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Abstract
The unambiguous discrimination is a standard strategy of detecting linearly indepen-
dent quantum states and has many applications in quantum information processing.
In the standard unambiguous discrimination, the measuring operators contain two
types of measuring operators: the success operators and an inconclusive operator. It
is conventionally regarded that an inconclusive operator gives no more information
about the input states. In this paper, we propose a new unambiguous discrimination
by replacing the inconclusive operator by the correct operators, and thus, more infor-
mation about input states can be obtained. We take three examples to demonstrate the
efficiency of our detection scheme. Our scenario improves the standard unambiguous
discrimination.

Keywords State discrimination · Unambiguous discrimination · Optimal minimum
probability · Linearly independent states

1 Introduction

The quantum information encoded in a set of quantum states by a sender can be deliv-
ered to a receiver in a distance, who performs a suitable measurement to extract this
information. A proper measurement strategy is required when the receiver wants to
obtain information from nonorthogonal quantum states because those states cannot be
perfectly discriminated [1–3]. Quantum measurement strategies may be classified by
the constraints on the conclusive or inconclusive results. In quantum state discrimi-
nation (QSD), an inconclusive result indicates that the given quantum states cannot
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be definitely discriminated, unless quantum states are mutually orthogonal. The stan-
dard minimum-error discrimination (SMD) [4–12] is able to minimize the average
error of conclusive results without an inconclusive result. The standard unambigu-
ous discrimination (SUD) [13–24] and maximum confidence discrimination (MCD)
[25] strategies permit an inconclusive result and minimize individual errors associated
with the conclusive results. A general state discrimination strategy with a fixed rate of
inconclusive results (FRIR) was studied [26–32].

The SUD strategy was first proposed by Ivanovic, Dieks and Peres, i.e., the IDP
measurement [13–15]. The IDPmeasurement is constructed by two types ofmeasuring
operators: the success operators and an inconclusive operator. If the success operators
are measured, it gives deterministic result about the input states without errors. If an
inconclusive result is obtained, however, the detection is failure, or in other words, an
inconclusive result gives no more information about the input states.

The SUD scheme was first designed only in detecting a pair of two pure states
[13–16], and afterward, as a conventional scheme, it is applied to the case of N ≥ 3
quantum states. Up to date, its optimality is never proved. For the SUD scheme, it
is usually regarded that an inconclusive operator cannot give any information about
input states. Nevertheless, in investigating the performance of the SUD strategy on
the detection of three linearly independent states in Ref. [33], Peres, who proposed
the theory of positive-operator-valued measures (POVM) [34] and designed the SUD
scheme [15], perceptively found that the inconclusive answers still carry some infor-
mation. This implies that the SUD is optimal only for the detection of special, highly
symmetric quantum states, but not for general quantum states. In this paper, we design
a new unambiguous discrimination (NUD), which is expected to improve the SUD.
In the NUD, we replace an inconclusive operator by the correct operators and apply
to discriminating the two pure states, the three linearly independent symmetric states
[35], and the three real quantum states with the real overlaps among them by using a
POVM [34]. Our result shows that in detecting two states, the two correct operators are
actually reduced to the two inconclusive operators, and hence, the SUD is optimal for
discriminating two quantum states. But in detecting three linearly independent sym-
metric state and three real quantum states, except for the success operator, the correct
operators can also give some information about the input states. In particular, when
applied to third example, the NUD demonstrates a great improvement to the SUD.
Thus, we present a new strategy for the unambiguous discrimination. The IDP mea-
surement has many applications, such as quantum cryptography [36], entanglement
concentration [17], conclusive quantum teleportation [37], entanglement swapping
[38] via nonmaximally entangled channels and quantum tomography [39]. Therefore,
our strategy proposed may find its applications in quantum information processing.

This paper is organized as follows. In Sect. 2, we briefly review the SME strategy for
discriminating the two pure states and the SUD strategy applied to the three linearly
independent symmetric states. In Sect. 3, we introduce our NUD and demonstrate
three examples. The paper ends with a summary.
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2 SMD and SUD

The problem of quantum state discrimination can be briefly posed as follows: detect-
ing one of quantum states from a set of N known pure quantum states {ηi ; |ψi 〉}Ni=1,
described by the density operators ρ̂i = |ψi 〉〈ψi | and a prior probabilities ηi for∑N

i=1 ηi = 1. The original quantum ensemble may then be expressed as ρ̂ =
∑N

i=1 ηi ρ̂i . Generally, this problem can be solved by exploiting a POVM [34], where

the POVM element
{
�̂i

}N

i=1
must satisfy the following conditions:

�̂i ≥ 0,
N∑

i=1

�̂i = Î , (1)

where Î is the identity operator.
For the SME strategy, it is sufficient to define only one type of the measuring

operators
{
�̂i

}N

i=1
of correctly identifying the input states ρ̂i . The individual correct

and error probabilities are given according to

pci = Tr
(
ρ̂i�̂i

)
, ei =

N∑

j=1
j �=i

ei j =
N∑

j=1
j �=i

Tr
(
ρ̂i�̂ j

)
. (2)

The individual probabilities have explicitly physical meanings. When the input
state is ρ̂i , if �̂i is measured one can correctly known that the input state is ρ̂i with
the correct probability pci . When the input state is ρ̂i and if �̂ j is measured, how-
ever, one then erroneously regards the input state ρ̂i is ρ̂ j with the probability of

error ei j = Tr
(
ρ̂i�̂ j

)
. So the individual error probability of erroneously detect-

ing the state ρ̂i is ei = ∑N
j=1
j �=i

ei j . It is obvious that pci + ei = 1 because of

Tr
(
ρ̂i

∑N
j=1 �̂ j

)
= Tr

(
ρ̂i �̂i

)
+ Tr

(
∑N

j=1
i �= j

ρ̂i�̂ j

)

= 1. Associated with a prior

probabilities ηi for
∑N

i=1 ηi = 1, the average correct and error probabilities are con-
ventionally defined as

Pc =
N∑

i=1

ηi pci , Pe =
N∑

i=1

ηi ei , (3)

and they have the relation Pc+Pe = 1. For the detection of nonorthogonal quantum
states, it is oblivious that Pc < 1 and Pe > 0, or it will lead to the result of the perfect
detection of nonorthogonal quantum states. The task of the SME scheme is to find the
minimum of the average error probability Pe (or to maximize the value of Pc).
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To unambiguously discriminate a set of N linearly independent states {|ψi 〉}Ni=1,
the POVM elements of the SUD strategy consist of two types of measuring operators:

the N success operators
{
M̂i

}N

i=1
and one inconclusive operator Ô , satisfying with the

condition
∑N

i=1 M̂i + Ô = Î . The individual success and inconclusive probabilities
are given according to

Tr
(
ρ̂i M̂ j

)
= psiδi j , Tr

(
ρ̂i Ô

)
= qi . (4)

If the success operator M̂i is measured with the probability psi , then one can
unambiguously determine that the input state is ρ̂i without error. If an inconclusive
result occurs with the probability qi , however, the SUD fails, that is, one does not
learn which of the input states is given. In other words, the inconclusive result can
give no more information about the input states. These properties of the measuring
operators imply that the SUD is an error-free strategy, but sometimes will fail in
the case of an inconclusive result occurs. It is obvious that psi + qi = 1 because

of Tr
(
ρ̂i

(∑N
j=1 M̂ j + Ô

))
= Tr

(
ρ̂i M̂i

)
+ Tr

(
ρ̂i Ô

)
= 1. The average success

probability Ps and the average inconclusive probability Q are conventionally defined
as

Ps =
N∑

i=1

ηi psi , Q =
N∑

i=1

ηi qi , (5)

and the two probabilities have the relation Ps + Q = 1. In the SUD strategy, the
task is to minimize the value of Q (or to maximize the value of Ps).

We next show the performances of the SME and the SUD on the state detection. In
detecting the two pure states {ηi ; |ψi 〉}2i=1 with the overlap among them 〈ψ1 | ψ2〉 =
s ∈ [0, 1], by using the SMD strategy, the average correct probability, the well-known
Helstrom bound [4], is derived as

Pc = 1

2

(

1 +
√

1 − 4η1η2s2
)

. (6)

If using the SUD strategy, the well-known IDP measurement [13–15], the average
success probability is derived as [16]

Ps = 1 − 2
√

η1η2s. (7)

Consider the three linearly independent symmetric states in the form [35]

|ζ0〉 = c0|0〉 + c1|1〉 + c2|2〉,
|ζ1〉 = c0|0〉 + c1e

i 23π |1〉 + c2e
i 43π |2〉,

|ζ2〉 = c0|0〉 + c1e
i 43π |1〉 + c2e

i 23π |2〉, (8)
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with the normalization condition
∑2

i=0 |ci |2 = 1, and the overlaps among them are

〈ζ0 | ζ1〉 = 〈ζ1 | ζ2〉 = 〈ζ2 | ζ0〉 = ∑2
j=0

∣
∣c j

∣
∣2e2π i j/3 = seiα . When prior probabili-

ties are equal, ηi = 1
/
3, by using the SUD scheme, the upper bound of the average

success probability of detecting them reaches [33]

Ps ≤ 3 × min|ci |2. (9)

Thus, an average inconclusive probability is Q = 1 − Ps ≥ 1 − 3 × min|ci |2,
conventionally regarded to give no more information about the input states. In the
next section, we show that an inconclusive result may also extract some information
about the input states.

3 NUD

In the SUD scenario, an inconclusive result given by an inconclusive operator is
conventionally viewed as a completely useless one from which no more information
about the input states can be attained. In Ref. [33], Peres definitely pointed out that
the SUD is optimal only for the detection of some special, highly symmetric quantum
states, but not for general quantum states. In other words, in discriminating general
quantum states, an inconclusive operator is not suitable to be introduced. This implies
a new UD scheme is needed. In this section, we replace an inconclusive operator by
the correct operators and investigate the performance of our scheme in unambiguously
discriminating linearly independent quantum states.

The measuring operators of our new strategy consist of the success operators M̂i

and the correct operators �̂i , satisfying the following conditions:

M̂i , �̂i ≥ 0,
N∑

i=1

(
M̂i + �̂i

)
= Î . (10)

In the SUD, once the success operators
{
M̂i

}N

i=1
are defined, then an inconclusive

operator is determined as Ô = Î −∑N
i=1 M̂i correspondingly. Traditionally, the mea-

surement of an inclusive operator gives nomore information about the input states. But
it is not the case [33]. We replace an inconclusive operator by some correct operators.
Or in otherwords, in doing somathematically, an inconclusive operator that can give no
more information about the input states is decomposed as the correct operators that can
give some information about the input states, that is, Ô = ∑N

i=1 �̂i = Î − ∑N
i=1 M̂i .

Therefore, our strategy is a general SUD strategy.
For our purpose, the measuring operators must be satisfied with the following

constrains.

Tr
(
ρ̂i M̂ j

)
= psiδi j , pci = Tr

(
ρ̂i�̂i

)
, ei =

N∑

j=1
j �=i

ei j =
N∑

j=1
j �=i

Tr
(
ρ̂i �̂ j

)
. (11)
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The corresponding probabilities as defined in Sect. 2, such as the average success
probability Ps = ∑N

i=1 ηi psi , the average correct probability Pc = ∑N
i=1 ηi pci and

the average error probability Pe = ∑N
i=1 ηi ei , obviously have the two relations:

psi + pci + ei = 1, Ps + Pc + Pe = 1. (12)

In order to quantify the efficiency of the average correct probability of the NUD,
we introduce the definition of the relative average correct probability.

P(R)
c = Pc

Pc + Pe
= Pc

1 − Ps
. (13)

Where we have use the condition Ps + Pc + Pe = 1. We here give some remarks on
the NUD proposed. To unambiguously discriminate some sets of linearly independent
quantum states {ηi ; |ψi 〉}Ni=1 and in the case of the maximal average inconclusive
probabilities of the SUDandNUD strategies being equal, if the relative average correct
probability is P(R)

c > 1
/
N , then theNUDperforms better than the SUD. If the relative

average correct probability is P(R)
c = 1

/
N , however, theNUDis essentially equivalent

to the SUD (in this case, the correct operators are actually reduced to the inconclusive
operators).

We first consider the case of detecting two quantum states. For the two pure states
{ηi ; |ψi 〉}2i=1 with the overlap among them 〈ψ1 | ψ2〉 = s ∈ [0, 1], we define the
success operators M̂i = |mi 〉〈mi | and the correct operators �̂i = |πi 〉〈πi |, where the
corresponding states are defined as

|m1〉 =
√
ps1

1 − s2
(|ψ1〉 − s|ψ2〉), |m2〉 =

√
ps2

1 − s2
(|ψ2〉 − s|ψ1〉), (14)

|π1〉 =
√
pc1 − s

√
e2

1 − s2
|ψ1〉 +

√
e2 − s

√
pc1

1 − s2
|ψ2〉,

|π2〉 =
√
pc2 − s

√
e1

1 − s2
|ψ1〉 +

√
e1 − s

√
pc2

1 − s2
|ψ2〉. (15)

For i, j = 1, 2 and i �= j , it is ready to verify the properties of the individual

success probability psi = Tr
(
ρ̂i M̂i

)
and Tr

(
ρ̂i M̂ j

)
= 0 from Eq. (14), and the

individual correct probability pci = Tr
(
ρ̂i�̂i

)
and the individual error probability

ei = ei j = Tr
(
ρ̂i �̂ j

)
from Eq. (15). It can also verify that the sum of the measuring

operators is the identity operator, regardless of the explicit expressions of the input
states. Note that the probabilities are independent variables. So, the forms of the
measuring operators proposed are the most general ones.

Let us show the performance of our strategy on the two-state discrimination.
For the fixed values of the individual success probabilities pci , our task is then to
find the maximum of the average correct probabilities Pc = ∑2

i=1 ηi pci . Multiply-
ing 〈ψk | in the left-hand and |ψl〉 in the right-hand on both sides of the equation
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∑2
i=1

(
M̂i + �̂i

)
= Î , we get some constraints

ps1 + pc1 + e1 = 1, ps2 + pc2 + e2 = 1, (16)

√
pc1e2 + √

e1 pc2 = s. (17)

Our next task is then to find the maximal value of the average correct probabilities
Pc = ∑2

i=1 ηi pci under Eqs. (16), (17). By using the method of Lagrange multipliers,
when the individual correct probability is

pc1 =
a(aη1 + bη2)

(
aη1 + bη2 + √



)

− 2s2η2
√


 − 4as2η1η2

2

,

pc2 =
b
√



(
aη1 + bη2 + √



)

− 2s2η1
√




2

, (18)

where

a = 1 − ps1, b = 1 − ps2,


 = (1 − η1 ps1 − η2 ps2)
2 − 4η1η2s

2, (19)

the maximum of the average correct probability is obtained as

Pc = 1

2

[

1 − η1 ps1 − η2 ps2 +
√

(1 − η1 ps1 − η2 ps2)2 − 4η1η2s2
]

= 1

2

[

1 − Ps +
√

(1 − Ps)2 − 4η1η2s2
]

, (20)

as a function of the average success probability Ps = ∑2
i=1 ηi psi . Thus, the relative

average correct probability is given as

P(R)
c = 1

2

⎡

⎣1 +
√

1 −
(
2
√

η1η2s

1 − Ps

)2
⎤

⎦. (21)

If taking Ps = 0, i.e., psi = 0, our strategy can be reduced to the SMD strategy

[4–12] with the average correct probability Pc = P(R)
c =

(
1 + √

1 − 4η1η2s2
)/

2

given by Eq. (6). When the average success probability reaches the maximum value
Ps = 1 − 2

√
η1η2s given by Eq. (7), the relative average correct probability is

P(R)
c = 1

/
2, which gives no more information about the input states. In this case, the

correct operators in fact turn to be the two inconclusive operators, and our scheme is
reduced to the SUD. Therefore, it is indeed that in the case of detecting two states,
the correct operators are unnecessary to be introduced. For discriminating the three
linearly independent quantum states, however, the situation is much different.
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We now consider the detection of the three linearly independent symmetric states
given by Eq. (8). For convenience in the following calculations, we assume ηi =
η j = 1

/
3. Due to the symmetry of the three symmetric states, it will have psi =

ps j = ps = Ps and pci = pcj = pc = Pc. In order to detect the three symmetric
states, we will need three success operators M̂i = |mi 〉〈mi | and three correct operators
�̂i = |πi 〉〈πi |, where the corresponding states are defined as

|m0〉 =
√
Ps
3

(
1

c0
|0〉 + 1

c1
|1〉 + 1

c2
|2〉

)

,

|m1〉 =
√
Ps
3

(
1

c0
|0〉 + 1

c1
ei

2π
3 |1〉 + 1

c2
ei

4π
3 |2〉

)

,

|m2〉 =
√
Ps
3

(
1

c0
|0〉 + 1

c1
ei

4π
3 |1〉 + 1

c1
ei

2π
3 |2〉

)

, (22)

|π0〉 =
√
c20 − Ps

/
3

√
3c0

|0〉 +
√
c21 − Ps

/
3

√
3c1

|1〉 +
√
c22 − Ps

/
3

√
3c2

|2〉,

|π1〉 =
√
c20 − Ps

/
3

√
3c0

|0〉 +
√
c21 − Ps

/
3

√
3c1

ei
2π
3 |1〉 +

√
c22 − Ps

/
3

√
3c2

ei
4π
3 |2〉,

|π2〉 =
√
c20 − Ps

/
3

√
3c0

|0〉 +
√
c21 − Ps

/
3

√
3c1

ei
4π
3 |1〉 +

√
c22 − Ps

/
3

√
3c2

ei
2π
3 |2〉. (23)

With the help of the explicit expressions of the measuring operators above, it is
ready to verify the set of the measuring operators fulfill the completeness condition,
∑2

i=0

(
M̂i + �̂i

)
= Î . It is also easily to calculate the corresponding individual prob-

abilities, Ps = Tr
(
ρ̂i M̂ j

)
= Psδi j and Pc = Tr

(
ρ̂i�̂i

)
=

(∑2
j=0

√
c2j − Ps

/
3
)2
.

Thus, the relative average correct probability is easily obtained.

P(R)
c = 1

3

2∑

i=0

⎡

⎣ηi

(
2∑

j=0

√
c2j − Ps

/
3

)2
⎤

⎦

1 −
2∑

i=0
ηi Ps

. (24)

Therefore, Eq. (24) is reduced to

P(R)
c = 1

3

(
2∑

i=0

√
c2i − Ps

/
3

)2

1 − Ps
. (25)

Due to that the overlaps among the three linearly independent symmetric states are
all equal, 〈ζ0 | ζ1〉 = ∑2

j=0

∣
∣c j

∣
∣2e2π i j/3 = seiα , s ∈ [0, 1] and α ∈ [0, 2π), without
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loss of generality, we assume that 1 > cmax = c0 ≥ c1 ≥ c2 = cmin > 0. Therefore, it
is immediately to obtain the upper bound of the average success probability Ps ≤ 3c22,

given by Eq. (9), from the inequality
√
c2i − Ps

/
3 ≥ 0. This result agrees with the

previous contribution [35].
For the SUD strategy, the maximal value of the average success probability reaches

Ps = 3c22, so that the minimal value of the average inconclusive probability is Q =
1− Ps = 1− 3c22 = (

c20 − c22
) + (

c21 − c22
)
(we have used the relation

∑2
i=0 c

2
i = 1),

which is conventionality regarded to give no more information about the three lineally
independent symmetric states. Let us look the efficiency of our scheme. When Ps =
3c22, the relative average correct probability is given as

P(R)
c = 1

3

(
2∑

i=0

√
c2i − Ps

/
3

)2

1 − Ps
= 1

3

(√
c20 − c22 +

√
c21 − c22

)2

(
c20 − c22

) + (
c21 − c22

) ∈
[
1

3
,
2

3

]

. (26)

By exploiting the explicit expression (26), some analysis can be given. When c0 =
c1 > c2, the relative correct probability is maximal p(R)

c = 2
/
3. When c0 > c1 > c2,

the relative correct probability is maximal p(R)
c ∈ (

1
/
3, 2

/
3
)
. When c0 > c1 = c2, it

has p(R)
c = 1

/
3, giving no more information about the three symmetric states. In the

case of p(R)
c = 1

/
3, the correct operators turn to be the three inconclusive operators.

Let us find the so-called special, highly symmetric quantum states in 3 dimensions,
conjectured in Ref. [33]. Exploiting the conditions of c0 > c1 = c2 and

∑2
i=0 c

2
i = 1

can immediately derive the value of the overlap among three symmetric quantum states
seiα = ∑2

j=0

∣
∣c j

∣
∣2e2π i j/3 = 1 − 3c21 ∈ (0, 1), which implies α = 0. When α �= 0, it

always has p(R)
c > 1

/
3, implying that the performance of the NUD is better than that

of the SUD.
We next consider the third example. Suppose the three equiprobable quantum states

takes the following forms:

|ξ1〉 = |0〉, |ξ2〉 = 1

3
(|0〉 + 2|1〉 + 2|2〉), |ξ3〉 = 1

3
(|0〉 + 2|1〉 − 2|2〉), (27)

with the real overlaps among them

s23 = s1 = 1

9
, s12 = s3 = 1

3
, s31 = s2 = 1

3
. (28)

By using Eqs. (9)–(11) given in the contributions in Ref. [21] and taking the indices
as i = 2, j = 3 and k = 1, the average probabilities of the SUD are derived as
Q = 10

/
27 and Ps = 1 − Q = 17

/
27. For our NUD, we design the measuring

elements of the POVM as follows:

m̂†
1 =

√
27

81
|0〉 − 1

2
√
3
|1〉, m̂†

2 =
√
7

4
|1〉 +

√
7

4
|2〉, m̂†

3 =
√
7

4
|1〉 −

√
7

4
|2〉,

123



4 Page 10 of 12 W.-H. Zhang et al.

π̂
†
1 =

√
52

81
|0〉 +

√
13

18
|1〉, π̂

†
2 =

√
1

81
|0〉 + 1

36
|1〉 + 1

4
|2〉 π̂

†
3

=
√

1

81
|0〉 + 1

36
|1〉 − 1

4
|2〉. (29)

It can be verified without any difficulty that
∑3

i=1

(
m̂†

i m̂i + π̂
†
i π̂i

)
= Î and

Tr
(
ρ̂i m̂

†
j m̂ j

)
= 0 for i, j = 1, 2, 3 and i �= j . The average success and correct

probabilities are obtained as

Ps = 1

3
Tr

(∑3

i=1

(
ρ̂i m̂

†
i m̂i

))

= 17

27
, Pc = 1

3
Tr

∑3

i=1

(
ρ̂i π̂

†
i π̂i

)
= 20

81
. (30)

Thus, the relative average correct probability is calculated as

P(R)
c = Ps

1 − Ps
= 2

3
. (31)

There is a reasonable conjecture that the upper bound of the probability of correctly
detecting pure quantum states from a set of N equiprobable D-dimensional quantum
pure states is D

/
N (i.e., the upper bound can reach unit for linearly independent pure

states). By using the SUD, the inconclusive probability gives no more information
about the input states; but if exploiting our NUD this part of the probability still
contributes the relative average correct probability to. In comparison with the SUD,
therefore, the third example illustrates the best efficiency of the NUD. It may be
conjectured that in detecting a set of equiprobable linearly independent quantum pure
states, when the average success probabilities are maximal (equal to that of the SUD),
the maximum of the relative average correct probability may reach. This is another
type of special, equiprobable highly symmetric linearly independent quantum states.

Finally, we would like to give some remarks. Our NUD obviously improves the
SUD. It is an interesting topic in quantum information processing that how to extract
maximal information in detecting a set of linearly independent quantum states. Here,
the optimality of the detection strategy means to obtain the maximal information
accessible allowed by quantum mechanics. The optimality of the IDP measurement is
never proved. In this paper, we are also unable to prove the optimality of our strategy,
but it is indeed superior to the SUD strategy. Maybe, more efficient scenario than
our NUD may be proposed in future. The IDP measurement has many applications,
and therefore, our strategy proposed may find its applications in quantum information
processing.

4 Summaries

We have investigated the detection of a set of linearly independent quantum states. A
new scheme of the unambiguous discrimination is proposed. The measuring operators
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consist of the success and correct operators. Our strategy can extract more information
than the SUD strategy. We take three examples to show the efficiency of our strategy.
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