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Abstract

The optimal state-independent lower bounds for the sum of variances or deviations of
observables are of significance for the growing number of experiments that reach the
uncertainty limited regime. We present a framework for computing the tight uncer-
tainty relations of variance or deviation via determining the uncertainty regions, which
are formed by the tuples of two or more of quantum observables in random quantum
states induced from the uniform Haar measure on the purified states. From the analyt-
ical formulae of these uncertainty regions, we present state-independent uncertainty
inequalities satisfied by the sum of variances or deviations of two, three and arbitrary
many observables, from which experimentally friend entanglement detection criteria
are derived for bipartite and tripartite systems.
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1 Introduction

The uncertainty principle, apart from serving as a hallmark of the quantum world,
has wide applications and implications in both theoretical and practical investigations
of quantum mechanics. Ever since its birth in 1927 [1], various uncertainty relations,
as concrete realizations of the uncertainty principle, have been extensively and inten-
sively studied. In particular, recently, the state-independent uncertainty relations have
attracted a lot of attentions [2—7]. Whether deeper principles underlie quantum uncer-
tainty and nonlocality has been listed as one of the challenging scientific problems on
the occasion of celebrating the 125th anniversary of the academical journal Science
[8]. Thus, it is of fundamental significance to explore the intrinsic uncertainty of given
quantum mechanical observables due to its connections with entanglement detection
[9-14] and quantum nonlocality [15].

The most celebrated uncertainty relation was initially conceived for position and
momentum observables by Heisenberg [1]. A general form was the Robertson—
Schrodinger uncertainty relation [16—19]:

1
(A,A4)* (8, B)* > 2 ({{Ao, Bo})j, + (4, B)).

where (X), = Tr (Xp) is the expectation value of X with respect to the state p,
(A,A)? = ((A%), — (A)2) is the corresponding variance of A, Ag = A — (A)),
By = B - (B),, {A,B} = AB + BA and [A,B] = AB — BA denote the
anti-commutator (symmetric Jordan product) and commutator (anti-symmetric Lie
product), respectively.

Although the above uncertainty relation captures certain features of the uncertainty
principle in a very appealing, intuitive and succinct way, the state-dependent lower
bound and the variances capture limited information of uncertainty for given pair
of observables. Recently, Busch and Reardon-Smitha proposed to consider the uncer-
tainty region of two observables A and B instead of finding bounds on some particular
choice of uncertainty functionals [20], which provides apparently more information
about the uncertainty of the two observables A and B. Later some Vasudevrao et al
also followed this line and conducted specific computations about uncertainty regions
[21].

In this paper, we use the probability theory and random matrices to study the uncer-
tainty regions of two, three and multiple qubit observables. The probabilistic method
and random matrix theory have many useful applications such as in evaluating the aver-
age entropy of a subsystem [22-25], studying the non-additivity of quantum channel
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capacity [26] and random quantum pure states [27-31]. Motivated by these works, we
derive analytical formulas concerning the expectation and uncertainty (variance) of
quantum observables in random quantum states. We identify the uncertainty regions
as the supports of such probability distribution functions. From these analytical results
on uncertainty regions, we present the optimal state-independent lower bounds for the
sum of variances or the deviations, which are just the optimization problems over the
uncertainty regions. The paper is organized as follows. In Sect. 2, we present our main
results, their proofs are developed in Sect. 3.

2 Main results

A qubit observable can be parameterized as A = apl 4+ a - o, (ag, @) € R*, where 1
is the identity matrix on the qubit Hilbert space C?,ando = (o1, 02, 03) is the vector
of the standard Pauli matrices. The two eigenvalues of A are Ay (A) = ag+ (— DF|a|
(k}: 1,2)with|a| = (af+a§+a§)l/2 > (O thelength of the vectora = (ay, a2, az) €
R-.

Any qubit state p can be purified to a pure state on C> @ C2. The set of pure states
on C? ® C? can be represented as {U|®) : U € U(C* ® C?)} with |®) € C* ® C?
any fixed pure state, and U(C?> ® C?) the full unitary group on C> ® C?, endowed
with the standard Haar measure. Denote D(C?2) the set of all quantum (pure or mixed)
states on C2. The probability measure dut(p) can be derived from this Haar measure
by taking partial trace over C? of the pure states on C* @ CZ.

Let Ay (k = 1,...,n) be a set of qubit observables. The uncertainty region
UpA,,... a4, of an n-tuple of uncertainties A Ay is defined by

{(ApAl,...,ApAn)eRgO:peD(CZ)}. @.1)

Here, R>¢ = [0, +00). From (2.1), tight state-independent variance and deviation
uncertainty relations can be obtained,

n n
> (ApA* > min >t (2.2)

k=1

n
AyAr > min Xk- (2.3)
k; oAk > >

X1sees X)) EUAAY . AAY P

We first investigate the uncertainty regions for a pair of observables A = apl+a-o
and B = byl + b - o with (ag, @), (by, b) € R*. Denote

__({a,a) {a,b)
Tap = ((b,a) (b,b))'
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Lemma 2.1 The uncertainty region Una A = {(ApA, AyB) € IR2>0 :peD (Cz)}
of A and B is determined by the following inequality:

P+ 1a Py 421 @b 1 (al =62 —y2) > al1bP + (@b’
(2.4)

where x € [0, |a ], y € [0, | b|] and {a, b} is linearly independent.

From Lemma 2.1, the boundary curve of the uncertainty region U/aa aB is easily
obtained. Clearly, the boundary curve equations are independent of (ag, bp). Denote
0 the angle between a and b. We see that, for |a | =|b| =1,

x4y 42 cos0] /(1 = x2)(1 = y2) > 1 + cos? 6. 23)

In particular, for6 € { %, &, & 3w In Z 1, our result covers that in [3,20] perfectly.

Obviously, Uaa.ap = U(0) is determined only by the angle 6 between a and b if
la| = |b| = 1, and U(H) = U — 0) for 6 € [0, m]. Moreover, we can also
get the volume (the area for the two-dimensional domain) of the uncertainty region
U@®) @ € [0, /2],

vol(U(0)) = %(n —30)sinf —cosh + 1. (2.6)

Hence, in general, vol(UUaa aB) = |a||b|vol(U4(F)). From (2.6), we have that the

maximal uncertainty region is attained at 6y ~ 0.741758 < 7%,

max vol[U/(6)] = vol[U(6y)] = 0.572244.
0€[0,7/2]

From the uncertainty region given in Lemma 2.1, we can derive the optimal state-
independent lower bound for the sum of variances (A,A)? + (A, B)? and the sum of

standard deviation A, A + A, B.

Theorem 2.2 The sum of the variances and the standard deviations satisfy the follow-
ing tight inequalities with state-independent lower bounds,

(854 + (8 B)? > min {27 + )7 1 (r.)) € Una,ap} = min(Tap) 27)

and

la x b|

ApA+ A B >min{x+y:(x,y) €Unaap} = (2.8)

max(lal,|b])’

where Amin(T q.p) stands for the minimal eigenvalue of T 4 p.
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Fig. 1 The uncertainty region L{a o, A g in Lemma 2.1 and those points where the minimizations in Theo-
rem 2.2 are achieved

In particular, if |a| = |b| = 1, (2.7) and (2.8) are reduced to

(ApA)? + (A, B)?

> 1—|{a,b)|,
ApA+ A,B > |

axb].

Note that [A, B] = AB — BA =2i(a x b) -0, |{a,b)| = |cosf|and |a x b| =
| sin 6 |. One recovers the uncertainty relations [20],

1
(ApA* + (A,B)Y? > 1— /1 - 7 I1A. B] 112,

1
ApA+ 2B > |4 Bl

As an illustration, in Fig. 1 we plot for any fixed angle 6 € (0, %) the uncer-
tainty region Uaa ap given in Lemma 2.1 and those points where the mini-
mizations in Theorem 2.2 are achieved, where the coordinate of the red point is
(W (1 —cos0)/2, /(1 —cos)/2), and the coordinates of the two purple points are
(sin#, 0) and (0, sin #), respectively.

We now turn to the uncertainty region for a triple (A, B, C) of qubit observables
A=al+a-0,B =>byl+b-0and C = ¢yl + ¢ - o with (ag, a), (by, b),
(co,¢) € R* and {a, b, c} being linearly independent. Denote u, ¢ (x,y,2) =
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((al? =xDH2 (b 1> —y)'2 el c]* = 22)!/?) and

(a,a) (a,b) (a,c)
Tape=| (b,a) (b,b) (b,c)
(c,a) {c,b) {c,c)

Let y, 8 and « be the angles between @ and b, a and ¢, b and ¢, respectively, where
a, B,y € (0, ). Set ¢(t1, 12, 13) = cos(t]) — cos(f2) cos(t3). We have the following
result:

Lemma 2.3 The uncertainty region Uaa AB.AC = {(ApA, ApyB,A,C) € R3>0 :
pE D((Cz)} is determined by the following inequality:
Uepe, (X, 9. 2T ul,  (x,y.2) <1, (2.9)

where €p, €. € {£1} are independent of each other, which is given by the union of
solutions of the following inequalities if |a| = |b| = |c| = 1:

|07 BT =2 + epte by -2 |1 - 32
+ep(B, v, )V (1 —22)(1 —x?)
+% [sinz(a)xz +sin?(B)y” + sinz(y)zz] > 1 — cos(a) cos(B) cos(y12.10)

under the conditionsa < f+y, B <y+oa, v <a+PBandoa+p+y < 2w, where
€ =€, € {£1}.

In particular, e.g., for @ = B = y = 7, the uncertainty region is just {(x, y,z) €
R;O :x2 4+ y2 422 > 2} N[0, 173, Clearly, our equations include the results in [20]
as special cases, see Fig. 2.

Analogously, the state-independent lower bound for (A pA)Z +(A,B )2 +(A,C )2
can be obtained from (2.10).

Theorem 2.4 The variances of the observables A, B and C satisfy

(A,OA)2 + (ApB)2 + (ApC)2 > min{xz =+ y2 =+ ZZ : (x, v, Z) c uAA,AB,AC}
=Tr (Ta.e) — *max(Tape): @.11)

where Amax (T ¢.p.¢) stands for the maximal eigenvalue of T g p c.

We analyze the state-independent lower bound of (2.11) in two cases:

) Ifa =6 =y =0 € [0,7/2], then the three eigenvalues of T, are
given by {1 — cosf, 1 — cosf, 1 + 2 cos 6}, namely, the maximal eigenvalue is
Amax(Tqpe) = 1 4 2cos6. Therefore, the uncertainty relation (2.11) simply
becomes (A,A)? + (A,B)? + (A,C)? = 2(1 — cos 0);
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(a) The uncertainty region for U (7r/2,7/2,7/2) (b) The uncertainty region for U(7t/4,7w/4, 7/4)
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(€) The uncertainty region for U(57/8,57/8,57/8) (d) The uncertainty region for U(7t/2, /3, 7t/4)

Fig.2 The uncertainty regionsUn g AB,Ac = U(a, B, y) for atriple of qubit observables A = ap1+a-o,
B=bgl+b-candC =cypl +c-o,where |a|=|b|=|c| =1, (a,b) =cosy, (a,c) =cosp and
(b, c) = cosa

) f g =y = % and o € [0, /2], the three eigenvalues of T4 p . are {1,1 —
cosa, 14-cos ar}. The maximal eigenvalue iS Amax (T ¢.p,c) = 1+cos «. Inthis case,
the uncertainty relation (2.11) becomes (A,)A)z+(A,OB)2-|-(A,)C)2 > 2—cosa.

We consider now the uncertainty regions for multiple qubit observables. For

an n-tuple of qubit observables (Aj,...,A,), where A; = a(gk)ll + a; - o
with (a(gk),ak) e R k = 1,...,n, denote Tq,..a, = (ai, aj)). Note that

{ai,as, ...,a,} has at most three vectors that are linearly independent. Without
loss of generality, we assume {ai, @y, a3} is linearly independent. The rest vec-
tors can be linearly expressed by {ai, a2, a3}, a; = ka1 + kpa> + «3as, for
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some coefficients «;;, [ 4,---, = 1,2,3. Set ue epe5(x1,%x2,X3) =
<€1\/Ia1 2 —xl,fz\/laz |2 — X3, 63\/Ia3 & —x32>

Lemma 2.5 The uncertainty region Una,,... A, of an n-tuple of qubit observables
(A1, ..., Ay) is determined by (X1, ..., X,) € UnA,.... AA, Satisfying

uEl €2, G’;(-xl x2» 'x3)TLl1 aj, a3u61 €, Eg(-xl -x2 -x?))
2
la; > — x} = Z, 1 KIj€j |a,~| _XJZ'
VIi=4,...,n wheree, € {1}, x, € [0, |ar |l k=1,...,n.

Correspondingly, we have the following result:

Theorem 2.6 The variances of the observables Ay(k = 1, ..., n) satisfy
n n
Z(ApAk)2 = min leg =Tr (Ta1 ..... a,,) - AmaX(Tal,...,an),
=1 (X150 Xn) EUAA, ... 0 A =1

(2.12)

where Amax (T g,

----------

As applications of our state-independent uncertainty relations, we consider the
entanglement detection. As shown in [9,11,12], every state-independent uncertainty
relation gives rise to a nonlinear entanglement witness. We consider the tripartite
scenario: three parties, Alice, Bob and Charlie perform local measurements A;, B;
and C;, where i = 1, 2, 3, on an unknown tripartite quantum state p4pc = p, acting
on C?> ® C? ® C?, respectively. Their goal is to decide if p is fully separable or not.
They measure the composite observables M; (i = 1, 2, 3) given by

M;=A;®1pc+14®B; @1c+ 158 ®C;.
Note that

(ApMi)2 =2(Tr (A; ® Bipap) — Tr (A;pa) Tr (B;pp))
+2(Tr (B; ® Cippc) — Tr (Bipp) Tr (Cipc))
+2(Tr (A; ® Cipac) — Tr (A;jpa) Tr (Cipc))
F(Ap A + (Apy Bi)? 4 (A, C)>.
If p is of the form, p = ps ® pp ® pc, then A%M,’ = A,%AAI' + A%BB,' + A%CC,'.
Thus, for fully separable states p = Y, pxpr, where px = pr.a ® pk.B ® Pk,c, We
get

A%Ml + A%Mz—}— A%Mg
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> ;e (Af,le + A2 M+ Af)kMy,)
k
- Z Pk (Af”w\Al + Af’k,AAz + sz)k,AA3>
k
+ Z Px (A%’k,BBl + A%k.BBZ + A%k.BB3)
k
+ Z Pk (AfMCl + Aﬁkccz + Afwcg,) .
k

Denotem)) = minfx2+y2+22: (x, y,2) € Unax,.ax>.ax3} X = A, B, C, the opti-
mal uncertainty bounds given by Theorem 2.4 for the observable triples (A, A3, A3),

(B1, By, B3) and (Cq, C», C3), respectively. We have
Theorem 2.7 If a tripartite state p is fully separable, then
A2My+ N2Ma+ A2M3 > m) +m) +m). (2.13)

From Theorem 2.7, one has that if (2.13) is violated, p must be entangled. In
addition, denote

3 _ . 2 2 2
myy _perlnjl(?:z) (Ale +ApM2+ApM3),

the uncertainty bound for the observable triple (M|, M>, M3). We have that if p is
not fully separable, then

mQ +m§ +ml > A2My + A2My + A2M3 > m).

Instead of three measurements, we may also consider two measurements with three
observables each. Denote mg) =min{x? 4+ y%: (x,y) € Urx,,ax,} (X =A,B,C)
the optimal uncertainty bounds for the observables pairs (A1, A2), (B1, B2) and
(Cq, Cy), respectively, given by Theorem 2.2. Similarly, we get

2 2 2
A2My + A2Mo > mS) +ml) +mE. (2.14)
If Eq. (2.14) is violated, p must be entangled. Let mgfl) be the uncertainty bound for

the observable pair (M|, M7). We can draw a new criterion that p is entangled for
mf) —l—mg) —l—m(g) > A?)Ml + A%Mz > mggl).

In [12], the authors considered the entanglement detect for bipartite scenario with
two measurements and obtained that

A2My+ A2Mo > mG) +m). (2.15)
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From Theorem 2.7, we can also consider the entanglement detect for bipartite systems
with three measurements,

M, =A,1+1®B;, i=1,2,3.

We have
A2M |+ A2Mo + A2M5 > mf) + ) (2.16)
where mf) and mg) are the ones given in Theorem 2. The criterion (2.16) is a new

one that is different from (2.15) given in [12].

We have investigated uncertainty relations of quantum observables in a random
quantum state, by deriving explicitly the probability distribution densities of uncer-
tainty for two, three and multiple qubit observables. As the supports of these density
functions, the uncertainty regions are analytically derived. The advantage of the prob-
abilistic approach used in the paper is that it gives a unified framework from which
one can obtain the correlations (PDF) among uncertainties of multiple observables
and derive analytically the uncertainty regions. Various state-independent uncertainty
relations may be derived from the uncertainty regions. Throughout this paper, we have
focused on qubit observables. Our framework may be also applied to the case of qudit
observables with random mixed quantum state ensembles.

3 Proofs of main results
3.1 Proof of Lemma 2.1

The proof of Lemma 2.1 will be essentially recognized as a series of Propositions 3.1—
3.8. Note that in the proof of Lemma 2.1, we directly use Propositions 3.7 and 3.8,
which are in fact based on the previous Propositions 3.1-3.6.

Proposition 3.1 (Harish—Chandra—Itzykson—Ziiber integral [32]) Let A and B be n xn
Hermitian matrices with eigenvalues A (A) < -+ < A(A) and M(B) < --- <
A (B), then

det (ez)\i(A)?»j(B))

"GOV AV ((B))

/ o2 Tr(AUBUT) dttaar (U) = C (Vz € C\{0))
U(C”)

where ditaar is the Haar measure on the unitary group U(C"), C,, = [];_, ' (k), and
V(A(A)) = ngiqgn (Aj(A) — A;(A)) is the so-called Vandermonde determinant.

Any state p € D(C"), the set of all quantum states (pure or mixed) on C”, can be
purified to a bipartite pure state on C" ® C". The set of pure states on C" ® C" can be
represented as {U|®) : U € U(C" ® C")} with |®) € C" ® C" any fixed pure state
and U(C" @ C") the full unitary group on C" ® C", which is endowed with the standard
Haar measure. The induced measure du(p) on D(C") is derived from the above Haar
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measure by taking partial trace over C" of pure states on C" ® C". By spectral decom-
position theorem, for generic p € D(C"), we have p = Udiag(A{, ..., Ap)U T, where
0< A <o <Ay < ka?:]M =1,and U e U(C"). Let A = (A1, X2, -+ , Ay)
and V(A) =[] I<i< jgn()“ j — Ai). The Haar-induced probability measure du(p) on
D(C") can be factorized into the following product measure form

du(p) = dv(X) x diHaar (U),
where [33],forO < A; <--- <A, <1,
n n
dv) =Ny -8(1= 30 ) V26 [T dny
j=1 j=1

is the Lebesgue measure supported on the simplex
n
Pyi= 300 Az k) :0<hi<hp<--<i<l,) aj=1¢,

where

C'(n+ DI (n?)
[T/Z6T G —j+ D —j)’

n =

and §(-) is the Dirac delta function. As usual,

(6, f) = /R 5() f(x)dx = £(0),

and §,(x) = 6(x — a), (84, f) = f(a). Denote the zero set of a function g : R — R
asZ(g) ={x e R:g(x) =0}.1f g : R — Ris afunction with continuous derivative
such that Z(g) N Z(g') = @, then [34]

1
5(gx) = Y ok

xX€Z(g)
Proposition 3.2 Let A be a non-degenerate positive matrix with eigenvalues 11(A) <

- < Ap(A) and A(A) = (A (A), ..., Ay (A)), then

/ e T AN d ) (p) = / ]_[d)\ V(1) det(e M (D)
D(C) (— 1a)(2)V(A(A)) Py
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Proof Since du(p) = dv(X) x dptgaar(U), it follows from Proposition 3.1 that

/ e_iaTr(Ap)d[L(p) :/ dU()») dMHaar(U)e—i(le‘(AUAUT)
D(C") Py Un)
det (efiot)ui (A))»j)
—C, / dv(h)—s
Py (—ie) V(A (A)VR)

Cy det (e~ieki(A)%))
SR — / ) ———7
(—ia)(z)V(k(A)) P, V(X

dr; V(L) det (e 1@hi (A2
a wt)(z)V(A(A)) /P+H () de ( )

which is the desired identity. O
Any qubit observable A can be parameterized as
A=aqyl +a-o, (ao,a)eR4,

where 1 is the identity matrix on the qubit Hilbert space C% and o = (01,02, 03) is
the vector of the standard Pauli matrices

01 0—i 10
n= () = (20) #=(05)

Without loss of generality, we assume that our qubit observable A has simple eigen-
values

(A =ao+ (—D¥lal, k=1,2

with |a | = ,/a% + a% + a% > 0 being the length of vector @ = (ay, a2, a3) € R3.

Proposition 3.3 For the qubit observable A as above, we have

sin(la ) —|a|cos(lal)
la '

/ e*iTr(Ap)dM(p) — 3€7ia0
D(C?)

Proof From Proposition 3.2, we have

2
—iTr(Ap)gq / da; 8 %)V L) det (e i (A
/D<<c2>e o) = 1)V(A(A)) 1_[ ,; _/) (1) det(e )

3 (1 o—ilao—la i p—iao—lal)(1-11)
= m/o dAr( =2A10) | itaoHlahir p=ifao+a(1—Ap)

sin(Ja|) —|a|cos(|a I).

— 3e—iao
la |
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This completes the proof. O

Now, we derive the probability density functions of uncertainties of observables.
We first derive the probability density of the mean value for an observable. Let A
be a non-degenerate Hermitian matrix with eigenvalues A1(A) < --- < A,(A) and
MA) = (A1(A), ..., Ay(A)). The probability density function of the mean value
(A), =Tr (Ap) is defined as

fia(r) = / 8(r — (A)p)du(p).
D(C")

By using the integral representation of the Dirac delta function, 6(r) = lﬂ f dael™
we have

1 . _
fiay(r) = _/ dae‘m/ dp(p)e—i@TrAn)
2 R D(C?)

By combining Propositions 3.1 and 3.2, we have

flay(r) = m/( i) @], (a)da,

where

Iy(a) = / l_[ d)\ V(L) det(e_ml)L (A))\,)

Py j=1
Since the integration is over the simplex Py, which can be represented as

0<k1<%
kk<kk+1<W» k=1,---

hp =1 = Gt 4+ Aue)

using the last identity to replace A, in the integrand V(A)det (e~ 1% (A%))
det (ZZ: 1 A};_le_i‘“‘k)‘fm)), the integral [, («) is reduced to

1=y +thgy_2)

1 = n
n n—1 2 . .
I(a) = / i / dig - / dxn_ldet(Zx;jle*“w*.f“‘)).
0 A

An—2 k=1

Proposition 3.4 For a given qubit observable A with simple spectrum M(A) =
(A1(A), A2(A)) with A1 (A) < X2(A)), the probability distribution density of (A),
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Tr (Ap), where p is resulted from partially tracing over a subsystem C* of a Haar-
distributed random pure state on C> @ C?, is given by

fiay(r) (r = 2(A)(A2(A) —r) (H(r — A1(A)) — H(r — A2(A))) ,

3
V3(?»(A))

where H is the Heaviside function. The support of fiay(r) is the closed interval
[A1(A), 22(A)].

Proof In particular, when n = 2, we have C, = 1 and N, = 6, therefore

i o=k (A)hy p—iaki (A)(1=A1)

2
D(er) Z/O da(1 —2’\1)‘ e 1@k (A1 p—iaha(A)(1=h1)

2
= 1 —idg (A B ok
C (2(A) — A1 (A))2a? k;e HPA(2(A) — A (A)a + (=1D72),

and
2 .
f ) = / doar3e 3 T (1 (4) — do(A))e + (— R0,
2nv3(,\(A)) 2

Let () = a3e"@ Y7 e @0y (A), —iz(A))a + (—1)F2i) and H(-) be the
Heaviside function, then

/Rw(a)dot = fo (p(@) + ¢(—a))da
=21 (A2(A) = r)(r — A1(A)) (H(r — 21(A)) — H(r — 22(4))),

and we come to the result. O

Proposition 3.5 For any qubit observable A = agl + a - o, (ap,a) € R4, the prob-
ability distribution density of the uncertainty A, A, where p is resulted from partially
tracing over a subsystem C? of a Haar-distributed random pure state on C*> @ C2, is
given by

3x3

2laPVl]alP - x2

Proof From 8(r2 — ro) = Mol ro i &(r —rg) + 6(r + rg)), we conclude that

faalx) =

WV
=

S(x* — (ApA)%) = %(a(x + ApA) +8(x — ApA)) = %m — A A),  x
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For any complex 2 x 2 matrix A,

(TrA)? — Tr (A?)
5 ,

A2 = Tr (A) A —det(A)1,  det(A) =
and thus
5 (x2 - (ApA)z) .y <x2 + det(A) — Tr (A) (A), + (A)f)) .

Consequently,

faalx) = / du(p)d(x — ApA)
D(C?)

= Zx/ du(p)8 (x* — (A,A)?)
D(C?)

= Zx/ drs ((x* + det(A)) — Tr (A) r + r2)/ dp(p)8(r — (A),)
R D(C?)

=2x f drfiay (18 (x* + det(A) — Tr (A) r +r?)
R

A2(A)
= 2x / drfiay ()8 (x% + A1(A)ra(A) — (A1 (A) + A2 (A)r +1?)
21(A4)

12x A2(4)

= VoA ), w dr(r — 21 (A)(A2(A) — )8 (x* = (r = M (A) 02(A) — 1)),
1

where we used Proposition 3.4 in the last equality. For A = apl + a - o, we have
V(A(A)) = 2|a|. For any fixed x, let g, (r) = x2 = (r — 21 (A))(M(A) — r), then
8. (r) = 8rgx(r) = 2r — 21(A) — A2(A). For fixed x, the equation g, () = 0 has two
distinct roots

\/2—_2
re(x) = A(A) + A2(A) :I:2 V=(A(A)) —4x —ap /| al? -2

in [A1(A), 2 (A)] if and only if x € [0, V (L(A))/2). In this case,

8 (gx(r)) =

r—(x)»

1 1
— S+t ————8
[gL o | T Telr— o) |

which implies that

12x (r-(x) = 21(A)(A2(A) — - (x))
faax)

V3 (1(A)) 2ry(x) — 21(A) — 22(A)
(r—(x) = 21(A) (A2 (A) — r(x)))

M (A) + 12(A) — 2r_(x)
243 3x3

V3(M(A))VV (L(A))? — 4x2 "2 laPViaP —x2
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This completes the proof. O

Proposition 3.6 Ler Jy(z) = % fon cos(z cos 0)dO be the Bessel function of first kind.
Then, we have the following identity:

NT=AZ df A < 1

/°° sing — g cosgq
0 0, iflal=1.

5 Jo(rg)dg = {
q
Proof Denote
® sing — g cosq
D) = q—zj()()‘Q)dq (V1 € R).
0

Clearly, @ (1) is even and

*® sing — g cos sin g |
®(0) =/ I I g = 2 Ty,
0 q q 0

Without loss of generality, we assume that A > 0, then

> /sing
() = —/ d( ) Jo(Aq)
0 q

sing | * sing
R R R Tc)
q 0 o 4

9
—1- A/ S 1 ug)dg,
0 q

where Ji(z) = % fon do cos 6 sin(z cos #). Noting that

® sin 1=vi=22 5 c 0,1
/ th (Ag)dg = { - ©. 1
0

i, A€ [1,+00)
we get
1—22, if [A] < 1;
P(h) = .
0, if [A]2>1.
This completes the proof. O

Recall that a support of a function f, defined on the domain D(f), is defined by

supp(f) = {x € D(f) : f(x) # 0}.

That is, the closure of the subset of D(f) in which f does not vanish. From this, we
see that supp(fa4) = [0, |a|].
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Before we study the probability distribution density
faaaB(x,y) = f 8(x —ApA)S(y — ApB)du(p)
D(C?)

of the uncertainties (A, A, A, B) for a pair of qubit observables A, B, we first consider
the joint probability distribution density

fia,)(r,s) = / 8(r — (A)p)8(s — (B)p)dp(p)

D(C2)

of the mean values ((A),, (B),), where p is resulted from partially tracing over a
subsystem C? of a Haar-distributed random pure state on C> @ C2.

Proposition3.7 Let A = agl +a -0, B=byl +b -0, (ao, a), (by, b) € R* be a
pair of qubit observables. Let

;o _(laa (b
@b =\ (b,a) (b,b) )"
(i) If {a, b} is linearly independent, then

T s =—— /1 —w r,s)H(l —w r,s)),
f( )5( )( ) 2 %et(Ta’b) A,B( YH ( A,B( )

where wa g(r,s) = \/(r —ap, s — bo)T;Ib(r —ag, s — by)".
(ii) If {a, b} is linearly dependent, without loss of generality, we assume thatb = k -a
for some nonzero k, then

fiay.y(r,s) = 8((s — bo) — «k(r — ao)) fia)(r),
where fiay(r) is from Proposition 3.4.

Proof By using integral representation of delta function twice, we get

f(A),(B) (f", S) / d(xdﬂei(m_Hﬂ) / dl/L(,O)e_l Tr((otA+ﬁB)p)’

CQ2n)? g D(C2)

and by Proposition 3.3, we have get

/ T @ABBIO) 4 ) ()
D(C?)

—itapa-+bop) sin(|aa + Bb|) — |aa + Bb|cos(|aa + Bb )

= 3e 3
|aa + Bb |
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Thus,

= i((r—ap)a+(s—bo)B)
fiay.B)(r,s) = (271)2/ dadpBe 0 0

sin(|aa + Bb|) — |aa + Bb|cos(|aa + Bb |)
|aa + Bb ?

(i) Noting that {a, b} is linearly independent if and only if T, j is invertible, it fol-
lows that |«a + Bb| can be rewritten as |aa + Bb| = /&% + B2 with (@, B)" =

b(a B)'. Let (7,5) = (r, s)Ta 5 then d&dB = /det(T 4 p)dadf, or equiv-

alently, dadf = —dad,B By change of variables (a, 8) — (&, B), we
Y Ty y g

have

dadfel(F—a0a+G=bo)p)

3
fia).B)(r,5) = EESENCET ) /RZ
sin <\/&2 + 52) - \/&2 + B2 cos <\/6?B2>

3 :
(V+5)

Furthermore, using the polar coordinate @ = g cos6, 8 = gsinf, g > 0,0 €

[0, 2], then wa g(r,s) = \/(r —dg)? + (5 — bo)2. Noting the fact that

2 )
/ lweostvsind)qg — 27 Jo(vu? +v2) (Yu,v € R),
0

where Jo(z) = % foﬂ cos(z cos 8)d0 is the Bessel function of first kind, we have

sing — q cosq

Jiay.m)(r,s) = (2n)2\/m /

2 -
/ g deeiq[(f—ﬁo) cos 0+(5—bg) sin 0]
0

sin g —qcosq

Jo

zn,/det(T,, ») /
(q\/ (F— o) + G — Bo)2>

sing — q cosq

Jo(q - waB(r,s))dg

2n,/det(Ta b) ./

= ———\/1 — ) . )H( - ).
znmm( wAB(r.5))
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Here in the last equality, we used Proposition 3.6.

(ii) If {a, b} is linearly dependent, without loss of generality, we assume thatb = « - a
for some « # 0. Performing change of variables («, 8) — (a’, B’) where @’ =
a + kB and B’ = B, the Jacobian is given by

aa (22 |1

3@ ) 01 =1=#0.

Now,

T R2

sin(|a||cx’|)—|a||a/|cos(|a||a/|)
lalP o
1

_ b / (it r=ao)B g7 o 3 / do el r—a0)e’
R 21 R

T 2m
sin(lal|o'|) —lal|a|cos(lal|a’])
lal o'

3 1 /
=8((s —bg) —Kk(r —ag)) x — / do/ el —a0)e
2 R

sin(lal|e'|)—lal|e |cos(al|a’|)
(lalle])?

where

3 o i a0’ sin(| a | }o/ |) —la| |oz/ |cos(|a | |a’ |)
27 Jr (lalle])?
3 sin(lal|e'|)—lal|a |[cos(al|a’])

00
_ 2 do’ (ei(r—ao)o/ + e—i(r—ag)o/)
27 Jo (lalla'])?

oo - F—a, - r—a 1 —
_ 3 / o g n e"lT\Oq sing qcosqdq
2r lal Jo 7’

6 /OO (r—ao )sinq—qcosq
= dg cos q 3
2 |a] Jo la] q-

Due to the fact that

00 sing — g cosq (1 —p?, if|p
/0 quOS(PQ)T= 4

we obtain

i/ o oi(r—aoe S04 o' ) —lal|e |cos(lal|e’|)
27 Jr (lalla’ ]’
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3(r—(ag—la))((@+laD—r) ¢ |r—agl
_ dal’ At S
0, if% >1

and use the fact that |a | = w and ag = %Tr (A) = M, we have

3 o/ i’ sin(| a | |a’ |) —|a| |a’ | cos(|a | |a/ })
27 Jp (lalla')3

(r = 21(A)(A2(A) = ) (H(r — 11 (A)) — H(r — 22(A))) = fia)(r).

3!
T V3MA))

Therefore,

fiay, By (r,s) = 8((s — bo) — k(r — ao)) fray(r),
where f(4)(r) is from Proposition 3.4, which is the desired result. m]

Proposition 3.8 The joint probability distribution density of the uncertainties (A, A,
A, B) for a pair of qubit observables A = apl +a -0, B = byl + b -
o, (ag,a), (by, b) € R*, where {a, b} is linearly independent, and p is resulted from
partially tracing a subsystem over a Haar-distributed random pure state on C*> @ C?,
is given by

2xY Y jeqay fray, ) (r4 (x), ;)
Jaar =2 -y

where ri(x) = ap £ +/|a|*> — x2,54(y) = by VIb 1> — y2, and fiay.By(-, ") is

given in Proposition 3.7.

faaap(x,y) =

’

Proof Noting that
8(x? — (A,A)%) = 8(x? — (r — A1 (A) (A2 (A) — 1)) = 8(gx (1)),

where g, () = x2 — (r — A1 (A))(A2(A) —r). Similarly, §(y? — (A, B)?) = §(hy(s)),
where hy(s) = y2 — (s — 21 (B))(X2(B) — 5). Consequently,

faaaB(x,y) = 4xy f du(p)8(x? — (A,A)*)8(y* — (A, B)?)
D(C?)
= 4xy /R drdsfia). () (r, )8(8x(r))8(hy (),

where fi4),()(r, s) is determined by Proposition 3.7. Noting that

8 (gx(r)) =

r—(x)»

1 1
- St ————8
[gr o | T Telr— o) |
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8 (hy(s)) = s F

I EE— O
1y (s— ()

[ (5 )

we obtain

(rrs) T80 + 80— + 8050y
afal =) 1b P —y?)

)
8(8x(r)d(hy(s)) =

Based on this observation, we get
Xy
Jaal =25 72— y?) it

faanp(x,y) = fiay. B (riy sj).

Itiseasily checkedthatwy p(ry, s4+) = wa B(r—, s—), wa, B(r+,s—) = wa, p(r—, s4),
therefore

Z fiay, (i, sj)

i jelt)
=2 )" fia).) (. 8)),

je{x}
and

2xy 3 jeqay i), By (r4. 87)

faaap(x,y) = S5 ,

Jaar—xab P -y

which is the desired result. O

Proof of Lemma 2.1 With Proposition 3.8, we now make an analysis of the support
of faa,ag. In fact, due to the relation between faa ap and fia) (B). the support of
faa,ap can be identified by the support of f4) () wWhich can be seen from Proposi-
tion 3.7 (i),

supp( f(ay.(B)) = {(r, s) eR* 1 wa p(r,s) < 1} .

Note that faa ap(x,y) is defined on the first quadrant R2>0, if xy > 0, then
faa.aB(x,y) = 0if and only if

Z fiay.B) (ri(x), s;(y)) =0,

i,je(+}

ie., fiay,(B)(ri(x), s;(y)) = Obecause f4), (p)is anon-negative function. This means
that all four points (r4(x), s+(y)) are not in the support of f4) (p). Therefore, the
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uncertainty region (i.e., the support of faa ap) of A and B is given by the following
set:

Una,ap = supp(faa,ap) = D, , U D, .

where, via uc(x, y) = <\/ la|® — x2, €/ 1b 2 — yz)’

D;b = {(x,y) € Réo N0, |all x[0,|b]]) : ug(x,y)lelbul(x, y) < 1} , €€ {£}

This is what we want. Furthermore, we have

DS, = {(x,y)eRéomqo,mu X [0, 1611 : 1517 2? + |a|? y?

126 (a, by (a2 — DB =) > |a|2|b|2+<a,b>2}.

Therefore, the uncertainty region Upaa ap = [(ApA, AyB)eR: :peD ((C2)}
of A and B is determined by the following inequality:

161> x* + al”y* + 2] (a, b) |\/(|a|2—x2>(|b|2—y2> >lal’|b]* + (a.b)*,
where x € [0, |a|]and y € [0, | b]]. O
3.2 Proof of formula (2.6)

Since the U (0) is defined by

U®B) = {(x,y) €0, 17 : x>+ y2+2cosf | /(1 —x2)(1 —y2) > 1+cos29}.

The volume (i.e., the area for 2D domain) of the uncertainty region U/ (0) (6 € [0, 7 /2])
is calculated as follows

1
volUU(0)) = E(n —36)sinf — cosO + 1.

Indeed, if 6 € [0, /4], then U () becomes

< xcosf +sinfv1 —x2;

0 < x <sinf, —xcosf +sinfy1 —x2<y
2L y< xcosh +sinfy1 —x2;

sinf < x <cosB,xcosh —sinfv 1 —x
cosf < x < 1,xcos0 —sinfyv'1—x2<y<1.

Hence,

V/1—x2sinf+x cosd cos@ pxcos@++/1—x2sind
/ dy + / / dy
X

sin 6
vol(UU(0)) = / dx
0 /1—x2 sinf—x cos cos@—~/1—x2sin6

sin 0
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1 1
+/ dx/ dy
cos@ xcosf—~/1—x2sinf

1
= z(n —30)sinf —cos6 + 1.

If 6 € [n/4, 7 /2], then U (0) becomes

0<x<cosf,—xcosh +sinhv1—x2<y<xcosh +sinhv 1 — x%;

cosf < x <sinf, —xcosf +sinfv/1 —x2 <y <
sinf < x <1,xcosf —sinfv1 —x2 < y<1,
implying that

cos 6 /1=x2 sin 6+x cos 6
vol(U(6)) —/ dx/ dy

V1=x2 sin6—x cos 6

sin 6 1 1
+/ dx/ dy+/ dx/ dy
cosf /1—x2sinf—x cos @ sin 6 xcos@—+/1—x2sinh

1
= 5(71 —36)sinf — cos 6 + 1.

In summary, we get the desired result. We remark here that for general lengths | a |
and | b |, we immediately get that vol(Ldaa.aB) = |a || b | vol(U(9)).

As some representatives, in Fig. 3, we plot the PDFs (probability density functions)
over their respective uncertainty regions (6) for 6 € {%, 7, R =}, and the probability

density functions on U/(6).

3.3 Proof of Theorem 2.2

Based on the proof of Lemma 2.1, we now present the proof of Theorem 2.2.

Proof of Theorem 2.2 Let v/|a |> — x> = X, /| b|*> — y2 = Y in Lemma 2.1, where
X €1[0,]al]l,Y €[0,]|b]|] due to the fact that x € [0, |a|],y € [0, |b]|]. Thus, we
get that

min {x? +y%: (x,y) € UAA,AB}

= Tr (T4p) — max [X2 Y2 (XL AN T, X, £Y) < 1} .

It is easily seen that the objection function xz 4+ yz, where (x, y) € Uaa,AB, attains
its minimal value on the boundary curve 0l/p 4 a g Of the uncertainty region Uaa AB;
this also corresponds to the objection function X2 4 Y? attains its maximal value on
the boundary curve (X, £Y)T (X, +Y)" =1.

Denote by A (T'4.5)(k = 1, 2) the two eigenvalues of the matrix T, 5. By Spectral
Decomposition Theorem, we get that there exists orthogonal O € O(2) such that

@ Springer



357 Page24of42

L. Zhang et al.

1
|
|
1
1
|
1
1
|
1
|
|
1
1
|
1
1
|
1
|
|
|
|
1
1
|
1
1
|
1
|
|
1
1
L

DA
02 04 0.6 0.8 1.0

(3) The uncertainty region U(7/8)

"
1
1
1
|
1
1
|
1
|
|
|
|
1
1
|
1
1
|
1
|
|
1
1
L

02 04 0.6 0.8 1.0

(C) The uncertainty region U (71/4)
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(e) The uncertainty region U (7r/ 2)
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(f) The pdf on U(7/2)

Fig.3 Plots of the uncertainty region ¢/ (6) and the pdf on it for a pair of qubit observables A = agpl +a-o
and B =bol + b -0, where |a|=|b| =1 and (a, b) = cos(9)
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Top = Odiag(A1(Tap), 22(Ta)) 0"
Now, let (X', Y)T = O(X, £Y)". Then,

(X, £V T, (X, £Y)" = (X', Y)diag(h[ ' (Tap), 2 (Tap)) (X', Y)Y
x"? y'?
= + .
M(Tap)  22(Tqp)

Because these rotations do not change the length of vectors, we get that

max{X? + Y2 : (X, £Y)T, (X, £Y) =1}

— max {X2 + @) (X, DT, LK, £1)T = 1}

72 /2 X/z Y/z
=max{ X +Y' " : + =1;.
M (Tap)  22(Tap)

Again, the above optimization problem becomes

min {x2 192 (xy) € auAA,AB} =Tt (Tap)

2 2 X/2 Y/2
—max{ X "+ Y " + =1
M(Tap)  22(Tap)

Therefore,

min {x2 4+ y2 1 (v, ) € Unaan} = Tr (Tap) = man(Tap)

implying that

1
(ApA)" + (ApB)* = hmin(Tap) = 5 (|a P+1b* - \/(Ia P —1b*)2+4a, b>2) :

Next, we show the second inequality concerning standard deviations. We recall that

the boundary curve of uncertainty region /a4 aAp is given by

P+ 1a Py 421 (@ b) 1 (al —x2)(b12 —y2) = a5+ (a.b).

Let 6 be the angle between a and b. It is easily seen that such boundary curve inter-
sects two points, respectively, with two axis, whose coordinates are (| @ | sin 8, 0) and
(0, | b | sin ). It suffices to consider the part of such boundary curve over the interval

[0, | a | sin 8], whose equation is, indeed, given by

b
y= H (—cos@x+sin6\/|a|2 —x2>.
a
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Then, the optimization problem min {x + y : (x, y) € Unaa,ap} is equivalent to that
choosing minimal positive real number R such that the straight line, described by
the equation x + y = R, and the part of the boundary curve over the closed interval

[0, |a]|sin®@], intersects only one point. Clearly, vy = %

(— cos@x+sin9\/|a|2—x2>, where x € [0, |a|sin@], is a concave func-
tion, which means the part of the boundary curve on [0, |a|sinf] should be

above the straight line x + y = R. This situation appears if and only if the
straight line x + y = R gets through one point whose horizontal or vertical
coordinate is min(|a |sin®, |b|sinf) = min(Ja],|b]|)sinf. Therefore, R =

min(|a |, | b|)sin @, which can be also rewritten as

min(la |, |b)max(la|,[b]) .~ |axb]

R =min(la|,|b|)sind = =,
max(|al,|b]) max(|a|,|b])

Finally, we obtain that

' la xb]|
APA+APB>m1n{x+y1(x’y)€uAA’AB}=m’

This completes the proof. O

3.4 Proof of Lemma 2.3

The proof of Lemma 2.3 will be also recognized as Propositions 3.9 and 3.10. In order
to present the proof of Lemma 2.3, we next derive the joint probability distribution
density

Fanapac( y,2) = / o BB = 8, A3 = A, B~ 4,C)
D(

of the uncertainties (A,A, A, B, A,C) of the three qubit observables A, B, C. For
this purpose, we first derive the joint probability distribution density

fiay.By.c)(r, s, 1) =/

du(p)S(r — (A)p)d(s — (B)p)d(t — (C)p)
D(C2)

of the mean value ((A),, (B),, (C),) of A, B, C, where p is resulted from partially
tracing a subsystem over a Haar-distributed random pure state on C> ® C?.

Proposition 3.9 For three qubit observables A = agl+a-o, B =byl+b-o, C =
col + ¢ -0 (ao. @), (bo. b), (co. ¢) € R*, let

(a,a) (a,b) {(a,c)
Type=| (b,a) (b,b) (b,c)
(c,a) {c,b) {c,c)
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(i) Ifrank(T4p.c) =3, i.e., {a, b, ¢} is linearly independent, then

_ 31 +sign(l —wya,Bc(r,s,1)))

A o (r,s, t) =
i mr.io)( 87 /det(Tqp.c)

3 .
— e, Jw r,s,t) <1
4nJdet(Tapo) ifwa.B.c( )

3 .
T Jw r,s,t)=1
87 /det(Ta p.o) ifwaB.c( )
0, ifwa,c(r,s, 1) >1

—1
a,b,c
(ii) Ifrank(T, p.c) = 2, without loss of generality, we assume that {a, b} are linearly

independent and ¢ = k4 - a + kp, - b for some k, and kp with kqkp # 0, then

wherewa p.c(r,s,t) = \/(r —ag,s —bg,t —co)T (r —ag,s —bo,t —cp).

fiay, By, ) (r, s, 1) = 8((t — co) — ka(r — ag) — kp(s — bo)) fray,(B)(, 5).

where fiay,(B)(r, s) is from Proposition 3.7.
(iii) Ifrank(T 4. p.c) = 1, without loss of generality, we may assume thatb = kp,-a, ¢ =
Kea - @ for some kKpg and keq With kKpgkeq 7 0, then

fiay.By.(c)(r, s, 1) = 8((s — bo) — kpa(r — ap))8((t — co) — kea(r — ao)) f1a)(r),
where fia)(r) is from Proposition 3.4.

Proof (i) If rank(7T, p..) = 3, then T, p . is invertible. Using the integral represen-
tation of delta function, we have

1 . _ (o, B,y)
fiay. By 5.0 = —3/ dadﬁdye‘(’““’”’”/ anipye” T(5).
8 R3 D(Cz)

where dadBdy is the Lebesgue volume element in R3, §*#7) = ¢ A+BB+yC.
By Proposition 3.3, we have

—iTr(Ss@B:¥) .
/ dupe” ((SP70) _ 3 pmitanactopteon)
D(C?)

sin(Jaa + Bb+ yc|) — |aa + Bb+ yc|cos(Jaa + Bb+ yc|)
|aa + b+ yc |’ '

Consequently,

fiay,.B), ) (r, s, 1)
-2 / dadpdy (" —ae+G=bo)f+(—co)y)
8]'[3 R3

sin(Jaa + Bb+ yc|) — |aa + b+ yc|cos(Jaa+ Bb+ yc|)
|aa + b+ yc |’ '
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1

Let (&, B, 7)" = TZ,b,c(a, B, )7, then dadBdy = det™ 2 (Tap.c)dadpdy, and

—iTr(§@Bv)
/ du(p)e” r(s¢70)
D(C2)

— 3 i(Goa+bof+co7)
Sin( 5‘2+/§2+)72) _\/&24-524-772005 (\/&2+,32+)72>

(&24_’3‘2 n 372)

[SI[o%)

Let (r s, t) =(r,s, t)T and ((3(), I;o, 50) (ag, bo, C())T i then

a,b,c

i((F—a0)+G—bo)f+F-a)7)

fla. .o (r s, 1) = dadfdye

/m /R3
sin (a2 + 2 + 172> SNCEY e Ny s

3
(&2 L J;z)z

X

Denote Zo = (7 — do, § — by, 7 — ¢p) and Z = (&, 5, ), the last integral can be
rewritten as

d5ei02) ysin|z| —[z]cos|Z|
]R3

1z
h w0 (G0 @) SING — ¢ COS
:/ dlICIZ/ das(1 — |ﬁ|)614(zo,u>#
0 R3 4
:foodqw/ dis(l — [@ |)eeEon)
0 q R3

where dzZ = d@dfdy is the Lebesgue volume element in R3. From

/ das(1 — | i [)e'?\%-® :4n/dMHaar(,;)eiq<zo.a>
R3

1 . -
=47 x l/ dreiq‘20|f=4nw
271 g1zl

where, in the second equality, we used the probability density function of inner product
of two random unit vectors, a result has been already obtained in [35], we obtain
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/ dzeil0d) sin|z]|—]z]|cos|Z]| _ 47 [ sin(|Zo | g)(sing — g cos q)
R3 1z 1Zo | Jo q°
:n2|20|—||50|—1|—Sign(|50|—1).
120 |
Therefore,

3(zol—llzo| — 1] —sign(|zo | —1))

fiay.By,c)(r, s, 1) = !
81 det(Ta,b,c) | 20 |

Noting that |zo| = \/('7 —a0)2 + (5 —bo)2+ (f — )2 = wapc(r.s.1), we
finally get

3(1 +sign(l — wq, B,c(r,5,1)))

(B).(C)(r, s, 1) =
fla).(B).(c) 87/det(T 4. p.c)

(i) In this case,

fiay, By, c)(r, s, 1)

_ (23)3/ dadBdy e!(r—aatG—bo)f+(t—=co)y)
T R3

» (sin | (@ + ykag)a+ (B + ykp)b |
| (@ + yka)a + (B + yp)b P
_ﬂwua+yMﬂr+w+wmwb0
| (@ +yka)a+ (B +yip)b|* )

Let (¢, B, ') = (@+yKq, B+ykp, v), thenthe Jacobian of (a, B, y) — (&/, B/, y')
is given by

10«

8 /, /’ / a

daC&JLQ>:01“:ﬂ¢Q
(o, B,y) 001

Thus, we have

L[
Fiay.m).€) (8,0 = / eV (= Kar=a) =5 =bo)) gy

R
/ da/dp i ((r—ae/ +s=b0)B)
2n)? Jr2
sin|o’'a+ B'b|—|a'a+ B'b|cos|a'a+p'b]
l'a+p'b P
=8 ((t — co) — ka(r — ao) — k(s — bo)) fia).B)(r,5),

X

where f(4),(B)(r, s) is from Proposition 3.7.
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(ii1) In this case, we have

fiay,By,c)(r, s, 1)

_ (ZL)S / dadﬂdyei((rfao)o&(s7b0)/3+(1*00)1’)
g R3

sin(alle+kpaf + keay ) =@l + kpaf + Keay [0S (1@ ] |0 + Kpa + KeaV |
lal®| o+ kpaf + KeaV |

Let (&', B, ¥') = (& + kpaB + Kkea, B, v), then the Jacobian of the transformation
(o, B,y) — (&, B/, y') is given by

1 kpq K,

P /’ /’ 4 ba Kca
et(M)z 01 0 |=1%0

9. B.y) 00 I

and we have
fiay.B).(c)(r. s, 1)
N i/ do/dBdy’ ei((r=a0) @' ~Kpaf'~Keay ")+ (s=b0) f'+(1=co)y")
@2n)3 Jrs

sin(la||a'|)—lal|a |cos(lal|a|)
lal®la P

/ Pt = r—alp ggr o L / Pili—co—ke(r—an)ly’ g
R 27 Jr

ssin(lal|a’|)—lal|a |cos(lal|a’])

_ 1
o
x— [ da'el—a0)
2 Jr la o
=3 ((s — bo) — kpa(r — ap)) § ((t — co) — Kea(r — ao)) fray(r),

where f(4)(r) is from Proposition 3.4. O

Proposition 3.10 The joint probability distribution density of (A, A, A, B, A,C) for
a triple of qubit observables A = apl +a -0, B = byl +b -0, C = col +
c-a, (ag, a), (b, b), (co, ¢) € R* where {a, b, ¢} is linearly independent, and p is
resulted from partially tracing a subsystem over a Haar-distributed random pure state
on C* ® C?, is given by

2xyz

D fian B (e, Y ).

faaaBac(x,y,z) =
Vi@ —x)®? =y -2 i

Here, fia),(B),(c)(r, s, t) is the joint probability distribution density of the mean values
({A),, (B)p, (C)p), determined by Proposition 3.9, and

xr=apE+/lal>—x2, yr=bot+/|b]>—y2, zi=coE.lc|*—22
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Proof Noting that

fanamact v = [ Ao = M50 - 8B~ 4,0
_ Sxyz/ du(p)s <x2 _ (ApA)z) 5
S(C?)
(32— @B?) 5 (2 = (8,07).
and
5 (x2 = (2,47) 8 (32 = (A, B)?) 8 (2 = (A,00) = 8(ge (M, (DU (1),

where g,(r) = x? — (r — A1(A)(A2(A) — 1), hy(s) = y* — (s — A1 (B))(A2(B) —
5), 1.(1) = 22 — (t = 11(C))(22(C) — 1), we have

SaaaBac(x,y, z) = 8xyz fRs drdsdré (g (r)8(hy(s))8(U; (1)) fay,B),.Cc)(r, 5, 1)
= e
Jaar =82 = y)(el? -2

D Beis ;@) fiarm.c)
i,j.ke{£}

XYz i j ket Jia). B0 (i (%), 5;(9), 1k (2))
JaaP = (bl = (el - )
2xY2 ) ke J1a),(B). () (r4. 85 1)
Jaalk =282 = ) (el? - 22)

3

where we have used the fact that

fiay, By o) (re, s, 1) = flay, By, c)r—, s—, t-),
fiay, By o) (re, s.1-) = flay, By, c)(r—, s—, ty),
fiay.By.c)(r+, 5—, 1) = flay.).«c)(r—, 54+, 1),
flay.By.c)(re. s—, 12) = flay.By.(c)(r—, S+, 14).
This completes the proof. O

We now turn to the uncertainty region for a triple (A, B, C) of qubit observables
A=al+a-0,B =byl +b-0 and C = ¢yl + ¢ - ¢ with (ag, a), (bg, b),
(co,c) € R*, and {a, b, c} being linearly independent. Denote uc,  (x,y,2) =
((al> =x)'2 (b = yH! 2 ecle | = 2H)/?), where €, €. € {£1}, and
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(a,a) (a,b) {(a,c
Tope=| (b,a) (b,b) (b,c)
(c,a) {c,b) {(c,c)

Let y, B and « be the angles between a and b, a and c, b and c, respectively, where
a, B,y € (0,m). Set ¢ (t1, 12, 13) = cos(t1) — cos(t2) cos(?3).

Proof of Lemma 2.3 In fact, due to the relation between faa aB.ac and fi4).(B),(c)

in Proposition 3.10, the support of faa ap.Ac can be identified by the support of
fay,(By,(c) which can be seen from Proposition 3.9 (i),

supp(f(4),(B),(c)) = {(r, s.1) €R* twap.c(r.s.1) < 1} .
With the support of fiay (B),(c), now we can make an analysis of the support of

faa.aB.ac- Note that fAA AB.AC(X, Y, z) is defined on the first quadrant R>07 if
xyz > 0, then faa ap.ac(x,y,z) = 0if and only if

Z Sfiay. By (ri(x), s (), 1k (z2)) = 0,

i,j.ke{£)
ie., flay,B),(c)(ri(x), s;(y), & (z)) = 0 because fi4) c) is a non-negative func-
tion. This means that all eight points (r4+(x), s+(y), ti (z)) are not in the support of

fiay,(By,(c)- Therefore, the uncertainty region (i.e., the support of faa AB ac) of
A, B, and C is given by the following set:

Una.aB.ac = supp(faa.aB.ac) = D;;,rc U D:;c U Da_b YD,y e
where, via #t¢, ¢ (x, y, 2) = (v la > —x2, e/ 1b1* — 2 e ]* — z2>,

Dy, = {(x o2 € Rg ttte, e (6, 7. DT g o, o (3, 9,2) < }
for €5, €, € {£}. Now, the inequality
Uy e (X, Y, z)T,,,,c e x.y,2) <

is reduced into the following:

[ det(Tp, 006 + det(Ta.0)y* + det(Ta,)2?
+2((a, b) (a, ¢) (b, c) — |a > |b*|c )
126, ¢ (a, by — (@, ) (b, /(@ P — ¥ (B — y2)

+2epec(|al’ (b, c) — (a.b) (a, c>>\/(| b1> =y (e —2?)
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1261 (a,¢) — {a. ) (b. Ny (e P —)(lal - )]

xsign (1a? b, + 16 (@, ¢+ (@ b)? —|a P |b | e
—2{a, b) (a,c)(b,c))
<0.

Denote the angle between a and b by y; the angle between a and ¢ by B; the angle
between b and ¢ by «. Thus,

{a,b) =lal|blcos(y), (a,c)=lallc|cos(B), (b,c)=1b|lc]|cos(a).
We also write ¢ (t1, 12, 13) := cos(t;) — cos(fz) cos(f3). By scaling transformations:
(x,y,2) > (ax, by, cz)

without loss of generality, we assume |a@| = |b| = | ¢ | = 1, then the above inequal-
ities is equivalent to:

[sinz(oz)x2 + sin?(B)y? + sin’(y)z>

+2epp (v, @, B)y/ (1 = x2) (1 = y2) + 2epechp (@, B, )3/ (1 — y2) (1 — 22)
+2ecp (B, v, )V (1 = 22)(1 = x2) + 2(cos(a) cos(B) cos(y) — 1)]

X sign (cosz(a) + cosz(,B) + cosz(y) — 2 cos(a) cos(B) cos(y) — 1)
<0.

Note that three angles «, B, ¥ € (0, ) should be such that
det(Tgpe)=1-— cosz(oz) — cosz(ﬂ) — cosz(y) + 2 cos(a) cos(B) cos(y) > 0
due to the fact that {a, b, ¢} is linearly independent. Because
—det(Tgp.c) = cos2(a) + cos2(,8) + cos2(y) — 2cos(a)cos(B)cos(y) —1=0
if and only if cos(y) = cos(a + B) or cos(y) = cos(o — B); if and only if cos(8) =
cos(a + y) or cos(B) = cos(a — y); if and only if cos(a) = cos(B + y) or cos(x) =

cos(B — y). Thus, the necessary and sufficient condition of det(T' 4 p o) = O is either
one of the following statements:

) a=p+y;
(i) B=y +B;
(i) y =+ B

(iv) a+p+y =2m.
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In other words, det(T4 p.) > 0 if and only if the following four inequalities should
be satisfied

o,B,ye0m): a<pB+y, B<y+a, y<a+B, a+p+y<2m.

Under these conditions, the above inequalities are reduced to

265 (v, o, B/ (1 = xH) (1 = y2) + 2epec (@, B, y)y/ (1 = yH(1 = 22)
+2ech (B, v, )V (1 = 22 (1 — x?)

+ sinz(ot))c2 + sinz(ﬂ)y2 + sinz(y)z2 > 2(1 — cos(a) cos(B) cos(y)).

In order to get a more compact form of the above formula, we find that we can use the
absolute function to get rid of €, with keeping €, = € € {£1} due to the independence
of ¢;, and €. Thus, they can also be rewritten as the following form by multiplying %
on both sides:

|90 @ VI =22 + et oW1 =22 |1 =52
+ep(B,y, )V (1= 2)(1 —22)
+% [sin2(oz)x2 + sinz(;ﬁ)y2 + sin2(y)zz] >1
—cos(a) cos(B) cos(y) (e € {£1}),

where x, y, z € [0, 1]. O

3.5 Proof of Theorem 2.4
Based on the proof of Lemma 2.3, we present the proof of Theorem 2.4 as follows.

Proof of Theorem2.4 Let+/|a |? — x2 = X, ,/|b|2 —y2=Y,and|c|?-22=2Z
in Lemma 2.3, where X € [0, |a|],Y €[0,|b|],and Z € [0, | ¢ |] due to the fact that
x€[0,]lall,y €[0,]|b]],and z € [0, | ¢|]. Thus, we get that

min {x2 +y2 4+ (x,y,2) € UAA,AB,AC}

= Tr (Tqp.c) — max {Xz FY24 722 (X, &Y, )T, L (X, &Y, e2)" < 1}
(€p, €c € {£1}).

It is easily seen that the objection function x4+ y%+z%, where (x, y, z) € UAA.AB.AC»

attains its minimal value on the boundary surface 0l/aa ,AB,ac of the uncertainty

region Uaa AB.Ac; this also corresponds to the objection function X2 +v% 4+ 72
attains its maximal value on the boundary surface

(X,epY,ee)TTE (X, eY,€.2) = 1.

a,b,c
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Denote by Ak (T gp.c)(k = 1,2, 3) the three eigenvalues of the matrix T4 5 . By
Spectral Decomposition Theorem, we get that there exists orthogonal O € O(3) such
that

Tope= Odiag(kl(Ta,b,c), )LZ(Ta,b,c)v )LS(Ta,b,c))OT-
Now, let (X', Y', Z"" = O(X, ,Y, €.Z)". Then,

(X, &Y, e2)T, ) (X, &Y, e2)

a,b,c
=X, Y, Z)diagA [ (Tape)s 25 Tape)s 23 (Tap )X, Y, Z)
x"? Y2 z"?
= + + .
)LZ(Ta,b,c) )L2(Ta,b,c) )L3(Ta,b,c)

Because these rotations do not change the length of vectors, we get that

max{X2 + Y2+ Z2: (X, &Y, e )T (X,epY,e.Z) =1}

a,b,c

a,b,c

X2 y? 7" }

= max {X2 + (@Y + (€2 : (X,epY, e )T (X, epY,€.2) = 1}

—max | X? +Y?*+ 277 + + =1
{ AZ(Ta,b,c) )LZ(Ta,b,c) )\3(Ta,b,c)

Again, the above optimization problem becomes

min {x2 +y* 422 (x,y,2) € Ura,aB.AC)

X/2 Y/Z Z/2
=Tr (Tqp,c) — max {X’Z +Y?*+ 277

A2(Tap.c) * A2(Tqap.c) * A3(Tap.c) =1
Therefore,
min [x2 +y* 4+ (x,y,2) € UAA,AB,AC} =Tr (Tapec) — *max(Tap.c)
implying that
(ApA) + (BB + (AyC) > Tt (Tape) = 2max(Tap.e)-
We are done. O

3.6 Proof of Lemma 2.5

The proof of Lemma 2.5 is based on Propositions 3.11 and 3.12, which are described
as follows.
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For an n-tuple of qubit observables (Ay, ..., A,) where
Ar=aP14a,-0, @ a)eR k=1,2,---.n
the eigenvalues of Ay are given, respectively, by
MAD =a + (=D lax], i=1,2%k=1,...,n

By the assumption that Ay (Ayx) > A1(Ag) forall k = 1,...,n, we see that |ay | >
0,k=1,2,---,n.Let

f<Al>,-.,<A,,><r1,...,rn>=/D«C auo [ ] 50 — (A,

k=1
be the joint probability density of the mean values of ((A1),, -+, (A,),). Denote
(ar,a1) (a1,a2) --- (a1, ay)
(az,a1) (az,az) --- (a2, ay)
Ta1 ,,,,, a, — . . .
(an,a1) (an,az) --- (an, ay)

Proposition 3.11 Let (A1, ..., A,) be an n-tuple of qubit observables given by Ay =

a1 +ar-0, @\, ap) eR k=1,--- ,n, andlet fiay... )i, . .., 1) bethe
Jjoint probability distribution density of the mean values ((A1)p, ..., (An)p), where

p is resulted from partially tracing a subsystem over a Haar-distributed random pure
state on C* ® C2.

(i) Ifrank(T ... qa,) = 3, then without loss of generality, we can take nonzero coef-
ficients kjj, 1 =4,--- ,n, j =1,2,3, such that a; = kj1ay + kpaz + «;3az. In
this case,

fian, a0, - 1)

n 3
: ,
= flA1).(42),(43) (11, 12, 13) H(S((U —a)) - Zklj(i”j - a(()’))),

=4

where fia,).(A,),(A5) 1s determined similarly by Proposition 3.9.
(ii) Ifrank(Ty,. .. a, ) = 2, then without loss of generality, we take nonzero coefficients
ni, =2, ,i = 1,2, such that a; = n;1a; + nppaz. In this case,

n
Fan, - an i, o) = fla,(ay (i, r2) H5<(V1 —a)) - Zmz (ri —ay) )

1=3

where fia),(a,) is determined similarly by Proposition 3.7.
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(iii) Ifrank(T 4, .. a,) = 1, then without loss of generality, we can take nonzero coef-
ficient k;,1 =2, --- ,n, such that a; = kja. In this case,

n
l 1
Fitneian @1 o) = fianeo [T (00 = o) = = i),
=2

where f(a,) is determined similarly by Proposition 3.4.

Proof By using integral representation of delta function n times in f4,), . (a,) and
Proposition 3.3, we get

3 - i(Z" (rk—a(k))ak)
fian),an (e, o) = f [ [ dewe\ ==
n k:l

Q2m)"
% sin (| Dk kA |) - ’ZZ:I Ak |C°S (| Dk KAk ’)
| Dk k@ |3
(i) We have
n n
Zakak = (x1a1 + azas + azaz) + Zal(Kllal + kppas + k;3a3)
k=1 =4
n n n
= (011 + Zlczlw)al + (012 + Zlczzaz)az + (013 + Zmaz)as.
=4 =4 =4
Let

n n n
(o, 0y, 03) = (011 + Y knanex+ Y kporos + Zmaz),

=4 =4 =4
(aé/t""va;/fl) = (a4?""an)1
then the Jacobian of the transformation («p, ..., @) — (e, ..., @) is given by
A, ..., o
det <M> —12£0.
8(“15 "'7an)

Noting that

n

n 3 n
. . "
>0 —ai ey = 300; —ay) (e = Y wje)) + D001~ e
1=4

j=1 j=1 =4
3 n 3 n
. ) :
= Z(rf — aé‘l))a} — Z (Zklj(rj — a(()")))a,' + Z(rl — a((,))a,’
j=1 =4 j=1 =4
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n

3
=D (1 —ay))ej + ((”—“O))_ZKU(” —ag )“’/’
=1 1

=4
we have
FlAD o (An >(V1,---,rn)
/ l_[d ’ 1(2/ | (—aj )0’1)
(277)3
sin (‘ P oa; D - ‘ > oa; ‘ cos O P oa; D
3 / 3
‘ Zl:l o,aj )
% - (Lf do! 1(<r1 —ay)=Y - Klj(rj—aéj)))“f>
4 21 R
therefore
fiany,an @i, .. rn) = flA1).(A2),(A5) (11,72, 73)
n
[To(er—a) - Dzm ~a).
=4
Items (ii) and (iii) follow similarly. O

Proposition 3.12 The joint probability distribution density of (A, A1, ..., AyA,) for
an n-triple of qubit observables defined by Eq. (3.1), where p is resulted from partial-
tracing a subsystem over a Haar-distributed random pure state on C* ® C?, is given
by

faay...aa, (X1, Xn)
“ X
=12 J
1 e

j=1 | a; | — X

1
Y fiaentan G @) P @) @),
j2s--~vjne{i}
where fia,y,...(a,) (s - - ., ) is determined by Proposition 3.11, and

k k
rPe) =al’ £\ laP=x2 k=1,...,n).

Proof The proof goes similarly for Propositions 3.5, 3.8, and 3.10. We omitted here.
O
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Proof of Lemma 2.5 From Proposition 3.11, we get the support of f(4,).... (4,) Which
is given by, via

DA, Ay,A3 (1,12, 73)

1 2 3 _ 1 2 3\’
:\/<r1—al(()),rz—aé),m—a(()))Ta]l’az’w3 <r1 —aé),rz—a(()),m—a(())) s

supp(f(4,),....(4,))

3
; .
= {(rl,---,rn) eR" 1 wa; 45,45(r1.72,13) < L1y *a(()> = ZKlj(”j *aéj))(\?’l =47---7H)} .
=1

By similar analysis as in the proofs of Propositions 3.4, 3.7, and 3.9, we obtain the
supportof faa,...Aa,.1€., theuncertainty regionUa4,....AA, = SUPP(fAA,....AA,):

supp(faay.,...a4,)

—1
« ) €RL {uel.ez,q(m,xz,X3)Tal,a2,a3ull,€2,e3(X1,Xz,m) <1 }
= | I Y) >0 -
=

e/lar —xl2 = Zj:l /qje_,-‘/|a_,- }2 —ij(Vl =4,...,n)
Here, ¢, € {1} and x; € [0, |ar |], where k =1, ..., n. O

3.7 Proof of Theorem 2.6

We consider now the uncertainty regions for multiple qubit observables. For

an n-tuple of qubit observables (Aj,...,A,), where Ay = a(gk)]l +ap - o
with (a(()k),ak) e R k = 1,...,n, denote T, .4, = (ai,a;)). Note that

{ai,as, ...,a,} has at most three vectors that are linearly independent. Without
loss of generality, we assume {ai, a;, a3} is linearly independent. The rest vec-
tors can be linearly expressed by {ai, a2, a3}, a; = ka1 + kpa> + «3as, for
some coefficients «;;, [ = 4,---,n, j = 1,2,3. Set Ue e,e;(X1,%2,X3) =

61\/|a1 2 —xlz, 62\/| as|? — x22, 63\/| az|? — x%) where €, € {+1}(k = 1,2, 3).

Based on the proof of Lemma 2.5, we give the proof of Theorem 2.6.

Proof of Theorem 2.6 In Lemma 2.5, let \/|ax > —x? = X; € [0, |ax|l(k =

1, ..., n) due to the fact that x; € [0, | ax |]. This implies that
min x,%

n -1
X1,6X7,e3X3)T X1,6X7,63X3) <1
— Tt (Tay....q,) — max ZXZ_ (e1X1, e 32 €3X3)T 4, 4y a5 (€1X1, €2X2, €3X3)
éleZZJ-ZIKUGJ‘XJ‘(VI=4,...,H)

n 1 .
Y1,Y2,Y3)T Y1,Y2,¥3)' < 1
=Tr (Ta,...a,) — max E Y2 i 233) arar.a; (V1. 12.13) .
Y, = Zj:l kijYi(VI=4,...,n)
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Next, we show that

N, Y2, V3)Tg! . 0. (Y1, Y2, ¥3)' < 1
max Y2 : 1,42,03 = Aas (T )
{Z k { 23 IK[]Y V=4, n) max ( al,...,a,,)

Indeed, let P = (a1, a3, a3), where each a; is a column vector in R3. Due to the fact

that a; = Zj’:l kija; (Yl =4, ..., n), we see that
K1 K1 K1 |
(@,ar,a3) | kp | =P | kp | =a < | k2 | =P a.
Ki3 K3 Ki3

Denote by y := (Y1, Y2, ¥3)". Then, ¥; = 23‘:1 k1;Yj(l =4,...,n) canbe rewritten

as
K1 Y
Yi=(|x2].| 12 = <P_1a1, y>.
K3 Y3

Based on the above observation, we have immediately that
n
dri= ZY2+ZY1 = (. +Z<y,P az><P az,y>
j=1 =4
n T
(P_lal) <P_1a1> y

=4
o)

=<ylﬂ|y>+<y

n

1+ (P'a) (P’lal)T

=4

where, via Q := P!,

n n
1+ ; <P_laz) (P—la,)T ) ;aja; 0

implying that

ZY,-Z=<y Q> aja}| @ y>-
j=1 j=1
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Note that T4, 4,.a; = PTP. From this, we see that yTa1 ar.a;Y < 1, which is

equivalent to < y | 0 QT| y) < 1. Denote v = Q'y. This indicates that

max ZY (Yls Y27Y3)Tal aza;(YlaY27Y3)T<1
=il k=400

n

= max E aa V) = Amax E aja}
=1

= )»max(Tal,...,a,,)-

Here, the last equality is true since both MM™ and M™M have the same spectrum
when ignoring the zero eigenvalues for real matrix M. Hence, the same maximal
eigenvalues Amax (MM") = Amax(M"M). Let M = (ay, . .., a,). Then,

n
Y ajai=MM", T4 4 =MM.

These can give our desired result. O
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