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Abstract
We design a quantum circuit to generate a class of partially entangled quantum states.
Using this kind of quantum state as quantum channel, we put forward deterministic
schemes for controlled joint remote state preparation of arbitrary two- and three-
qubit states and extend them to prepare arbitrary multi-qubit states. For each case,
we give the concrete construction methods of multi-qubit measurement basis and uni-
tary transformations to recover the initial original state. Unlike most previous works,
where the parameters of the quantum channel are given to the receiver who can accom-
plish the task only probabilistically by consuming auxiliary resource, operation and
measurement, here we give them to the supervisor. Thanks to the knowledge of quan-
tum channel parameters, the supervisor can perform appropriate complete projection
measurement. Combined with the feed-forward strategy adapted by the preparers, the
measurement not onlymuch simplifies the receiver’s operation but also yields unit suc-
cess probability. Amazingly, our protocols do not depend on the entanglement degree
of the shared quantum channel, and they are within the reach realization of current
quantum technologies.

Keywords Controlled joint remote state preparation · Partially entangled resource ·
Arbitrary multi-qubit state · Unit success probability · Feed-forward strategy

B Ming-qiang Bai
baimq@sicnu.edu.cn

1 Institute of Intelligent Information and Quantum Information, Sichuan Normal University,
Chengdu 610066, China

2 School of Mathematics and Information Science, Neijiang Normal University, Neijiang 641199,
China

3 School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-021-03282-y&domain=pdf
http://orcid.org/0000-0002-3234-6669


340 Page 2 of 18 J.-Y. Peng et al.

1 Introduction

In the era of big data and cloud computing, data can bring much convenience to human
life, but personal information leakage will be particularly prominent. Therefore, how
to effectively ensure information security is of great significance.

Classical cryptography has always been a popular choice, but it will face the threat
of breakthrough in polynomial time with the emergence of quantum algorithm [1,2].
Quantum cryptography has been proved to be unconditionally secure on insecure
channels, and its security is guaranteed by quantum mechanics such as Heisenberg
uncertainty principle and non-cloning theorem. Hence, more and more attention has
beenpaid to quantumcryptographyby industry and academia. In 1993,Bennett et al.[3]
initiated the quantum teleportation (QT) protocol, which is to transfer an unknown
state. Later, Lo [4] designed a simple protocol for transmitting a known state utilizing
the same quantum resource as in QT but without Bell measurement and with lesser
classical communication. Such protocol is called remote state preparation (RSP) [4,5].
The shortcomings of RSP are: (a) all information of the prepared state is disclosed to
the preparer and (b) unit success probability cannot be reached in general. In 2007,
Xia et al. [6] proposed a new protocol called joint remote state preparation (JRSP).
In JRSP, there are several preparers, each of them is allowed to know only part of the
information of the prepared state so that no subsets of them are able to infer the state,
thus resolving the shortcoming (a). Moreover, by using feed-forward measurement
[7] (i.e., measuring in sequence, and the future measurement basis depends on the
previous measurement results), JRSP can always be successful [8–10], thus resolving
the shortcoming (b).

In the realistic environment, quantum control of global task is often needed. This
can be achieved by adding a supervisor who has the right to decide at the last minute to
complete a task after careful consideration of all relevant situations. Controlled telepor-
tation [11,12], controlled RSP [13–18], controlled quantum dialogue [19], controlled
remote implementation of partially unknown quantum operation [20,21], etc. have
been investigated in detail. In order to be able to control in a quantum way, the super-
visor must share beforehand with the preparers as well as with the receiver a quantum
resource served as a quantum channel which is generally considered to be maximally
entangled for best performance. For instance, a maximally entangled quantum chan-
nel leads to unit success probability together with feed-forward measurement strategy
[8–10]. However, due to the influence of noise, the decoherence effects will cause the
maximally entangled states to evolve into partially entangled states. In addition, litera-
ture [22] proposed a possible solution to copewith an outside attack by using a partially
entangled resource whose identifying parameters are kept confidential from any out-
sider. Based on the above reasons, some scholars use partially entangled quantum
resources as quantum channels to design quantum information transmission protocols
[23–25]. Usually, the parameters of the partially entangled resource are assumed to be
known by the receiver [23,24], who can use this knowledge to recover the desired state
fromhis/her collapsed state. The cost of recovery process is themandatory requirement
of auxiliary qubits, auxiliary two qubit gates as well as measurements on auxiliary
qubits, and the total probability of success is always less than 1. If the knowledge
of the parameters of the partially entangled quantum channel is transferred from the
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receiver to the supervisor who executes optimal POVM (positive operator-valuedmea-
sure) measurements on his/her qubits to guide the receiver to recover the desired state
without consuming any auxiliary resources, then there is always a finite probability
of failure when an ambiguous measurement output is obtained [25]. Fortunately, in
2017, Peng et al. [26] proposed a perfect protocol for multi-hop controlled QT of arbi-
trary single-qubit state by using an appropriate class of partially entangled quantum
resources as channels. In this protocol, instead of POVMmeasurement, each supervi-
sor can reconstruct the desired state by performing a rotation operation and projection
measurement instead of POVM measurement; thus, the defects are overcome men-
tioned above. Ref. [26] gives us an enlightenment: for an intended task, there may be
appropriate resources via which the performance of the task would be the best. Are
there any partially entangled quantum resources to be served as channel for perfect
controlled JRSP of arbitrarymulti-qubit states? In this paper, we will answer the above
question, that is, how to generate such partially entangled quantum resources and how
to use them to implement controlled JRSP perfectly. An added interesting feature
is that the implementation is independent of the entanglement degree of the shared
partially entangled quantum channels, which is different from all previous controlled
JRSP protocols.

The rest of this paper is organized as follows. In Sect. 2, we construct a quantum
circuit to prepare partially entangled state for our quantum tasks. In Sects. 3 and 4, we
explore how to realize the controlled JRSP for arbitrary two- and three-qubit states,
respectively. By parity of reasoning, we present the controlled JRSP protocol for
arbitrary multi-qubit states and give the precise construction methods of multi-qubit
measurement basis about real parameter and complex parameter in Sect. 5. Finally,
some discussion and summary are given in Sect. 6.

2 The partially entangled quantum channel

In order to accomplish our quantum tasks,we employ the following four-qubit partially
entangled state as quantum channel

|Q〉1234 = 1√
2
(|0000〉 + cos θ |1110〉 + sin θ |1111〉)1234, (1)

where θ ∈ [0, π/2]. This state is characterized by the angle θ whose value is only
known by the supervisor. The entanglement among qubit 1, qubit 2 and qubit 3 is
always independent of parameter θ . However, parameter θ influences the entanglement
between qubit 4 and the others. Obviously, if parameter θ satisfies its value of sine
with 0, the qubit of the supervisor is totally disentangled from the other ones. Besides
this case, the state (1) possesses some degree of entanglement between the qubit
of the supervisor and the remaining qubit group, justifying him/her as "quantum"
controller. In particular, for the value of the angle which the sine is equal to ±1,
the degree of entanglement is maximal. Of importance is the fact that the value of θ

is consciously assigned only to the supervisor. This obviously enhances the security
level. Even if the qubits of the supervisor and the receiver are unexpectedly captured by
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Fig. 1 Quantum circuit for preparing |Q〉1234

the eavesdropper–a malicious enemy, the eavesdropper cannot determine the correct
recovery actions because he/she has no information about the angle.

Now we proceed to constructing a quantum circuit that generates the state |Q〉1234
from the initial separable state |0000〉1234 as shown in Fig. 1.

In Fig. 1, the circuit is read from left to right and each single line denotes a qubit.
This quantum circuit contains a single-qubit Hadamard gate H = 1√

2
(|0〉〈0|+|1〉〈0|+

|0〉〈1| − |1〉〈1|), the two-qubit controlled-Not gate (CNOT) C |i, j〉 = |i, i ⊕ j〉 (⊕ is
an addition about modulo 2) and the rotation gate

Ry(θ) =
(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)

with θ the angle of rotation around y-axis. The Hadamard gate and the first three
CNOTs transform the input state |0000〉1234 to the well-known four-qubit GHZ state
|GHZ〉1234 = 1√

2
(|0000〉 + |1111〉)1234. After the subsequent Ry(−θ), CNOT and

Ry(θ) gates, |GHZ〉1234 can be transformed to the desired four-qubit partially entan-
gled state |Q〉1234, expressed as (1). In this paper, we are interested in parameter
θ ∈ (0, π/2) for which the state |Q〉1234 is partially entangled with entanglement
degree |sinθ | quantified by the concurrence.

3 Controlled JRSP for arbitrary two-qubit states

Suppose that the state to be prepared for a remote party, called the receiver Bob, has
the form

|φ〉2 = a0e
iα0 |00〉 + a1e

iα1 |01〉 + a2e
iα2 |10〉 + a3e

iα3 |11〉, (2)

where real numbers α j ∈ [0, 2π) ( j = 0, 1, 2, 3) and real numbers a j ( j = 0, 1, 2, 3)
satisfy

∑3
j=0 a

2
j = 1. The values of a0, a1, a2 and a3 are given to Alice1, while that

of α0, α1, α2 and α3 to Alice2, who serve as the two preparers. Clearly, no one of
the two preparers alone is able to infer |φ〉2. Let Charlie be the supervisor who, as
Bob, knows nothing about |φ〉2. Quantum channel is composed of the following two
partially entangled states
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|Q〉A1A′
1B1C1

= 1√
2
(|0000〉 + cos θ1|1110〉 + sin θ1|1111〉)A1A′

1B1C1
,

|Q〉A2A′
2B2C2

= 1√
2
(|0000〉 + cos θ2|1110〉 + sin θ2|1111〉)A2A′

2B2C2
,

(3)

where the real numbers θ1, θ2 ∈ [0, π/2] whose values we let only the supervisor
Charlie (not the receiver Bob) know.Without loss of generality, qubits (A1, A2) belong
to Alice1, while qubits (A′

1, A
′
2), (B1, B2) and (C1,C2) are hold by Alice2, Bob and

Charlie, respectively.
Step 1 For remotely preparing arbitrary two-qubit state (2), Alice1 would perform

the special measurement basis {|ξk〉|k = 0, 1, 2, 3} on qubits (A1, A2), which are
given by

⎛
⎜⎜⎝

|ξ0〉
|ξ1〉
|ξ2〉
|ξ3〉

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a0 a1 a2 a3
a1 −a0 a3 −a2
a2 −a3 −a0 a1
a3 a2 −a1 −a0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞
⎟⎟⎠ . (4)

She but no one else can do that since a0, a1, a2 and a3 are known only to her. Under
this basis, the whole quantum system |Q〉A1A′

1B1C1
⊗ |Q〉A2A′

2B2C2
consisting of the

eight qubits can be expressed as

|Q〉A1A′
1B1C1

⊗ |Q〉A2A′
2B2C2

= 1

2
|ξ0〉A1A2

⎛
⎝∑

i, j

|Pεi1
P

ε
j
2
|εi1〉C1 |ε j

2 〉C2

(a0|0000〉 + (−1) j a1|0011〉 + (−1)i a2|1100〉 + (−1)i+ j a3|1111〉)A′
1B1A

′
2B2

+ 1

2
|ξ1〉A1A2

⎛
⎝∑

i, j

|Pεi1
P

ε
j
2
|εi1〉C1 |ε j

2 〉C2

(a1|0000〉 + (−1) j+1a0|0011〉 + (−1)i a3|1100〉 + (−1)i+ j+1a2|1111〉)A′
1B1A

′
2B2

+ 1

2
|ξ2〉A1A2

⎛
⎝∑

i, j

|Pεi1
P

ε
j
2
|εi1〉C1 |ε j

2 〉C2

(a2|0000〉 + (−1) j+1a3|0011〉 + (−1)i+1a0|1100〉 + (−1)i+ j a1|1111〉)A′
1B1A

′
2B2

+ 1

2
|ξ3〉A1A2

⎛
⎝∑

i, j

|Pεi1
P

ε
j
2
|εi1〉C1 |ε j

2 〉C2

(a3|0000〉 + (−1) j a2|0011〉 + (−1)i+1a1|1100〉 + (−1)i+ j+1a0|1111〉)A′
1B1A

′
2B2

,

(5)

where i, j ∈ {+,−}, (−1)+ = (−1)0, (−1)− = (−1)1. Pε±
1
, Pε±

2
, |ε±

1 〉 and |ε±
2 〉 are

given by
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Pε±
j

=
√
1

2
(1 ± cos θ j ), (6)

and

|ε±
j 〉 = 1 ± cos θ j√

2(1 ± cos θ j )
|0〉 ± sin θ j√

2(1 ± cos θ j )
|1〉, j ∈ {1, 2}. (7)

As followed from Eq. (4), when performing the projective measurement {|ξk〉|k =
0, 1, 2, 3} on qubits (A1, A2) Alice1 obtains a state |ξk〉A1A2 randomly with an equal
probability of 1/4 and then informs Alice2, Bob and Charlie of k which corresponds
the measurement result |ξk〉 via classical channel.

Step 2 Just after announcement of Alice1 about her outcome k, Alice2 starts to
measure her two qubits A′

1 and A′
2 in a delicately chosen basis which is important to

achieve unit success probability without adding the local operations. That is to say,
Alice2 not only uses the set {α0, α1, α2, α3}, what was given to her a priori, but should
also take into account Alice1’s measurement outcome in terms of k. Specifically,
the basis {|η(k)

m 〉|m = 0, 1, 2, 3} (k = 0, 1, 2, 3) for Alice2’s measurement can be
described as

⎛
⎜⎜⎜⎝

|η(k)
0 〉

|η(k)
1 〉

|η(k)
2 〉

|η(k)
3 〉

⎞
⎟⎟⎟⎠ = 1

2
G (k)(α)

⎛
⎜⎜⎝

|00〉
|01〉
|10〉
|11〉

⎞
⎟⎟⎠ (8)

with

G (0)(α) = G (α0, α1, α2, α3)

=

⎛
⎜⎜⎝
e−iα0 e−iα1 e−iα2 e−iα3

e−iα0 −e−iα1 e−iα2 −e−iα3

e−iα0 −e−iα1 −e−iα2 e−iα3

e−iα0 e−iα1 −e−iα2 −e−iα3

⎞
⎟⎟⎠ ,

G (1)(α) = G (α1, α0, α3, α2),

G (2)(α) = G (α2, α3, α0, α1),

G (3)(α) = G (α3, α2, α1, α0).

Of course, Alice2 can do such actions since only Alice2 knows α0, α1, α2 and α3.
For each specific k, the states {|η(k)

m 〉|m = 0, 1, 2, 3} comprise a complete set of
orthonormal basis in a four-dimensional Hilbert space. The method of using this basis
to measure is named feed-forward measurement strategy. Without loss of generality,
if Alice1’s measurement outcome is |ξ1〉A1A2 , i.e., k = 1, then the corresponding
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collapsed state of qubits (A′
1, B1,C1, A′

2, B2,C2) could be presented as follows

A1A2〈ξ1|Q〉A1A′
1B1C1

⊗ |Q〉A2A′
2B2C2

= 1

4
|ξ1〉A1A2(|η(1)

0 〉A′
1A

′
2
|γ0〉 + |η(1)

1 〉A′
1A

′
2
|γ1〉 + |η(1)

2 〉A′
1A

′
2
|γ2〉 + |η(1)

3 〉A′
1A

′
2
|γ3〉),

(9)

here i, j ∈ {+,−}, (−1)i , (−1) j defines as before,

|γ0〉 =
∑
i, j

Pεi1
P

ε
j
2
|εi1〉C1 |ε j

2〉C2(a1e
iα1 |00〉 + (−1) j+1a0e

iα0 |01〉

+ (−1)i a3e
iα3 |10〉 + (−1)i+ j+1a2e

iα2 |11〉)B1B2 ,
|γ1〉 =

∑
i, j

Pεi1
P

ε
j
2
|εi1〉C1 |ε j

2〉C2(a1e
iα1 |00〉 + (−1) j a0e

iα0 |01〉

+ (−1)i a3e
iα3 |10〉 + (−1)i+ j a2e

iα2 |11〉)B1B2 ,
|γ2〉 =

∑
i, j

Pεi1
P

ε
j
2
|εi1〉C1 |ε j

2 〉C2(a1e
iα1 |00〉 + (−1) j a0e

iα0 |01〉

+ (−1)i+1a3e
iα3 |10〉 + (−1)i+ j+1a2e

iα2 |11〉)B1B2 ,
|γ3〉 =

∑
i, j

Pεi1
P

ε
j
2
|εi1〉C1 |ε j

2〉C2(a1e
iα1 |00〉 + (−1) j+1a0e

iα0 |01〉

+ (−1)i+1a3e
iα3 |10〉 + (−1)i+ j a2e

iα2 |11〉)B1B2 .

Step 3 Alice2 implements the projective measurement {|η(1)
m 〉|m = 0, 1, 2, 3} on

qubits (A′
1, A

′
2) and informsBob andCharlie ofmwhich corresponds themeasurement

result |η(1)
m 〉 via classical channel. At this stage of the protocol, although having heard

both the results k and m, Bob is not yet in the position to get the target state. The
deciding role is now played by the supervisor Charlie, who should carefully review the
overall situation concerning the real necessity of carrying out the task. If there are any
adverse problems, she decides to stop or postpone the task and do nothing. Otherwise,
if everything is favorable, she decides to proceed toward completion of the task by
appropriately manipulating her qubits. After hearing the measurement information
from Alice1 and Alice2, Charlie measures the qubits C1 and C2 via the basis {|ε±

1 〉}
and {|ε±

2 〉}, respectively, and then, he publicly broadcasts his measurement outcomes
via classical channel. Note that here Charlie’s measurement is a simple projective one,
so it is a complete measurement, as opposed to incomplete POVMmeasurement [21].
It’s also worth mentioning that Charlie is the only one who knows the values of θ1 and
θ2 so no unauthorized parties are able to correctly manipulate qubits C1 and C2 even
when they capture that qubits. This is a striking advantage of using partially entangled
resources rather than the maximally entangled one (in the latter case θ = π/2 which
is known to everybody).

After receiving the measurement information, Bob just denotes k = 2k1+k2, m =
2m1 + m2 (k1, k2,m1,m2 ∈ {0, 1}). Obviously, this is the binary representation of k
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andm. Then, he reconstruct the target state expressed as Eq. (2) by using corresponding
unitary operations as follows

(σx ⊗ I )k1(I ⊗ σx )
k2(σz ⊗ I )i⊕m1⊕k1(I ⊗ σz)

j⊕m1⊕m2⊕k1⊕k2 , (10)

here I = |0〉〈0| + |1〉〈1|, σx = |0〉〈1| + |1〉〈0| and σz = |0〉〈0| − |1〉〈1| are the Pauli
operations, and σ+

z = σ 0
z , σ−

z = σ 1
z .

From Eq. (4), there are four measurement results of Alice1. For the other three
measurement outputs of Alice1, the desired quantum state can also be prepared by the
same method.

Step 4 Now consider the probability of success of this scheme. From Eq. (5), there
are four measurement results of Alice2, Alice2 obtains the outcome |η(1)

m 〉A′
1A

′
2
with

an equal probability of 1/4. For each |η(1)
m 〉A′

1A
′
2
, there are four Charlie’s measurement

outcomes |ε+
1 〉C1 |ε+

2 〉C2 , |ε+
1 〉C1 |ε−

2 〉C2 , |ε−
1 〉C1 |ε+

2 〉C2 and |ε−
1 〉C1 |ε−

2 〉C2 with corre-
sponding probability Pε+

1
Pε+

2
, Pε+

1
Pε−

2
, Pε−

1
Pε+

2
and Pε−

1
Pε−

2
, respectively. Obviously,

for any joint measurement of Alice1, Alice2 and Charlie, Bob can always take cor-
responding transformations to recover the arbitrary two-qubit state. The successful
probability is always viewed as an important factor for remote state preparation, and
the total probability of this scheme can be calculated as

p =
⎡
⎣

⎛
⎝

(
Pε+

1
Pε+

2

4

)2

+
(
Pε+

1
Pε−

2

4

)2

+
(
Pε−

1
Pε+

2

4

)2

+
(
Pε−

1
Pε−

2

4

)2
⎞
⎠ × 4

⎤
⎦ × 4

= (Pε+
1
Pε+

2
)2 + (Pε+

1
Pε−

2
)2 + (Pε−

1
Pε+

2
)2 + (Pε−

1
Pε−

2
)2

= (P2
ε+
1

+ P2
ε−
1
)(P2

ε+
2

+ P2
ε−
2
)

= 1.

From the above discussions, unit successful probability of this controlled JRSP scheme
is achieved for whatever entanglement degree of quantum channel, an amazing and
obviously superior to all previous protocols. Here the deterministic feature is produced
by three factors at the same time: (a) the feed-forward measurement strategy adapted
by the preparers, (b) the knowledge of θ by the supervisor (not receiver) and (c) the use
of the partially entangled states |Q〉A1A′

1B1C1
and |Q〉A2A′

2B2C2
as the quantum channel.

Since not only p = 1 but also no additional resources/operations are required at all,
our controlled JRSP is perfect.

4 Controlled JRSP for arbitrary three-qubit states

The arbitrary three-qubit states can be written as

|φ〉3 = a0e
iα0 |000〉 + a1e

iα1 |001〉 + a2e
iα2 |010〉 + a3e

iα3 |011〉
+ a4e

iα4 |100〉 + a5e
iα5 |101〉 + a6e

iα6 |110〉 + a7e
iα7 |111〉, (11)
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where the real numbers α j ∈ [0, 2π), a j ( j = 0, 1, · · · , 7) satisfy
∑7

j=1 a
2
j = 1. The

sender Alice1 only knows a j ( j = 0, 1, · · · , 7), while the sender Alice2 only knows
α j ∈ [0, 2π) ( j = 0, 1, · · · , 7). Neither the receiver Bob nor the supervisor Charlie
knows anything about |φ〉3. Clearly, no one of the two senders alone can help Bob to
reconstruct the original state |φ〉3 in Eq. (11). Quantum channel is composed of the
following three partially entangled states

|Q〉A1A′
1B1C1

= 1√
2
(|0000〉 + cos θ1|1110〉 + sin θ1|1111〉)A1A′

1B1C1
,

|Q〉A2A′
2B2C2

= 1√
2
(|0000〉 + cos θ2|1110〉 + sin θ2|1111〉)A2A′

2B2C2
,

|Q〉A3A′
3B3C3

= 1√
2
(|0000〉 + cos θ3|1110〉 + sin θ3|1111〉)A3A′

3B3C3
.

(12)

In the above equation, the real numbers θ j ∈ [0, π/2] ( j = 1, 2, 3) are known
only to the supervisor Charlie. The initial state of the total system including qubits
Ai , A′

i , Bi , Ci (i = 1, 2, 3) can be given by

|Q〉 = |Q〉A1A′
1B1C1

⊗ |Q〉A2A′
2B2C2

⊗ |Q〉A3A′
3B3C3

. (13)

In this case, Alice1, Alice2, Bob and Charlie have qubits (A1, A2, A3), (A′
1, A

′
2, A

′
3),

(B1, B2, B3) and (C1,C2,C3), respectively. The detailed execution steps are as fol-
lows.

Step 1 For performing controlled JRSP of arbitrary three-qubit states, Alice1 needs
to perform a projective measurement on her qubits (A1, A2, A3) with the three-qubit
mutually orthogonal measurement basis {|ξk〉|k = 0, 1, · · · , 7}. The special measure-
ment basis is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|ξ0〉
|ξ1〉
|ξ2〉
|ξ3〉
|ξ4〉
|ξ5〉
|ξ6〉
|ξ7〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 a3 a4 a5 a6 a7
a1 −a0 a3 −a2 a5 −a4 −a7 a6
a2 −a3 −a0 a1 a6 a7 −a4 −a5
a3 a2 −a1 −a0 a7 −a6 a5 −a4
a4 −a5 −a6 −a7 −a0 a1 a2 a3
a5 a4 −a7 a6 −a1 −a0 −a3 a2
a6 a7 a4 −a5 −a2 a3 −a0 −a1
a7 −a6 a5 a4 −a3 −a2 a1 −a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ad

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

There may be eight measurement outcomes on qubits (A1, A2, A3). After Alice1
measured the states of these qubits, the quantum channel |Q〉 has collapsed to

|Q(k)〉A′
1B1C1A′

2B2C2A′
3B3C3

= A1A2A3〈ξk |Q〉 (k = 0, 1, · · · , 7).

Then, via classical channel, Alice1 sends the message k to Alice2, Bob and Charlie
about her the projective measurement outcome |ξk〉.
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Step 2 By using feed-forward measurement, Alice2 utilizes Alice1’s measurement
message k and the set {α0, α1, · · · , α7} to construct the corresponding measurement
basis {|η(k)

m 〉|m = 0, 1, · · · , 7} (k = 0, 1, · · · , 7), which is given by

⎛
⎜⎜⎜⎜⎝

|η(k)
0 〉

|η(k)
1 〉
...

|η(k)
7 〉

⎞
⎟⎟⎟⎟⎠ = 1

2
√
2
W (k)(α)

⎛
⎜⎜⎜⎝

|000〉
|001〉

...

|111〉

⎞
⎟⎟⎟⎠ , (15)

where

W (0)(α) = W (α0, α1, α2, α3, α4, α5, α6, α7)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−iα0 e−iα1 e−iα2 e−iα3 e−iα4 e−iα5 e−iα6 e−iα7

e−iα0 −e−iα1 e−iα2 −e−iα3 e−iα4 −e−iα5 −e−iα6 e−iα7

e−iα0 −e−iα1 −e−iα2 e−iα3 e−iα4 e−iα5 −e−iα6 −e−iα7

e−iα0 e−iα1 −e−iα2 −e−iα3 e−iα4 −e−iα5 e−iα6 −e−iα7

e−iα0 −e−iα1 −e−iα2 −e−iα3 −e−iα4 e−iα5 e−iα6 e−iα7

e−iα0 e−iα1 −e−iα2 e−iα3 −e−iα4 −e−iα5 −e−iα6 e−iα7

e−iα0 e−iα1 e−iα2 −e−iα3 −e−iα4 e−iα5 −e−iα6 −e−iα7

e−iα0 −e−iα1 e−iα2 e−iα3 −e−iα4 −e−iα5 e−iα6 −e−iα7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W (1)(α) = W (α1, α0, α3, α2, α5, α4, α7, α6),

W (2)(α) = W (α2, α3, α0, α1, α6, α7, α4, α5),

W (3)(α) = W (α3, α2, α1, α0, α7, α6, α5, α4),

W (4)(α) = W (α4, α5, α6, α7, α0, α1, α2, α3),

W (5)(α) = W (α5, α4, α7, α6, α1, α0, α3, α2),

W (6)(α) = W (α6, α7, α4, α5, α2, α3, α0, α1),

W (7)(α) = W (α7, α6, α5, α4, α3, α2, α1, α0).

After hearing Alice1’s outcome k, Alice2 performs a three-qubit measurement on
qubits (A′

1, A
′
2, A

′
3) with the basis {|η(k)

m 〉|m = 0, 1, · · · , 7} and informs Bob and
Charlie of the measurement results. According to their priori agreement, a cbit mes-
sage m corresponds to the measurement result |η(k)

m 〉. Then, the quantum state of the
remaining six qubits B1, B2, B3,C1,C2 and C3 will collapse into the following state

|Q(k)
m 〉B1C1B2C2B3C3 = A′

1A
′
2A

′
3
〈η(k)

m |A1A2A3〈ξk |Q〉 (m = 0, 1, · · · , 7).
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Step 3 After Charlie obtains the messages k and m, he needs to measure the qubits
(C1,C2,C3) in terms of the basis {|ε±

j 〉}, respectively. That is to say,

|Q(k)
m 〉B1C1B2C2B3C3 = 1

8

∑
|ε±
1 〉C1 |ε±

2 〉C2 |ε±
3 〉C3 |Q±±±〉B1B2B3, (16)

where |Q±±±〉B1B2B3 is a combination of computable basis {|i jk〉 : i, j, k = 0, 1, 2}
that the coefficients of measurement basis |ε±

j 〉 ( j = 1, 2, 3) in Eq. (7) depend on the
messages k,m and the parameters cos θ j , sin θ j of the j th quantum channel.

Without loss of generality, assume that Alice1’s measurement result is |ξ2〉 and
Alice2’s measurement outcome is |η(2)

5 〉, then the quantum state of the remaining
qubits can be described as

|Q(2)
5 〉B1C1B2C2B3C3

= A′
1A

′
2A

′
3
〈η(2)

5 |A1A2A3〈ξ2|Q〉
= 1

8

∑
|ζC j 〉=|ε±

j 〉C j

Pε1 Pε2 Pε3 |ζC1〉 ⊗ |ζC2〉 ⊗ |ζC3〉

⊗ [a2eiα2 |000〉 − (−1)〈ε
−
3 |ζC3 〉a3eiα3 |001〉 + (−1)〈ε

−
2 |ζC2 〉a0eiα0 |010〉

+ (−1)〈ε
−
2 |ζC2 〉(−1)〈ε

−
3 |ζC3 〉a1eiα1 |011〉 − (−1)〈ε

−
1 |ζC1 〉a6eiα6 |100〉

− (−1)〈ε
−
1 |ζC1 〉(−1)〈ε

−
3 |ζC3 〉a7eiα7 |101〉 + (−1)〈ε

−
1 |ζC1 〉(−1)〈ε

−
2 |ζC2 〉a4eiα4 |110〉

− (−1)〈ε
−
1 |ζC2 〉(−1)〈ε

−
2 |ζC2 〉(−1)〈ε

−
3 |ζC3 〉a5eiα5 |111〉]B1B2B3 ,

(17)

Here, the state |ζC j 〉 ( j = 1, 2, 3) represents the measurement result of the qubit C j ,
and Pε j are given by

Pε j =
{
Pε+

j
, |ζC j 〉 = |ε+

j 〉C j ;
Pε−

j
, |ζC j 〉 = |ε−

j 〉C j .

Charlie performs the single-qubit measurement on qubitsC1, C2 and C3, respectively,
and announces the measurement results to Bob via classical channel.

Step 4According to the classical information fromAlice1, Alice2 and Charlie, Bob
needs to take corresponding unitary transformations U (k)

m (k,m ∈ {0, 1, · · · , 7}) to
restore the initial state in Eq. (11). Suppose that the measurement results of qubits
(A1, A2, A3), (A′

1, A
′
2, A

′
3) and (C1,C2,C3) are |ξ2〉, |η(2)

5 〉, |ζC1〉, |ζC2〉 and |ζC3〉,
respectively, then the unitary transformation U (2)

5 Bob needs to take is expressed as
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U (2)
5 = |010〉〈000| − (−1)〈ε

−
3 |ζC3 〉|011〉〈001| + (−1)〈ε

−
2 |ζC2 〉|000〉〈010|

+ (−1)〈ε
−
2 |ζC2 〉(−1)〈ε

−
3 |ζC3 〉|001〉〈011| − (−1)〈ε

−
1 |ζC1 〉|110〉〈100|

− (−1)〈ε
−
1 |ζC1 〉(−1)〈ε

−
3 |ζC3 〉|111〉〈101| + (−1)〈ε

−
1 |ζC1 〉(−1)〈ε

−
2 |ζC2 〉|100〉〈110|

− (−1)〈ε
−
1 |ζC1 〉(−1)〈ε

−
2 |ζC2 〉(−1)〈ε

−
3 |ζC3 〉|101〉〈111|.

As for the other measurement results of Alice1, Alice2 and Charlie, we can use the
similar method to implement the controlled JRSP protocol for arbitrary three-qubit
states.

From the above discussions, it can be seen that for any measurement outcome,
Bob can always use the corresponding unitary transformation on qubits (B1, B2, B3)

to reconstruct the initial state. Therefore, our scheme can be used to determinately
prepare arbitrary three qubit states, and the successful probability can reach up to
100%.

5 Controlled JRSP for arbitrary n-qubit states

For the convenience of discussion, we give a recursive method of constructing a new
kind of matrix from a given matrix: letW (β1, β2, · · · , β2n ) be a matrix composed of
2n column vectors β1, β2, · · · , β2n , we use recursive method to construct 2n−1 new
matrices.

Recursive method of constructing matrices (RMCM)

(I) When n = 1, we exchange β1 and β2 in W (1)(β1, β2) = W (β1, β2) to obtain a
new matrix W (2)(β2, β1).

(II) When n = 2, we first divide the vectors β1, β2, β3 and β4 inW (1)(β1, β2, β3, β4)

= W (β1, β2, β3, β4) into twogroups andobtain thematrixW ((β1, β2), (β3, β4)).
Secondly, we obtain matrix W ((β3, β4), (β1, β2)) = W (3)(β3, β4, β1, β2)

by exchanging (β1, β2) and (β3, β4). Finally, for each group in W ((β1, β2),
(β3, β4)) and W ((β3, β4), (β1, β2)), we get W (2)(β2, β1, β4, β3) and W (4)(β4,

β3, β2, β1) by using the method in (I). That is, we have

W (1)(β1, β2, β3, β4),W
(2)(β2, β1, β4, β3),

W (3)(β3, β4, β1, β2),W
(4)(β4, β3, β2, β1),

which is exactly the 22 matrices we need.
(III) when n = k + 1, we divide the vectors β1, β2, · · · , β2k+1 in W (1)(β1, β2, · · · ,

β2k+1) = W (β1, β2, · · · , β2k+1) into two groups and obtain the matrix
W ((β1, β2, · · · , β2k ), (β2k+1, β2k+2, · · · , β2k+1)), then exchange (β1, β2, · · · ,

β2k ) and (β2k+1, β2k+2, · · · , β2k+1) to get the matrix

W (2k+1)(β2k+1, β2k+2, · · · , β2k+1 , β1, β2, · · · , β2k )

= W ((β2k+1, β2k+2, · · · , β2k+1), (β1, β2, · · · , β2k )).
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For each group in W ((β1, β2, · · · , β2k ), (β2k+1, β2k+2, · · · , β2k+1)) and W
((β2k+1, β2k+2, · · · , β2k+1), (β1, β2, · · · , β2k )), we can obtain the 2k+1 desired
matrices

W (1)(β1, β2, β3, β4, · · · , β2k+1),

W (2)(β2, β1, β4, β3, · · · , β2k+1 , β2k+1−1),

· · ·
W (2k+1)(β2k+1 , β2k+1−1, · · · , β2, β1)

by using the technique in case n = k.

Now turn to our quantum task: we will extend the controlled JRSP protocols of prepar-
ing arbitrary two- and three-qubit states to arbitrary multi-qubit states. The n-qubit
state can be written as

|φ〉n =
2n−1∑
x=0

axe
iαx |dn · · · d2d1〉, d j ∈ {0, 1}, x =

n∑
j=1

d j · 2 j−1, (18)

here the real numbers ax (x = 0, 1, · · · , 2n − 1) satisfy the condition
∑2n−1

x=0 a2x = 1,
and the real numbers αx ∈ [0, 2π). The sender Alice1 only knows ax (x =
0, 1, · · · , 2n − 1), while the sender Alice2 only knows αx ∈ [0, 2π) (x =
0, 1, · · · , 2n − 1). Neither the receiver Bob nor the supervisor Charlie knows any-
thing about |φ〉n .

In this case, for preparing arbitrary n-qubit states, we need to employ the following
n partially entangled states

|Q〉A j A′
j B jC j

= 1√
2
(|0000〉 + cos θ j |1110〉

+ sin θ j |1111〉)A j A′
j B jC j

, j = 1, 2, · · · , n (19)

as quantum channel, where θ j ∈ [0, π/2] ( j = 1, 2, · · · , n) whose values are known
only to the supervisor Charlie. The qubits A j , A′

j , Bj and C j belong to the sender
Alice1, Alice2, the receiver Bob and the supervisor Charlie, respectively. The con-
trolled JRSP procedure is composed of the following four steps.

Step 1 According to her own information ax (x = 0, 1, · · · , 2n − 1), Alice1 needs
to construct the special basis {|ξk〉|k = 0, 1, · · · , 2n−1} tomeasure her qubits A j ( j =
0, 1, · · · , 2n − 1):

[|ξ j 〉]T = [|ξ0〉, |ξ1〉, · · · , |ξ2n−1〉]T = Un
n [|λ〉]T , (20)

where [|λ〉] = [|0 · · · 00〉, |0 · · · 01〉, · · · , |1 · · · 11〉]. In Ref.[23], the concrete con-
struction processes of 2n × 2n matrix Un

n can be elaborated as follow: First, set
the elements of 1th and (2n−1 + 1)th rows together with the 1th and (2n−1 + 1)th
columns as (14); Second, if n ≥ 2, set Un

n (i, j) = Un−1
n−1 (i, j), here 2 ≤ i, j ≤ 2n−1.

123



340 Page 14 of 18 J.-Y. Peng et al.

The Un
n (i, j) represents the element in the i th row and the j th column of the

matrix Un
n ; Third, according to the special properties of the unitary matrix, set∑2n

i=1U
n
n (i, j) · Un

n (i, k) = 0, here 2 ≤ j ≤ 2n−1, k = 1, 2n−1 + 1. Then we
can obtain the elements from 2nd column to 2n−1th of the matrix Un

n ; Finally, based
on the equation

∑2n
j=1U

n
n (i, j) · Un

n (l, j) = 0(2 ≤ i ≤ 2n, l = 1, 2n−1 + 1, i �= l),

the elements from (2n−1 + 2)th column to 2n th column can be derived. Hence, from
the above steps the whole elements of the matrix Un

n can be obtained.

Un
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 · · · a2n−1−1 a2n−1 a2n−1+1 · · · a2n−1

a1
. . . · · · · · · a2n−1+1 · · · · · · · · ·

...
...

. . . · · · · · · · · · · · · · · ·
a2n−1−1

...
...

. . . a2n−1 · · · · · · · · ·
a2n−1 −a2n−1+1

... −a2n−1 −a0 a1 · · · a2n−1−1

a2n−1+1
...

...
... −a1

. . . · · · · · ·
...

...
...

...
...

...
. . . · · ·

a2n−1
...

...
... −a2n−1−1

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

Actually, when n = 1, we can obtain

U 1
1 =

(
a0 a1
a1 −a0

)
,

and when n ≥ 2, we can use the above method to obtain the matrix Un
n .

Step 2 By using information α j ( j = 0, 1, · · · , 2n − 1) and Alice1’s measurement

outcome k, Alice2 should construct a special basis {|η(k)
m 〉|m = 0, 1, · · · , 2n − 1} to

measure her particle A′
j ( j = 0, 1, · · · , 2n − 1).

[|η(k)
m 〉]T = [|η(k)

0 〉, |η(k)
1 〉, · · · , |η(k)

2n−1〉]T = 1√
2n

W (k)
2n (α)[|λ〉]T , (22)

where the construction process of the matrix W (1)
2n (α) can described as follows by

using the matrix Un
n : replaces column 1, column 2, · · · , column 2n of the matrix

Un
n with e−iα0�, e−iα1�, · · · , e−iα2n−1�, respectively, here � is a 2n × 1 matrix

(1, 1, · · · , 1)T , i.e., � = (1, 1, · · · , 1)T . And then the sign (positive or negative
sign) of each element in W (1)

2n (α) is exactly the same as that of the corresponding

element inUn
n . Obviously,W

(1)
2n (α) depends on α0, α1, · · · , α2n−1; thus,W

(1)
2n (α) can

be denoted as W (1)
2n (α0, α1, · · · , α2n−1). Based on W (1)

2n (α0, α1, · · · , α2n−1), we can

obtain W (2)
2n (α),W (3)

2n (α), · · · , W (2n−1)
2n (α) by using the above RMCM.

It is worth mentioning that for a fixed k, {|η(k)
m 〉|m = 0, 1, · · · , 2n − 1} is a set of

completely orthogonal bases in Hilbert space C2n .
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Step 3 After Charlie hears the information from Alice1 and Alice2, he needs to
implement measurement basis |ε±

j 〉 in Eq. (7) on qubit C j one by one and announces
his measurement results to Bob in a classic channel subsequently. Thus, the quantum
state of the whole system can be written as

|Q〉total = |Q〉A1A′
1B1C1

⊗ |Q〉A2A′
2B2C2

⊗ · · · ⊗ |Q〉An A′
n BnCn

=
∑

|ζC j 〉=|ε±
j 〉C j

∑
m,k=0,1,··· ,2n−1

1

2n

n∏
j=1

Pε j |ξk〉A1A2···An |η(k)
m 〉A′

1A
′
2···A′

n

⊗ |ζC1〉 ⊗ |ζC2〉 ⊗ · · · ⊗ |ζCn 〉 ⊗ |T (k)
m 〉B1B2···Bn ,

(23)

where the state |ζC j 〉 ( j = 1, 2, · · · , n) represents the measurement result of the qubit
C j , and Pε j are given by

Pε j =
{
Pε+

j
, |ζC j 〉 = |ε+

j 〉C j ;
Pε−

j
, |ζC j 〉 = |ε−

j 〉C j ,

here |ε±
j 〉 is related to the parameters of the j th quantum channel. And the value of

probability parameter Pε j depends on the measurement result of qubit C j .
Step 4 After hearing all the measurement results from Alice1, Alice2 and Charlie,

Bob needs to recover the initial state in Eq. (18) by adopting corresponding Pauli
operations σx and σz that depends on the different value of n and measurement results.
Definitely, the recover operator can be seen in Eq. (10) for n = 2.

It is worth emphasizing that our schemes are applicable to the controlled JRSP
protocol for arbitrary multi-qubit states with the successful probability of 100%.

6 Discussion and conclusion

In Sects. 3–5, the total success probability for each scheme is 100% for whatever
entanglement degree of the shared resource in terms of the quantum state |Q〉, that is,
our protocols are deterministic. It is commonly thought that the quality of a protocol
scales with the degree of the shared entanglement. But, quite counter-intuitively, there
exist kinds of information-theoretic tasks for which less entanglement turns out to be
more useful [27–29]. Coming back to our problem, one may ask: “How if the receiver
Bob (not the supervisor Charlie) knows θ j ?” In this case Charlie measures his qubits
in the basis {|±〉 = (|0〉 ± |1〉)/√2}. It is not difficult to verify that then Bob can still
recover the target state by sacrificing additional resource and operations, yet always
succeed he cannot.

In the controlled JRSP scheme proposed in this paper, we mainly apply entangled
resources, projective measurements and multi-qubit unitary transformations. From
Sect. 2, we can see that the entanglement resources we employ can be generated by
unitary operators. It has beenproved that arbitrarymulti-qubit unitary operations canbe
composed of single-qubit unitary transformations and two-qubit CNOT gates in quan-
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tum information [30]. Meanwhile, the single-qubit unitary operations and two-qubit
CNOT gates can be realized in different physical experiments, such as the linear optics
[31,32], ion traps [33,34] and cavity QED system [35]. Consequently, the entangled
resources and multi-qubit unitary operations used in our schemes might be imple-
mented in physical experiments. Moreover, it can be seen that single-qubit projective
measurements and two-qubit projective measurements can be realized experimentally
in practice [36,37]. Additionally, themulti-qubit projectivemeasurement basis, similar
to Eqs. (4, 13, 19) in this paper, is available for the previous RSP proposals [38–40],
and the measurement basis in Eqs. (6), (15) and (21) are special cases in Eqs. (4), (13)
and (20), respectively. Hence, our protocols might be realizable physically in near
future.

In summary, we first construct the quantum circuit to output the state |Q〉 of Eq. (1).
Next we have forward perfect schemes for controlled JRSP of arbitrary two- and three-
qubit states and extended them to prepare arbitrary multi-qubit states via the quantum
channel in terms of a suitable chosen non-maximally entangled resource |Q〉, whose
entangled degree is determined by parameters θ j . For each controlled JRSP scheme,
we have given the specific measurement basis performed by the two senders and the
supervisor, and also the unitary transformations needed to restore the initial states
by the receiver. Traditionally, the receiver is allowed to know the values of some θ j

and he/she can recover his/her qubits to be in the desired state after hearing all the
measurement outcomes. However, the receiver needs to pay for additional quantum
resources, quantum operations and quantum measurements, yet the performance can
only be probabilistic with the total success probability depending sensitively on some
θ j . In our schemes, we let the supervisor (instead of the receiver) know these θ j . If so,
the supervisor is able to do projective (not POVM) measurements on his/her qubits in
the right basis determined by θ j , so that the receiver needs a proper unitary transfor-
mation to faithfully obtain the target state without consuming anything else. Another
crucial merit is that, combined with feed-forward measurements by the two preparers,
the total success probability of each of our protocols is always 1, independent of the
entanglement degree of the quantum channel. Although entanglement is necessary,
any amount (even tiny) of it does equally well in our protocols. This feature is very
interesting and amazing in exploring entanglement, especially partial entanglement, to
complete global quantum tasks through local operation and classical communication.
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