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Abstract
A particularly simple description of separability of quantum states arises naturally
in the setting of complex algebraic geometry, via the Segre embedding. This is a
map describing how to take products of projective Hilbert spaces. In this paper, we
show that for pure states of n particles, the corresponding Segre embedding may be
described by means of a directed hypercube of dimension (n − 1), where all edges
are bipartite-type Segre maps. Moreover, we describe the image of the original Segre
map via the intersections of images of the (n−1) edges whose target is the last vertex
of the hypercube. This purely algebraic result is then transferred to physics. For each
of the last edges of the Segre hypercube, we introduce an observable which measures
geometric separability and is related to the trace of the squared reduced density matrix.
As a consequence, the hypercube approach allows to measure entanglement, naturally
relating bipartitions with q-partitions for any q ≥ 1. We test our observables against
well-known states, showing that these provide well-behaved and fine measures of
entanglement.
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1 Introduction

Quantumentanglement is at the heart of quantumphysics,with crucial roles in quantum
information theory, superdense coding and quantum teleportation among others. An
important problem in entanglement theory is to obtain separability criteria.While there
is a clear definition of separability, in general it is difficult to determinewhether a given
state is entangledor separable.A refinement of this problem is to quantify entanglement
on a given entangled state. This is a broadly open problem, in the sense that there is
not a unique established way of measuring entanglement, which might depend on the
initial set-up and applications on has in mind. There is, however, a general consensus
on the desirable properties of a good entanglement measure [11,22]. Directly attached
to measuring entanglement is the notion of maximally entangled state, central in
teleportation protocols.

Many different entanglement measures and the corresponding notions of maxi-
mal entanglement have been proposed. Methods range from using Bell inequalities,
looking at inequalities in the larger scheme of entanglement witnesses, spin squeez-
ing inequalities, entropic inequalities, the measurement of nonlinear properties of the
quantumstate or the approximationof positivemaps.We refer to the exhaustive reviews
[11,16,19] for the basic aspects of entanglement including its history, characterization,
measurement, classification and applications.

A particularly simple description of separability of quantum states arises naturally
in the setting of complex algebraic geometry. In this setting, pure multiparticle states
are identified with points in the complex projective space PN , the set of lines of the
complex space CN+1 that go through the origin. Entanglement is then understood via
the categorical product of projective spaces: the Segre embedding. This is a map of
complex algebraic varieties

P
1× (n)· · · ×P

1 −→ P
2n−1, (1)

whose image, called theSegre variety, is described in termsof a family of homogeneous
quadratic polynomial equations in 2n variables, where n is the number of particles. The
points of the Segre variety correspond precisely to separable states (see for instance
[1,3]).

In this paper, we exploit this geometric viewpoint. There are numerous approaches
to entanglement via Segre varieties that are related to the present work [2,5,9,12–
14,20]. The hypercube viewpoint presented here connects the notions of bipartite and
q-partite in a geometric way.We describe the image of (1) bymeans of the intersection
of all Segre varieties defined via bipartite-type Segre maps

P
2�−1 × P

2n−�−1 −→ P
2n−1, for all 1 ≤ � ≤ n − 1. (2)
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Specifically, we show that a state is q-partite if and only if it lies in q of the images of
Segremaps of the form (2).We do this after showing that the Segre embedding (1) may
be decomposed in various equivalentways, leading to a hypercube of dimension (n−1)
whose edges are bipartite-typeSegremaps. In this framework, all the information about
the separability of the state is contained in the last applications (2) of the hypercube.

While the above results are extremely precise and intuitive, they are purely alge-
braic. In order to build a bridge from geometry to physics, we introduce a family
of observables {Jn,�}, with 1 ≤ � ≤ n − 1, which allow us to detect when a given
n-particle state belongs to each of the images of the bipartite-type Segre maps (2).
As a consequence, we obtain that a state is q-partite if and only if at least q of the
observables Jn,� vanish on this state, completely identifying the sub-partitions of the
system.Each of these observables are related to the trace of the squared reduced density
matrix, also known as the bipartite non-extensive Tsallis entropy with entropic index
two [17,21]. They are always positive on entangled states and our first applications
indicate that they provide well-behaved and fine measures of entanglement.

We briefly explain the contents of this paper.We beginwith awarm-up Sect. 2where
we detail the theory and results for the well-understood settings of two- and three-
particle states. In Sect. 3, we develop the geometric aspects of the paper. In particular,
we describe the Segre hypercube and prove Theorem 1 on geometric decomposability.
The main result of Sect. 4 is Theorem 2, where we match geometric decomposabil-
ity with our family of observables related to non-extensive entropic measures. The
two theorems are combined in Sect. 5, where we study entanglement measures for
pure multiparticle states of spin- 12 and apply our observables on various well-known
multiparticle states.

2 Warm-up: two and three particle states

We begin with the well-understood example of two-particle entanglement. The initial
set-up consists in two particles which can be shared between two different observers,
A and B, that can perform quantum measures to each of the particles. A general pure
state for two spin- 12 particles can be written as

|ψ〉AB = z0 |00〉 + z1 |01〉 + z2 |10〉 + z3 |11〉 , (3)

where zi are complex numbers that satisfy the normalization condition
∑ |zi |2 = 1.

The labels AB, whichwill be often omitted, indicate that A is acting on the first particle
while B is acting on the second, so

|i j〉 := |i〉A ⊗ | j〉B , for i, j ∈ {0, 1}.

Entanglement is a property that canbe inferred fromstatistical properties of different
measurements by the observers of the system. In particular, we can compute the sum of
the expected values of Ameasuring the spin of the state |ψ〉 in the different directions.
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With this idea in mind, we define:

JA⊗B(ψ) := 2 −
(

3∑

i=0

| 〈ψ | σi ⊗ I2 |ψ〉 |2
)

,

where σi , for i = 1, 2, 3, denote the Pauli matrices, σ0 = I2 is the identity matrix of
size two, and ⊗ denotes the Kronecker product. Using the expression (3) for |ψ〉 we
obtain

JA⊗B(ψ) = 4|z0z3 − z1z2|2.

It is well known that the state |ψ〉 is entangled if and only if

z0z3 − z1z2 = 0.

Therefore, we find that |ψ〉 is a product state if and only if JA⊗B(ψ) = 0. When
JA⊗B(ψ) > 0 we have an entangled state, which is considered to be maximally
entangled when the observable reaches its maximum value at JA⊗B(ψ) = 1.

The measure given by JA⊗B(ψ) may also be interpreted in terms of the density
matrix operator. If ρA denotes the reduced density matrix for the subsystem A, then

JA⊗B(ψ) = 2
(
1 − TrAρ2

A

)
.

The characterization of entanglement has a simple geometric interpretation. Note
first that a general pure state for a single spin- 12 particle may be written as

z0 |0〉 + z1 |1〉 where |z0|2 + |z1|2 = 1.

In particular, such a state is determined by the pair of complex numbers (z0, z1) and
the normalization condition ensures (z0, z1) 	= (0, 0). This allows one to consider the
corresponding equivalence class [z0 : z1] in the complex projective line P1. This space
is defined as the set of lines ofC2 that go through the origin. The class [z0 : z1] denotes
the set of all points (z′0, z′1) ∈ C

2\{(0, 0)} such that there is a nonzero complex number
λwith (z0, z1) = λ(z′0, z′1). Note that, by construction, we have [z0 : z1] = [λz0 : λz1]
for all λ ∈ C

∗.
In summary, every one particle state of spin- 12 defines a unique point in P

1. Con-
versely, given a point [z0 : z1] ∈ P

1 we may choose a representative (z0, z1) such that
|z0|2 + |z1|2 = 1 and so it determines a unique pure state z0 |0〉+ z1 |1〉 up to a global
phase which does not affect any state measurements.

This one-to-one correspondence between pure states and points in the projective
space generalizes analogously to several particles: pure states for n particles of spin- 12
correspond to points in P

2n−1. This correspondence is just a way of describing the
projectivization of the Hilbert space of quantum states.

For our two-particle case, since the state |ψ〉 introduced in (3) is determined by the
normalized set of complex numbers (z0, z1, z2, z3)we obtain a point [ψ] := [z0 : z1 :
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z2 : z3] in the complex projective space P3, the set of lines in C
4 going through the

origin. Interestingly for the study of entanglement, there is a map

f A⊗B : P1
A × P

1
B −→ P

3
AB,

called the Segre embedding, defined by the products of coordinates

[a0 : a1], [b0 : b1] �→ [a0b0 : a0b1 : a1b0 : a1b1].

The Segre map is the categorical product of projective spaces, describing how to take
products on projective Hilbert spaces. The image of this map

ΣA⊗B := Im( f A⊗B)

is called the Segre variety. This is a complex algebraic variety of dimension 2 and
is given by the set of points [z0 : z1 : z2 : z3] ∈ P

3 satisfying the single quadratic
polynomial equation

z0z3 − z1z2 = 0.

Therefore, product states correspond precisely to points in the Segre variety and

JA⊗B(ψ) = 0 ⇐⇒ [ψ] ∈ ΣA⊗B .

As a consequence, |ψ〉AB is a product state if and only if its corresponding point [ψ]
in P3 lies in the Segre variety ΣA⊗B .

The entanglement of three particle states is also well understood in the literature
[8]. However, this case already exhibits some non-trivial facts that arise in the geo-
metric interpretation of entanglement. We briefly review this case before discussing
the general set-up.

A general pure state for three spin- 12 particles can be written as

|ψ〉ABC = z0 |000〉 + z1 |001〉 + z2 |010〉 + z3 |011〉
+z4 |100〉 + z5 |101〉 + z6 |110〉 + z7 |111〉 . (4)

As in the two-particle case, zi are complex numbers that satisfy the normalization
condition

∑ |zi |2 = 1. Now we have a third observer, C , in addition to A and B, so

|i jk〉 := |i〉A ⊗ | j〉B ⊗ |k〉C for i, j, k ∈ {0, 1}.

We will first measure bipartitions: the separability of this state into states of the
form

|ϕ〉A ⊗ |ϕ′〉BC or |ϕ〉AB ⊗ |ϕ′〉C .
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For the first case, we define the observable

JA⊗BC (ψ) := 2 −
(

3∑

i=0

| 〈ψ | σi ⊗ I4 |ψ〉 |2
)

= 4
{
= |z0z5 − z1z4|2 + |z0z6 − z2z4|2 + |z0z7 − z3z4|2

+|z1z6 − z2z5|2 + |z1z7 − z3z5|2 + |z2z7 − z3z6|2
}

,

where the last equality will be proven in Sect. 4. Let us for now interpret this expression
geometrically. Our state |ψ〉 corresponds to a point in P

7 and bipartitions of type
A ⊗ BC are geometrically characterized by the Segre embedding

f A⊗BC : P1
A ⊗ P

3
BC −→ P

7
ABC

defined by sending the tuples [a0 : a1], [b0 : b1 : b2 : b3] to the point of P7 given by

[a0b0 : a0b1 : a0b2 : a0b3 : a1b0 : a1b1 : a1b2 : a1b3].

Specifically, the state |ψ〉 can be written as |ϕ〉A ⊗ |ϕ′〉BC if and only if the corre-
sponding point [ψ] = [z0 : · · · : z7] ∈ P

7 lies in the Segre variety

ΣA⊗BC := Im( f A⊗BC ).

The equations defining ΣA⊗BC , having set coordinates [z0 : · · · : z7] of Pn , are given
by the vanishing of all 2 × 2 minors of the matrix

(
z0 z1 z2 z3
z4 z5 z6 z7

)

.

Therefore, we see that

JA⊗BC (ψ) = 0 ⇐⇒ [ψ] ∈ ΣA⊗BC .

For the second case, we define:

JAB⊗C (ψ) := 2 −
⎛

⎝1

2

3∑

i, j=0

| 〈ψ | σi ⊗ σ j ⊗ I2 |ψ〉 |2
⎞

⎠

= 4
{
|z0z3 − z1z2|2 + |z0z5 − z1z4|2 + |z0z7 − z1z6|2

+|z2z5 − z3z4|2 + |z2z7 − z3z6|2 + |z4z7 − z5z6|2
}

,

123



Characterization of quantum entanglement via a hypercube… Page 7 of 28 252

where again, the last equality is detailed in Sect. 4. Bipartitions of type AB ⊗ C are
now geometrically characterized by the Segre embedding

f AB⊗C : P3
AB ⊗ P

1
C −→ P

7
ABC .

The state |ψ〉 can be written as |ϕ〉AB ⊗ |ϕ′〉C if and only if the corresponding point
[ψ] = [z0 : · · · : z7] ∈ P

7 lies in the Segre variety

ΣAB⊗C := Im( f AB⊗C ).

In this case, the Segre variety ΣAB⊗C is given by all points [z0 : · · · : z7] ∈ P
7 such

that all 2 × 2 minors of the matrix

⎛

⎜
⎜
⎝

z0 z1
z2 z3
z4 z5
z6 z7

⎞

⎟
⎟
⎠

vanish. Therefore, we may conclude that

JAB⊗C (ψ) = 0 ⇐⇒ [ψ] ∈ ΣAB⊗C .

We may now ask about separability of the state |ψ〉 in a totally decomposed form

|ϕ〉A ⊗ |ϕ′〉B ⊗ |ϕ′′〉C .

It turns out that the above defined observables are sufficient in order to address this
question. This is easily seen using the geometric characterization of entanglement, as
we next explain. The total separability of the state |ψ〉ABC is geometrically character-
ized by the generalized Segre embedding

f A⊗B⊗C : P1
A × P

1
B × P

1
C −→ P

7
ABC

defined by sending the tuples [a0 : a1], [b0 : b1], [c0 : c1] to the point in P7 given by

[a0b0c0 : a0b0c1 : a0b1c0 : a0b1c1 : a1b0c0 : a1b0c1 : a1b1c0 : a1b1c1].

The state |ψ〉 is separable as A ⊗ B ⊗ C if and only if its associated point [ψ] ∈ P
7

lies in the generalized Segre variety given by

ΣA⊗B⊗C := Im( f A⊗B⊗C ).

The above generalized Segre embedding factors in two equivalent ways:

f A⊗B⊗C = f A⊗BC ◦ (IA × fB+C ) = f AB⊗C ◦ ( f A⊗B × IC ),
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so we have a commutative square

P
1
A × P

1
B × P

1
C

IA× fB+C

fA⊗B×IC
P
3
AB × P

1
C

fAB⊗C

P
1
A × P

3
BC

fA⊗BC
P
7
ABC

.

Wewill show (Theorem 1) that the Segre varietyΣA⊗B⊗C agrees with the intersection

ΣA⊗B⊗C = ΣA⊗BC ∩ ΣAB⊗C .

In particular, we have

JA⊗BC (ψ) = 0 and JAB⊗C (ψ) = 0 ⇐⇒ [ψ] ∈ ΣA⊗B⊗C .

In summary, the observables JAB⊗C and JA⊗BC determine separability of any
three particle state in the ABC order. Of course, one can also measure separability
for the orders BAC and CAB by consistently taking into account permutations of the
chosen Hilbert bases, as we next illustrate.

Consider the following well-known states and their corresponding points in the
projective space P7:

|Sep〉 = |000〉 [Sep] = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0]
|B1〉 = 1√

2
(|000〉 + |011〉) [B1] = [1 : 0 : 0 : 1 : 0 : 0 : 0 : 0]

|B2〉 = 1√
2

(|000〉 + |101〉) [B2] = [1 : 0 : 0 : 0 : 0 : 1 : 0 : 0]
|B3〉 = 1√

2
(|000〉 + |110〉) [B3] = [1 : 0 : 0 : 0 : 0 : 0 : 1 : 0]

|W 〉 = 1√
3

(|100〉 + |010〉 + |001〉) [W ] = [0 : 1 : 1 : 0 : 1 : 0 : 0 : 0]
|GHZ〉 = 1√

2
(|000〉 + |111〉) [GHZ] = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 1]

These can be taken as representatives for the six existing equivalence classes of three
particle states under SLOCC-equivalence. The state |Sep〉 is obviously separable and
|GHZ〉 and |W 〉 are the only genuinely entangled states.Moreover, these two entangled
states represent two different equivalence classes of entanglement [8]. The former
state, named after [10], is maximally entangled with respect to most entanglement
measures existing in the literature and its one-particle reduced density matrices are all
maximally mixed. The remaining states |Bi 〉 are 2-partite (depending on the order of
the Hilbert basis). We have the following table:

ABC Sep B1 B2 B3 W GHZ

JA⊗BC 0 1 1 0 8
9 1

JAB⊗C 0 0 1 1 8
9 1

J 0 1
2 1 1

2
8
9 1

123



Characterization of quantum entanglement via a hypercube… Page 9 of 28 252

Here, the labels ABC indicate we are measuring entanglement of the states with the
fixed order ABC and

J := 1

2
(JA⊗BC + JAB⊗C )

is the average measure. In particular, we see that while B1 and B3 are bipartite in
this order, the state B2 is classified as entangled. Note however that if we measure
entanglement with respect to the order ACB, the roles of B2 and B3 are exchanged
and we obtain the following table.

ACB Sep B1 B2 B3 W GHZ

JA⊗BC 0 1 0 1 8
9 1

JAB⊗C 0 0 1 1 8
9 1

J 0 1
2

1
2 1 8

9 1

The states |Sep〉, |W 〉 and |GHZ〉 are invariant under permutations of the basis
ABC and so the values of the observables always remain unchanged. Note as well
that |W〉 exhibits less entanglement than |GHZ〉 with respect to the above measures,
in agreement with the existing entanglement measures.

3 Hypercube of Segre embeddings

This section is purely mathematical. Given an integer n ≥ 2, we consider the gener-
alized Segre embedding

P
1× (n)· · · ×P

1 −→ P
2n−1

and introduce the notion of q-decomposability of a point z ∈ P
2n−1 for any integer

1 < q ≤ n. We show that q-decomposability is detected by looking at all the Segre
embeddings of the type

P
2�−1 × P

2n−�−1 −→ P
2n−1, for 1 ≤ � ≤ n − 1,

which accommodate as edges of a directed hypercube of Segre embeddings. Let us
first review some basic definitions and constructions.

The complex projective space P
N is the set of lines in the complex space C

N+1

passing through the origin. It may be described as the quotient

P
N := C

N+1 − {0}
z ∼ λz

, λ ∈ C
∗.

A point z ∈ P
N will be denoted by its homogeneous coordinates

z = [z0 : · · · : zN ]
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where, by definition, there is always at least an integer i such that zi 	= 0, and for any
λ ∈ C

∗ we have

[z0 : · · · : zN ] = [λz0 : · · · : λzN ].

Definition 1 Given positive integers k and �, the Segre embedding fk,� is the map

fk,� : Pk × P
� −→ P

(k+1)(�+1)−1

defined by sending a pair of points

a = [a0 : · · · : ak] ∈ P
k and b = [b0 : · · · : b�] ∈ P

�

to the point of P(k+1)(�+1)−1 whose homogeneous coordinates are the pairwise prod-
ucts of the homogeneous coordinates of a and b:

fk,�(a, b) = [· · · : zi j : · · · ] with zi j := aib j ,

where we take the lexicographical order.

The Segre embedding is injective, but not surjective in general. The image of fk,� is
called the Segre variety and is denoted by

Σk,� := Im( fk,�) =
⎧
⎨

⎩
[· · · : zi j : · · · ] ∈ P

(k+1)(�+1)−1;
zi j zi ′ j ′ − zi j ′ zi ′ j = 0,

∀ i 	= i ′ j 	= j ′

⎫
⎬

⎭
.

In other words, Σk,� is given by the zero locus of all the 2 × 2 minors of the matrix

⎛

⎜
⎝

z00 · · · z0�
...

. . .
...

zk0 · · · zk�

⎞

⎟
⎠ .

A combinatorial argument shows that there is a total of

ξk,� :=
(
k + 1
2

)

·
(

� + 1
2

)

= k · (k + 1) · � · (� + 1)

4

minors of size 2 × 2 in such a matrix.
The above construction generalizes to products of more than two projective spaces

of arbitrary dimensions as follows. Given positive integers k1, · · · , kn , let

N (k1, · · · , kn) := (k1 + 1) · · · (kn + 1) − 1.

For 1 ≤ j ≤ n, let [a j
0 : · · · : a j

k j
] denote coordinates of Pk j .
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Definition 2 The generalized Segre embedding

fk1,··· ,kn : Pk1 × · · · × P
kn −→ P

N (k1,··· ,kn)

is defined by letting

fk1,··· ,kn ([· · · : a1i1 : · · · ], · · · , [· · · : anin : · · · ]) := [· · · : zi1···in : · · · ]

where

zi1···in = a1i1 · · · anin
and the lexicographical is assumed. Denote the generalized Segre variety by

Σk1,··· ,kn := Im( fk1,··· ,kn ).

It follows from the definition that every generalized Segre embedding may be
written as compositions of maps of the form

Im × fk,� × Im′

for certain values of m, k, � and m′, where Im denotes the identity map of Pm . These
compositions may be arranged in a directed (n−1)-dimensional hypercube, where the
initial vertex is Pk1 ×· · ·×P

kn and the final vertex is PN (k1,··· ,kn). Note that the (n−1)
final edges of the hypercube (those edges whose target is the final vertex PN (k1,··· ,kn))
are given by Segre embeddings of bipartite-type

fN (k1,··· ,k j ),N (k j+1,··· ,kn) : PN (k1,··· ,k j ) × P
N (k j+1,··· ,kn) −→ P

N (k1,··· ,kn),

where 1 ≤ j ≤ n − 1.

Example 1 For the generalized Segre embedding f1,1,1,1 characterizing entanglement
of 4 particle states of spin- 12 , we obtain a cube with commutative faces

P
1 × P

1 × P
1 × P

1

f1,1×I×I

I× f1,1×I

I×I× f1,1
P
1 × P

1 × P
3

f1,1×I

I× f1,3

P
1 × P

3 × P
1

f1,3×I

I× f3,1
P
1 × P

7

f1,7P
3 × P

1 × P
1 I× f1,1

f3,1×I

P
3 × P

3

f3,3

P
7 × P

1 f7,1
P
15

.
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We next state a general decomposability result for arbitrary products of projective
spaces. Since our interest lies in spin- 12 particle systems, for the sake of simplicity we
will restrict to the case where the initial spaces are projective lines. For any integer
m ≥ 1, let

Nm := N (1,
(m)· · ·, 1) = 2m − 1.

Wewill consider the decompositions associatedwith the generalized Segre embedding

P
1× (n)· · · ×P

1 −→ P
Nn .

Definition 3 Let n ≥ 2 and 1 < q ≤ n be integers. We will say that a point z ∈
P
Nn is q-decomposable if and only if there exist positive integers m1, · · · ,mq with

m1 + · · · + mq = n such that

z ∈ ΣNm1 ,··· ,Nmq
.

Note that every q-decomposable point is also (q − 1)-decomposable. If z is not 2-
decomposable, we will say that it is indecomposable.

Points that are q-decomposable will correspond precisely to q-partite states and
indecomposable points will correspond to entangled states.

Example 2 A point z in P3 is 2-decomposable if and only if z ∈ Σ1,1. Otherwise, it is
indecomposable. A point z in P

7 is 2-decomposable if and only if z ∈ Σ3,1 ∪ Σ1,3.
It is 3-decomposable if and only if z ∈ Σ1,1,1. The following result shows that z is
actually 3-decomposable if and only if z ∈ Σ3,1 ∩ Σ1,3, so that it is 2-decomposable
in every possible way. In physical terms, it just says that a state is 3-partite if and only
if it is 2-partite when considering both types of bipartitions.

Theorem 1 (Generalized Decomposability) Let n ≥ 2 and 1 < q ≤ n be integers. A
point z ∈ P

Nn is q-decomposable if and only if it lies in at least q − 1 different Segre
varieties of the form ΣN�,Nn−�

, with 1 ≤ � ≤ n − 1.

For the particular extreme cases, we have that a point z ∈ P
Nn is:

{
Indecomposable ⇐⇒ z /∈ ΣN�,Nn−�

, for all 1 ≤ � ≤ n − 1.
n-decomposable ⇐⇒ z ∈ ΣN�,Nn−�

, for all 1 ≤ � ≤ n − 1.

We refer to the Appendix for the proof. This result will be essential in the next
section, where we give a general method for measuring decomposability. Indeed,
Theorem 1 asserts that decomposability is entirely determined by the Segre varieties
ΣN�,Nn−�

for all 1 ≤ � ≤ n−1. Note that this family of varieties is the one arisingwhen
looking at the (n − 1) edges whose target is the last vertex of the (n − 1)-dimensional
hypercube and corresponds precisely to the family of all possible bipartitions of PNn .

This result will translate into taking (n − 1) measures of a given n-particle state,
in order to detect the level of decomposability of its associated point in the projective
space.
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Example 3 In view of Theorem 1, a point z in P15 is:

⎧
⎪⎪⎨

⎪⎪⎩

indecomposable ⇐⇒ z /∈ Σ7,1 ∪ Σ1,7 ∪ Σ3,3
2-decomposable ⇐⇒ z ∈ Σ7,1 ∪ Σ1,7 ∪ Σ3,3
3-decomposable ⇐⇒ z ∈ (Σ1,7 ∩ Σ7,1) ∪ (Σ1,7 ∩ Σ3,3) ∪ (Σ7,1 ∩ Σ3,3).

4-decomposable ⇐⇒ z ∈ Σ7,1 ∩ Σ1,7 ∩ Σ3,3

4 Operators controlling edges of the hypercube

Given an n-particle state, in this section we define (n−1) observables which measure
its entanglement. Let us first fix some notation. We will denote by

σ0 =
(
1 0
0 1

)

; σ1 =
(
0 1
1 0

)

; σ2 =
(
0 −i
i 0

)

; σ3 =
(
1 0
0 −1

)

and by Ik the identity matrix of size k.
The Kronecker product of two matrices A = (ai j ) ∈ Matk×k and B ∈ Matn×n is

the matrix of size kn × kn given by:

A ⊗ B :=
⎛

⎜
⎝

a11B · · · a1kB
...

...
...

ak1B · · · akkB

⎞

⎟
⎠ .

The Hermitian product of two complex vectors u = (u0, · · · , uk) and v =
(v0, · · · , vk) is

u · v =
k∑

i=0

uivi .

Also, let

||u||2 := u · u =
k∑

i=0

uiui .

For α a complex number, we denote |α| := ||α|| = √
α · α its absolute value.

We will use the Lagrange identity, which states that

||u||2 · ||v||2 − |u · v|2 =
k−1∑

i=0

k∑

j=i+1

|uiv j − u jvi |2.

Note that in many references, the term on the right side of the identity is often written
in the equivalent form |uiv j − u jvi |2 instead of |uiv j − u jvi |2.
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In order to describe n-particle states we fix an ordered basis of Nn = 2n −1 linearly
independent vectors of the corresponding Hilbert space

|i1 · · · in〉 = |i1〉O1
⊗ · · · ⊗ |in〉On

where O1, · · · ,On denote the different observers and {i1, · · · , in} ∈ {0, 1}, since we
are in the spin- 12 case. Using this basis, the coordinates for a general pure state for n
particles will be written as

|ψ〉O1···On
=

⎛

⎜
⎜
⎜
⎝

z0
z1
...

zNn

⎞

⎟
⎟
⎟
⎠

,

where zi are complex numbers satisfying the normalization condition

∑

i≥0

|zi |2 = 1.

Likewise, we will write:

〈ψ | = (z0, z1, · · · , zNn ).

Given such a state, we may consider its class [ψ] ∈ P
Nn by taking its homogeneous

coordinates

[ψ] = [z0 : · · · : zNn ],

where we recall that [z0 : · · · : zNn ] = [λz0 : · · · : λzNn ] for any λ ∈ C
∗.

For all � = 1, · · · , n − 1, define the following observable acting on n-particle
states:

Jn,�(ψ) := 2 −
⎛

⎝ 1

2�−1

3∑

i1,··· ,i�=0

| 〈ψ | σi1 ⊗ · · · ⊗ σi� ⊗ I2n−� |ψ〉 |2
⎞

⎠ .

The purpose of this section is to show that Jn,�(ψ) = 0 if and only if the class [ψ]
in the projective space PNn lies in the Segre variety ΣN�,Nn−�

.
The next two examples detail the computations of the observables introduced in

Sect. 2 for the cases of two and three particles, respectively. Note that we used a slightly
different notation, namely: For two particles, we have: JA⊗B ≡ J2,1 and ΣA⊗B ≡
Σ1,1. For three particles, we have: JA⊗BC ≡ J3,1, ΣA⊗BC ≡ Σ1,3, JAB⊗C ≡ J3,2,
and ΣAB⊗C ≡ Σ3,1.
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Example 4 For 2-particle states, we have a single observable

J2,1(ψ) = 2 −
(

3∑

i=0

| 〈ψ | σi ⊗ I2 |ψ〉 |2
)

.

Define vectors A0 = (z0, z1) and A1 = (z2, z3), so that 〈ψ | = (A0,A1). Then, we
have

J2,1(ψ) = 2 − (|A0·A0 + A1·A1|2 + |A0·A1 + A1·A0|2
+|A0·A1 − A1·A0|2 + |A0·A0 − A1·A1|2

)

= 1 − (|z0z0 + z1z1 + z2z2 + z3z3|2 + |z0z2 + z1z3 + z2z0 + z3z1|2
+ |−z0z2 − z1z3 + z2z0 + z3z1|2 + |z0z0 + z1z1 − z2z2 − z3z3|2

)

= 1 − (|z0z2 + z1z3 + z2z0 + z3z1|2 + |−z0z2 − z1z3 + z2z0 + z3z1|2
+ |z0z0 + z1z1 − z2z2 − z3z3|2

) = 4 |z0z3 − z1z2|2 .

Therefore, J2,1(ψ) = 0 if and only if [ψ] ∈ Σ1,1.

Example 5 For 3-particle states, we have two observables

J3,1(ψ) := 2 −
(

3∑

i=0

| 〈ψ | σi ⊗ I4 |ψ〉 |2
)

and

J3,2(ψ) := 2 −
⎛

⎝1

2

3∑

i, j=0

| 〈ψ | σi ⊗ σ j ⊗ I2 |ψ〉 |2
⎞

⎠ .

Write z = (A0,A1) where A0 = (z0, · · · , z3) and A1 = (z4, · · · , z7). Then, we
have

J3,1(ψ) = 2 − (|A0A0 + A1A1|2 + |A0A0 + A1A1|2 + |A0A1 + A1A0|2
+| − A0A1 + A1A0|2 + |A0A0 − A1A1|2)

= 1 − (|A0A1 + A1A0|2 + | − A0A1 + A1A0|2 + |A0A0 − A1A1|2)
= 4

{|z0z5 − z1z4|2 + |z0z6 − z2z4|2 + |z0z7 − z3z4|2
+|z1z6 − z2z5|2 + |z1z7 − z3z5|2 + |z2z7 − z3z6|2

}
.

Note that the numbers zi z j − z′j z′i correspond to the minors describing the zero
locus of Σ1,3. Indeed, this is determined by the vanishing of all the 2 × 2 minors of
the matrix

(
z0 z1 z2 z3
z4 z5 z6 z7

)

.

Therefore, J3,1(ψ) = 0 if and only if [ψ] ∈ Σ1,3.
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Likewise, writing z = (A0,A1,A2,A3) with A0 = (z0, z1), A1 = (z2, z3),
A2 = (z4, z5) and A3 = (z6, z7) we easily obtain

J3,2(ψ) = 4
{
|z0z3 − z1z2|2 + |z0z5 − z1z4|2 + |z0z7 − z1z6|2

+|z2z5 − z3z4|2 + |z2z7 − z3z6|2 + |z4z7 − z5z6|2
}

.

Note that the numbers zi z j − z′j z′i correspond to the minors describing the zero locus
of Σ3,1. Indeed, this is determined by the vanishing of all the 2 × 2 minors of the
matrix

⎛

⎜
⎜
⎝

z0 z1
z2 z3
z4 z5
z6 z7

⎞

⎟
⎟
⎠ .

Therefore, J3,2(ψ) = 0 if and only if [ψ] ∈ Σ3,1.

Returning to the general setting, note that the measures Jn,�(ψ) are related to the
trace of the squared density matrix for a given partition of the system. Indeed, the
density matrix for any physical state is a Hermitian operator and therefore can be
written in terms of σi as

ρ =
∑

i1,...in∈{1,2,3}
ci1,···i�σi1 ⊗ · · · ⊗ σi� ⊗ I2n−� + di�+1···in I2� ⊗ σi�+1 ⊗ · · · ⊗ σin ,

where we write explicitly the partition of the system in A and B. In this notation, the
reduced density matrix of the system A reads

ρA = 2n−�ci1,···i�σi1 ⊗ · · · ⊗ σi� .

We may now compute expectation values for our operators:

〈ψ | σi1 ⊗ · · · ⊗ σi� ⊗ I2n−� |ψ〉 = Tr
(
ρ · (σi1 ⊗ · · · ⊗ σi� ⊗ I2n−� )

)
,

and using the identity

Tr
(
(σi1 ⊗ · · · ⊗ σin ) · (σ j1 ⊗ · · · ⊗ σ jn )

) = 2nδi1 j1δi2 j2 · · · δin jn
we obtain

ci1,···il = 2n 〈ψ | σi1 ⊗ · · · ⊗ σi� ⊗ I2n−� |ψ〉 .
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We now compute the trace of the squared density matrix:

TrAρ2
A = 22(n−�)ci1,···il c j1,··· jlTr

(
(σi1 ⊗ · · · ⊗ σin ) · (σ j1 ⊗ · · · ⊗ σ jn )

)

= 2� 〈ψ | σi1 ⊗ · · · ⊗ σi� ⊗ I2n−� |ψ〉2

which leads to the identity

Jn,�(ψ) = 2
(
1 − TrAρ2

A

)
.

The main result of this section relates the operators Jn,� with the minors of order
two that define Segre varieties. In particular, our operators are directly related to the
entanglement measures studied in [18].

Theorem 2 Let |ψ〉 be a pure n-particle state and let 1 ≤ � ≤ n − 1. Then,

Jn,�(ψ) = 4
∑

I

|MI |2,

where the sum runs over all 2× 2 minors MI determining the zero locus of ΣN�,Nn−�
.

In particular,

Jn,�(ψ) = 0 ⇐⇒ [ψ] ∈ ΣN�,Nn−�
.

Proof Write (z0, · · · , zNn ) = (A0, · · · ,AN�
), where

A j = (z j(Nn−�+1), · · · , z j(Nn−�+1)+Nn−�
)

for j = 0, · · · , N�, so that each A j is tuple with Nn−� + 1 components. With this
notation, we have

Jn,�(ψ) = 4
N�−1∑

j=0

N�∑

k> j

(||A j ||2 · ||Ak ||2 − |A j · Ak |2).

Applying the Lagrange identity, we obtain

Jn,�(ψ) = 4
N�−1∑

j=0

N�∑

k> j

N�−1∑

s=0

N�∑

t>s

|A j,s · Ak,t − A j,t · Ak,s |2,

where Ai, j denotes the j-th component of the tuple Ai . It now suffices to note that
the numbers

A j,sAk,t − A j,tAk,s
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correspond to the minors MI . Indeed, the zero locus of ΣN�,Nn−�
is determined by the

vanishing of the 2 × 2 minors of the matrix

⎛

⎜
⎝

A0,0 · · · A0,Nn−�

...
...

AN�,0 · · · AN�,Nn−�

⎞

⎟
⎠ .

��

5 Physical interpretation

Given an integer n ≥ 1, we fix an ordered basis of Nn = 2n − 1 linearly independent
vectors of the Hilbert space of pure n-particle states of spin- 12

|i1 · · · in〉O1···On
= |i1〉O1

⊗ · · · ⊗ |in〉On
,

where O1, · · · ,On denote the different observers. We will omit the labels of the
observers, but one should note that, in the following, the chosen basis always has the
same fixed order unless stated otherwise.

Definition 4 Let 1 ≤ q ≤ n be an integer. An n-particle state |ψ〉 is said to be q-partite
if it can be written as

|ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψq〉 ,

where |ψi 〉 are ni -particle states, with ni > 0 and n1 + · · · + nq = n.

1-partite states are called entangled, while n-partite states are called separable.
Physically, separable states are those that are uncorrelated. A product state can thus
be easily prepared in a local way: each observer Oi produces the state |ψi 〉 and the
measurement outcomes for each observer do not depend on the outcomes for the other
observers.

A basic observation is that a state is separable if and only if it lies in the generalized
Segre variety of Definition 2 (see for instance [1]). Likewise, a state is q-partite if and
only if its corresponding projective point on P

Nn lies in a Segre variety of the form

ΣNm1 ,··· ,Nmq

with m1, · · · ,mq positive integers such that m1 + · · · + mq = n. So q-partite states
correspond geometrically to the q-decomposable points of Definition 3. Combining
the results of the previous two sections, we have that an n-particle state |ψ〉 is q-partite
if and only if there are q − 1 indices �1, · · · , �q−1 with 1 ≤ �i ≤ n − 1 and �i 	= � j

such that Jn,�i (ψ) = 0. Indeed, from Theorem 1 we know that |ψ〉 is q-partite if and
only if its corresponding point [ψ] in PNn lies in at least q−1 different Segre varieties
of the form ΣN�,Nn−�

, with 1 ≤ � ≤ n − 1. Moreover, from Theorem 2 we know that
[ψ] ∈ ΣN�,Nn−�

if and only if Jn,�(ψ) = 0.
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Note that, a priori, given an n-particle state, one would have to take (n − 1)!
measures of bipartite type to completely determine its q-decomposability (namely,
for each possible bipartition, check further bipartitions recursively). The hypercube
approach tells us that it suffices to take (n−1)measures, corresponding to the operators
{Jn,�} in order to determine completely its q-decomposability.

In the remaining of the section, we study the behaviour of the observables Jn,� in
some particular cases of interest. We first introduce the average observable acting on
n-particle states:

J (ψ) := 1

n − 1

n−1∑

�=1

Jn,�(ψ).

Note that this is a measure of entanglement, in the sense that it does not increase under
LOCC. Indeed, assume that a state |ψ〉 is transformed, using LOCC, into an ensemble
{pi , |ϕi 〉}with∑

i pi = 1. Recall thatJn,�(ψ) = 2
(
1 − TrAρ2

A

)
for a certain partition

of the system into A ⊗ B, and so we have the well-known inequalities

Jn,�(ψ) ≥
∑

i

piJn,�(ϕi )

(see for instance [18,23]). Therefore, we obtain

J (ψ) = 1

n − 1

n−1∑

�=1

Jn,�(ψ) ≥ 1

n − 1

n−1∑

�=1

∑

i

piJn,�(ϕi )

=
∑

i

pi
1

n − 1

n−1∑

�=1

Jn,�(ϕi ) =
∑

i

piJ (ϕi ).

The two- and three-particle states discussed in Sect. 2 which are invariant under
permutations of the Hilbert basis (|Sep〉, |EPS〉, |GHS〉, |W 〉) allow for natural gener-
alizations to the n-particle case. We study their entanglement measures.

Note first that the separable n-particle state

|Sepn〉 := |0 (n)· · · 0〉

corresponds to the point in PNn given by

[Sepn] = [1 : 0 : · · · : 0]

and so one easily verifies that J (Sepn) = 0.
The Schrödinger n-particle state is a superposition of twomaximally distinct states

|Sn〉 := 1√
2

(

|0 (n)· · · 0〉 + |1 (n)· · · 1〉
)

.
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It generalizes the two-particle state |EPS〉 and the three-particle state |GHZ〉 and it
corresponds to the point in PNn given by

[Sn] = [1 : 0 : · · · : 0 : 1].

One easily computes Jn,�(Sn) = 1 for all 1 ≤ � ≤ n and so J (Sn) = 1. For n > 3,
it is not clear that the Schrödinger state exhibits maximal entanglement [15]. This
observation agrees with our measures for Jn,�, as we will see below.

We now consider a generalization of the W state for three particles, to the case of
n-particles. For each fixed integer 0 ≤ k ≤ n, these states are constructed by adding
all permutations of generators of the form

|1〉 ⊗ (k)· · · ⊗ |1〉 ⊗ |0〉⊗ (n−k)· · · ⊗ |0〉

with k states |1〉 and n − k states |0〉, together with a global normalization constant.
These are clearly invariant with respect to permutations of the basis. Denote such
states by

|Dn,k〉 =
(
n

k

)− 1
2 ∑

permut

|1〉⊗ (k)· · · ⊗ |1〉 ⊗ |0〉⊗ (n−k)· · · ⊗ |0〉 .

These are known as Dicke states [7]. Note that |Dn,0〉 = |Sepn〉 and |D3,1〉 = |W3〉.
In the case of four particles, we have

|D4,1〉 = 1√
4

(|1000〉 + |0100〉 + |0010〉 + |0001〉) ,

|D4,2〉 = 1√
6

(|1100〉 + |1010〉 + |1001〉 + |0110〉 + |0101〉 + |0011〉) ,

|D4,3〉 = 1√
4

(|1110〉 + |1101〉 + |1011〉 + |0111〉) .

Their corresponding points in P
15 are

|D4,1〉 = [0 : 1 : 1 : 0 : 1 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0],
|D4,2〉 = [0 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : 0 : 1 : 1 : 0 : 1 : 0 : 0 : 0],
|D4,3〉 = [0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 1 : 0 : 1 : 1 : 0].

We obtain the following table for the observables J4,�:

∣
∣D4,1

〉 ∣
∣D4,2

〉 ∣
∣D4,3

〉

J4,1
3
4 1 3

4J4,2 1 1 1
J4,3

3
4 1 3

4
J 5

6 1 5
6

Note J (D4,2) = 1 as is the case for the state |S4〉. For more than four particles, we
obtain values > 1 for the observables Jn,�. For instance, in the five-particle case, we
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have:
∣
∣D5,1

〉 ∣
∣D5,2

〉 ∣
∣D5,3

〉 ∣
∣D5,4

〉

J5,1
16
25

24
25

24
25

16
25

J5,2
24
25

27
25

27
25

24
25

J5,3
24
25

27
25

27
25

24
25

J5,4
16
25

24
25

24
25

16
25

J 4
5

51
50

51
50

4
5

.

In particular, we see that

J (D5,2) = J (D5,3) > J (S5) = 1.

For higher particle states, the same pattern repeats itself, with the middle states

|Dn,� n
2 �〉 and |Dn,� n

2 �〉

always exhibiting the largest entanglement as well as symmetries of the tables in both
directions.

We end this section with some notable examples in the four- and five-particle cases.
The state

|HS〉 = 1√
6

(
|1100〉 + |0011〉 + ω |1001〉 + ω |0110〉 + ω2 |1010〉 + ω2 |0101〉

)

where ω = e
2π i
3 is a third root of unity, was conjectured to be maximally entan-

gled by Higuchi–Sudbery [15] and it actually gives a local maximum of the average
two-particle vonNeumann entanglement entropy [4].Another highly (though notmax-
imally) entangled state, found by Brown–Stepney–Sudbery–Braunstein [6], is given
by

|BSSB4〉 = 1

2
(|0000〉 + |+〉 ⊗ |011〉 + |1101〉 + |−〉 ⊗ |110〉) ,

where |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). Our measures agree with these

facts, as shown in the table below.

|S4〉
∣
∣D4,2

〉 |BSSB4〉 |HS〉
J4,1 1 1 3

4 1
J4,2 1 1 5

4
4
3J4,3 1 1 1 1

J 1 1 1 10
9

.

In [25], a related measure of entanglement is introduced, based on vector lengths
and the angles between vectors of certain coefficient matrices. While this measure is
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strongly related to concurrence and hence to the observables J , their measure Eavg

does not distinguish the states |BSSB4〉 and |HS〉. In contrast, we do find that

1 = J (BSSB4) < J (HS).

In [6], a highly entangled five-particle state is described as

|BSSB〉5 = 1

2
(|000〉 ⊗ |Φ−〉 + |010〉 ⊗ |Ψ−〉 + |100〉 ⊗ |Φ+〉 + |111〉 ⊗ |Ψ+〉) ,

where |Ψ±〉 = |00〉 ± |11〉 and |Φ±〉 = |01〉 ± |10〉. Our measures give:

|S5〉
∣
∣D5,2

〉 |BSSB5〉
J5,1 1 24

25 1
J5,2 1 27

25
3
2

J5,3 1 27
25

5
4

J5,4 1 24
25 1

J 1 51
50

19
16

In particular, we see that

1 = J (S5) < J (D5,2) < J (BSSB5).

So far we have only considered pure states. As is well known, the identification of
quantum states with points in the complex projective space is only valid for pure states,
and so the approach to entanglement via the Segre embedding is very particular to the
pure setting. Indeed, recall that pure states of a single particle of spin- 12 are identified
with points in CP1, a space diffeomorphic to the sphere S2, while mixed states would
correspond to points in the interior of this sphere, so in the 3-dimensional ball B3,
which has S2 as its boundary. Still, via the convex roof construction, given a mixed
state with density matrix ρ one may extend the entanglement measure J by letting

J (ρ) := inf
∑

piJ (ϕi )

where the infimum is taken with respect to all ensembles {pi , |ϕi 〉} such that

ρ =
∑

pi |ϕi 〉 〈ϕi | with
∑

i

pi = 1.

Any operator defined via the convex roof construction of an entanglement measure is
again an entanglement measure, in the sense that it will still be non-increasing under
LOCC (see [11,24]). However, the interpretation of this entanglement measure as well
as its applicability is not clear and requires a more general framework than the one
provided by the hypercube of Segre embeddings presented here.
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6 Summary and conclusions

Within a purely geometric framework, we have described entanglement of n-particle
states in terms of a hypercube of bipartite-type Segre maps. For simplicity, in this
paperwe have restricted to spin- 12 particles, but the geometric results generalize almost
verbatim to the case of qudits. The hypercube picture allows to identify separability (or
more generally, q-decomposability) in terms of a depth factor within the hypercube:
the deeper a state lies in the hypercube, the more separable.

We have defined a collection of operators which measure the properties of a state in
the above geometric set-up. Given an n-particle state and having fixed an ordered basis
of the total Hilbert space, there are 2n−1 different decomposability possibilities, given
by the different ordered q-partitions, for 1 ≤ q ≤ n. A standard way to characterize
the decomposability of such a state would be to consider, for any possible bipartition,
all of its possible bipartitions in a recursive way. This gives a total of (n−1)!measures
to be taken. Our hypercube approach says that it suffices to take (n − 1) measures,
given by the operators Jn,�, with 1 ≤ � ≤ n − 1. So as the complexity of the problem
grows factorially, our solution just grows linearly on n.

The operators Jn,� measure the different bipartitions of the system, corresponding
geometrically with the last (n − 1) edges of the Segre hypercube. The expected value
of these operators is related with the quantum Tsalis entropy (q = 2) of both parts
of the state. The concrete values of � for which Jn,� vanishes show precisely in what
edge of the hypercube the state belongs or, more physically, in which parts the state
is separable.

To illustrate the physical interest of our approach, we have computed the value
of the operators Jn,� for various entangled states considered in the literature. The
motivation for many of them arises in quantum computing and are therefore classified
from the quantum control perspective. In all cases, the proposed observables give
results consistent with the expectations.

Acknowledgements We would like to thank Joan Carles Naranjo for his ideas in the proof of Lemma 1 as
well as the referee for useful comments.

A Proof of the Generalized Decomposability Theorem

This appendix is devoted to the proof of Theorem 1 on geometric decomposability.
Let us first consider the tripartite-type Segre embedding

fk1,k2,k3 : Pk1 × P
k2 × P

k3 → P
N (k1,k2,k3),

where we recall that

N (k1, · · · , kn) := (k1 + 1) · · · (kn + 1) − 1.

The following lemma relates the Segre varieties associated with it.
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Lemma 1 Let k1, k2, k3 be positive integers. Then

Σk1,k2,k3 = Σk1,N (k2,k3) ∩ ΣN (k1,k2),k3 .

Proof It suffices to prove the inclusion Σk1,N (k2,k3) ∩ ΣN (k1,k2),k3 ⊆ Σk1,k2,k3 . Recall
that we have identities

fk1,k2,k3 = fk1,N (k2,k3) ◦ (I × fk2,k3) = fN (k1,k2),k3 ◦ ( fk1,k2 × I).

Let a = [ai ], b = [b j ] and c = [ck] be coordinates for Pk1 , Pk2 and Pk3 , respectively.
We will also let x = [xi j ] and y = [y jk] be coordinates for PN (k1,k2) and P

N (k2,k3),
respectively, and z = [zi jk] will denote coordinates for PN (k1,k2,k3).

We have:

( fk1,k2 × I)(a, b, c) = (x, c), with xi j := aib j .

(I × fk2,k3)(a, b, c) = (a, y), with y jk := b j ck .

fN (k1,k2),k3(x, c) = (z), with zi jk := xi j ck .

fk1,N (k2,k3)(a, y) = (z), with zi jk := ai y jk .

Given a point z = (zi jk) ∈ P
N (k1,k2,k3), we claim the following:

1. z ∈ Σk1,N (k2,k3) if and only if all the 2 × 2 minors of the matrix

⎛

⎜
⎝

z000 · · · z0k2k3
...

...

zk100 · · · zk1k2k3

⎞

⎟
⎠

vanish, so that zi jk · zi ′ j ′k′ = zi ′ jk · zi j ′k′ for all i 	= i ′ and ( j, k) 	= ( j ′, k′).
2. z ∈ ΣN (k1,k2),k3 if and only if all the 2 × 2 minors of the matrix

⎛

⎜
⎝

z000 · · · z00k3
...

...

zk1k20 · · · zk1k2k3

⎞

⎟
⎠

vanish, so that zi jk · zi ′ j ′k′ = zi jk′ · zi ′ j ′k for all (i, j) 	= (i ′, j ′) and k 	= k′.
3. z ∈ Σk1,k2,k3 if and only if z ∈ ΣN (k1,k2),k3 , so that zi jk = xi j · ck , and x = (xi j ) ∈

Σk1,k2 . This last condition gives the vanishing of the 2 × 2 minors of the matrix

⎛

⎜
⎝

x00 · · · x0k2
...

...

xk10 · · · xk1k2

⎞

⎟
⎠ .

Therefore, we have xi j · xi ′ j ′ = xi j ′ · xi ′ j for all i 	= i ′, j 	= j ′. This gives identities

zi jk · zi ′ j ′k′ = xi j · ck · xi ′ j ′ · ck′ = xi ′ j · ck · xi j ′ · ck′ = zi ′ jk · zi j ′k′
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for all i 	= i ′, j 	= j ′ and k 	= k′.

Claims (1) and (2) are straightforward, while (3) follows from the identity

Σk1,k2,k3 = Im( fN (k1,k2),k3 ◦ ( fk1,k2 × I)).

Assume now that z ∈ Σk1,N (k2,k3) ∩ΣN (k1,k2),k3 . Then, the equations in (1) and (2)
are satisfied, and moreover, we may write zi jk = xi j · ck . To show that z ∈ Σk1,k2,k3
it only remains to prove that xi j · xi ′ j ′ = xi j ′ · xi ′ j for all i 	= i ′ and j 	= j ′. By (1),
we have

zi jk · zi ′ j ′k′ = xi j · ck · xi ′ j ′ · ck′ = xi ′ j · ck · xi j ′ · ck′ = zi ′ jk · zi j ′k′

for all i 	= i ′ and ( j, k) 	= ( j ′, k′). Take k = k′ such that ck 	= 0. This gives

c2k · xi j · xi ′ j ′ = c2k · xi ′ j · xi j ′ for all i 	= i ′ and j 	= j ′.

Since c2k 	= 0, we obtain the desired identities. ��

In order to prove the Generalized Decomposability Theorem, it will be useful to
denote the cubical decomposition of

P
1× (n)· · · ×P

1 −→ P
Nn

by the (n − 1)-dimensional hypercube whose vertices are given by tuples v =
(v1, · · · , vn−1) where vi ∈ {0, 1}, with initial vertex v0 = (0, · · · , 0) represent-

ing P
1× (n)· · · ×P

1 and final vertex v f = (1, · · · , 1) representing P
Nn . We will call

|v| := v1 + · · · + vn−1 the degree of a vertex. All edges are of the form

(v1, · · · , vn−1)
[ j]−→ (w1, · · · , wn−1)

where vi = wi for all i 	= j and w j = v j + 1 = 1, so that |w| = |v| + 1. Such an
edge represents a contraction of a product × at the position j via a Segre embedding.

Example 6 For example, the cubical representation of f1,1,1 is

(00)

[2]

[1]
(10)

[2]

(01)
[1]

(11)

,
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and the cubical representation of f1,1,1,1 is

(000)

[1]

[2]

[3]
(001)

[1]

[2]

(010)

[1]

[3]
(011)

[1](100)
[3]

[2]
(101)

[2]

(110)
[3]

(111)

.

We will say that a point z ∈ P
Nn lives in a vertex v = (v1, · · · , vn−1) if it is in the

image of the map v → v f given by the composition of all edges [i] such that vi = 0.
It follows that z is q-decomposable if and only if it lives in some vertex v of degree
|v| = n − q.

Lemma 2 Let v 	= v′ be two vertices of the same degree in the (n − 1)-dimensional
hypercube. Then, there is a unique 2-dimensional face of the form

w′

[ j]

[i]
v′

[ j]

v
[i]

w

and if z lives in w, v and v′, then it also lives in w′.

Proof Since |v| = |v′| and v 	= v′, there are i, j such that vi = 0, v′
i = 1, v j = 1,

v′
j = 0 and vk = v′

k for all k 	= i, j . Let w and w′ be the vertices whose components
are given by

wk = max{vk, v′
k} and w′

k = min{vk, v′
k}.

This gives the above commutative square. Assume now that z lives in w, v and v′. It
suffices to consider two cases:

Case j = i + 1. In this case, the above commutative square represents morphisms
of the form

A × P
k1 × P

k2 × P
k3 × B

IA×Ik1× fk2,k3×IB

IA× fk1,k2×Ik3×IB
A × P

N (k1,k2) × P
k3 × B

IA× fN (k1,k2),k3×IB

A × P
k1 × P

N (k2,k3) × B
IA× fk1,N (k2,k3)×IB

A × P
N (k1,k2,k3) × B,
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where A and B are products of projective spaces. Therefore, we can apply Lemma 1
to conclude that z lives in w′.

Case j < i + 1. In this case, the above commutative square represents morphisms
of the form

A × P
k1 × P

k2 × B × P
k3 × P

k4 × C A × P
N (k1,k2) × B × P

k3 × P
k4 × C

A × P
k1 × P

k2 × B × P
N (k3,k4) × C A × P

N (k1,k2) × B × P
N (k3,k4) × C

.

Since z lives in w we may decompose z = (zA, z12, zB, z34, zC ). Since it lives in v

we have z12 ∈ ΣN (k1,k2), and since it lives in v′ we have z34 ∈ ΣN (k3,k4). It directly
follows that z lives in w′. ��
Theorem 3 (Generalized Decomposability) Let n ≥ 2 and 1 < q ≤ n be integers. A
point z ∈ P

Nn is q-decomposable if and only if it is in at least q − 1 different Segre
varieties of the form ΣN�,Nn−�

, with 0 ≤ � ≤ n.

Proof Using the cubical representation introduced above, it suffices to show that if z
lives in q − 1 different vertices v1, · · · , vq−1 of degree |vi | = n − 2, then z lives in
a vertex of degree (n − q). By recursively applying Lemma 2, we find that z lives in
the vertex v∗ of degree (n − q) whose components are v∗

j = mini {vij }. This implies
that z is q-decomposable. The converse statement is trivial. ��
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