I.D.A.: Space-time description of collision and decay processes. Prog. Theor. Phys. 24,

1135 (1960). https://doi.org/10.1143/PTP.24.1135
65. Kleinert, H.: Particles and Quantum Fields. World scientific, Singapore (2016)
66. Walls, D.F.: Squeezed states of light. Nature (London) 306, 141 (1983). https://doi.org/10.1038/

306141a0

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1103/PhysRevLett.50.1903
https://doi.org/10.1143/PTP.24.1135
https://doi.org/10.1038/306141a0
https://doi.org/10.1038/306141a0

	Two-photon Jaynes–Cummings model: a two-level atom interacting with the para-Bose field
	Abstract
	1 Introduction
	2 The para-Bose oscillator algebra and its associated Lie algebra su(1,1)
	3 Two-photon Jaynes–Cummings model by a two-level atom interacting with the para-Bose field
	4 Time evolution of the atom-field states with the initial states of the even cat and excited for the field and atom
	5 Time evolution of the fidelity, atomic inversion and level damping
	6 Sub-Poissonian light, quadrature squeezing of the cavity field and von Neumann entropy
	7 Concluding remarks and summary
	References




