
Quantum Information Processing (2021) 20:259
https://doi.org/10.1007/s11128-021-03185-y

Multipartite entanglement and criticality in
two-dimensional XXZmodel

M. Tahir Iftikhar1 ·M. Usman1 · Khalid Khan1

Received: 3 September 2020 / Accepted: 8 July 2021 / Published online: 5 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We investigate the multipartite entanglement and the trace distance for the two-
dimensional XXZ anisotropic spin- 12 lattice and observe that the quantum phase
transition is independent of the chosen quantifier. It is found that for a many-body
quantum system the multipartite entanglement is more robust than the bipartite entan-
glement due to the monogamy property. Quantum renormalization group technique
is used to solve the two-dimensional XXZ model that results in only one unstable
fixed point (the critical point). In thermodynamic limit, the quantum phase transi-
tion point coincides with the critical point. After sufficient iterations of the quantum
renormalization group, we observe two different saturated values of the quantifiers
that represent two separate phases, the spin fluid phase and the Néel phase. The first
derivative and the scaling behavior of the renormalized entanglement quantifiers are
computed. At phase transition point, the non-analytic behavior of the first derivative
of the two quantifiers as a function of lattice size is examined and it is found that the
universal finite-size scaling law is obeyed. Furthermore, we observe that at the critical
point the scaling exponent for the multipartite entanglement and the trace distance can
describe the correlation length of the model.

Keywords Multipartite entanglement · Quantum phase transition · Quantum
renormalization group

1 Introduction

The quantifiers emerged from quantum information theory have been focused for the
characterization of the quantum phase transition (QPT), e.g., quantum correlations
[1–10] and the trace distance [11–15]. These measures are known to be useful to
detect the QPT without any prior knowledge of the order parameters. QPT of many-
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body correlated systems has gained a considerable attention in the recent past and has
become one of the interesting topics in the field of condensed-matter physics [16].
A QPT is a change in the behavior of the ground state that is caused at absolute
zero temperature where only quantum fluctuations are relevant. Due to a change in
an external parameter or a coupling constant, quantum fluctuations induce the QPT
[16,17]. At critical point, the existence of the QPT strongly influences the behavior of
many-body systems and has a relationwith the divergence of the correlation length and
the gap vanishing in the excitation spectrum. The behavior of a many-body system is
governed by non-analytic changes in the ground state of the system near the quantum
critical points.

The quantification of entanglement may help in finding and characterizing QPT,
since it may inherit the non-analytic behavior of the ground state energy [1–5]. Entan-
glement exhibits the nature of nonlocal correlations in quantum systems and can be
considered as a beneficial characteristic of quantum information and a more precise
resource of communication in quantum systems [18–20]. Quantum computations,
quantum cryptography, superdense coding and teleportation of an unknown quantum
state are some prominent applications of the quantum entanglement [20]. Most of the
work that has been done on the measurement of entanglement is focused on the bipar-
tite entanglement that can be estimated by using many quantifiers, e.g., concurrence
[21,22], von Neumann entropy [23], entanglement of formation [24] and negativ-
ity [25]. Bipartite entanglement only gives a partial characterization of a many-body
quantum system [26]. The entanglement distribution may be complex in a many-body
quantum system, because of more degrees of freedom, than in a two-body quantum
system. A common example of an N -partite entangled state to realize some quantum
information tasks is an N -qubit Greenberger–Horne–Zeilinger (GHZ) state [19],

|GHZ〉 = 1√
2

(
|00 · · · 0〉 + |11 · · · 1〉

)
. (1)

The reduced density matrix of the N -partite GHZ state is not an entangled state.

ρGHZ
AB = 1

2

(
|00〉〈00| + |11〉〈11|

)
. (2)

Therefore, the bipartite entanglement cannot reveal the characteristics of a many-
body quantum system and hence it is important to search for a suitable quantifier of
the entanglement that can measure the multipartite entanglement [26], even though
the use of entanglement in the study of QPT is complex in many particle systems [4,5].
Residual entanglement, based on the monogamy inequality, is the most widely used
measure of the entanglement between all bi-partitions and is different from the bipar-
tite entanglement [26–30]. Monogamy of entanglement is an important property and it
measures the relation of entanglement between different parties for amany-body quan-
tum system [27–30]. For any arbitrary N -qubit state, a general monogamy inequality
is obeyed by the squared entanglement of formation E2

f and it indicates that unlike the
classical correlations the quantum entanglement cannot be shared freely among three
or more parties. Therefore, in a many-body quantum system, the monogamy property
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can be useful in characterization of the entanglement structure. Themultipartite entan-
glement indicator (MEI) based on the monogamy inequality can effectively quantify
the multipartite entanglement by estimating the residual entanglement [31].

Trace distance has been investigated for many one-dimensional spin chains and can
also be verified experimentally by quantum state tomography and has been utilized
for the study of QPT in a coupled cavity lattice at a finite temperature [14,15]. It is
a metric on the space of the density matrices and is a commonly used quantifier to
measure how two states are distinguishable from each other [11]. It is invariant under
unitary operations, monotonous under local operations, strongly convex, sub-additive
and contractive [12,13]. Trace distance is different from the fidelity. In the fidelity
approach [32,33], two ground states are compared whose Hamiltonian parameters are
slightly varied, whereas a state is compared with its factorized state in trace distance
approach.

There are several analytical and numerical approximation methods being used to
study the QPT in many-body physics [16,17]. More specifically the traditional mean
field theory, that fails to recognize the quantum fluctuations in spin systems. This
problem is overcomeby considering themagnetic systems likeHeisenberg spinmodels
by using the idea of the renormalization, introduced byWilson in quantum field theory
(QFT). Afterward, based on renormalization, different methods have been introduced
to study QPT in many-body systems, such as the quantum renormalization group
(QRG) method [34], Monte Carlo renormalization group (MCRG) method [35] and
the density matrix renormalization group (DMRG) method [36]. In the framework of
DMRG, the trace distance has been studied for the detection of QPT [15]. MCRG and
DMRG usually provide more accurate quantitative results as compared to QRG but
the calculation of the critical exponents from the scaling behaviors often need high
precision that may be computationally expensive for these numerical methods. QRG
is an exquisite analytical method for the study of the QPT and the scaling behaviors at
absolute zero temperature. QRG has been used to investigate the quantum information
properties of critical systems recently and is found to be an efficient and powerful tool
to study the QPT in various systems [37–51]. In QRG, we applied Kadanoff’s block
approach [52] to reduce the degrees of freedom that is well suited to perform analytical
calculations in the lattice models and provide excellent results in higher dimensions
[45–48].

Spin- 12 XXZ model is one of the simplest models for the one-dimensional
anisotropic anti-ferromagnet [53]. In many-body systems, the computation of the
renormalized parameters and the critical exponents is a challenging task for the two-
dimensional Heisenberg XY model [45,47], whereas much simpler computations are
required for the two-dimensional XXZ model. XXZ model has a better description
of the QPT as compared to other spin models. A two-dimensional XXZ model can
be used to model the magnetic crystals (e.g., K2CuF4, ZnPSe3 and FePS3) [54–56],
high temperature superconductors (e.g., La2CuO4) [57,58], magnetic mono-layers
(e.g., CrI3) [59], super fluid films and lipid layers [60]. Despite the importance of the
two-dimensional XXZ model, it has not been studied yet in the framework of QRG
[61–63].

The paper is arranged as follows; in Sect. 2, we applied the QRG method to the
two-dimensional Heisenberg XXZ model to find the renormalized coupling strength
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and the anisotropy. Sect. 3 explores the dependence of the multipartite entanglement
and the trace distance on the anisotropy parameter. In Sect. 4, the renormalization,
scaling and the non-analyticity of the derivative of the two quantifiers are studied.
Sect. 5 is devoted for the conclusion made on the results obtained.

2 Implementation of QRG

We consider a two-dimensional anisotropic XXZ spin- 12 lattice of N sites. The Hamil-
tonian for this system can be written as,

H(J ,�) = J

4

N∑
i=1

N∑
j=1

[
(σ x

i, jσ
x
i+1, j + σ x

i, jσ
x
i, j+1) + (σ

y
i, jσ

y
i+1, j + σ

y
i, jσ

y
i, j+1)

+�(σ z
i, jσ

z
i+1, j + σ z

i, jσ
z
i, j+1)

]
, (3)

where � and J represent the anisotropy parameter and the coupling strength between
the neighboring sites, respectively. σ x , σ y and σ z are the usual Pauli matrices. The
Hamiltonian consists of three terms, the fixed quantum fluctuations in the system are
given by the first two terms while an anisotropy parameter � is introduced in the third
term.

We apply Kadanoff’s QRG technique and divide the whole lattice in blocks, as
shown in Fig. (1). For each QRG iteration, it is required a minimum number of five
sites in a block to produce a self-similar Hamiltonian.We choose site-3, i.e., site-(2, 2)
as the central site of each block. The Kadanoff’s procedure requires the decomposition
of the total Hamiltonian H into two parts, the intra-block Hamiltonian HB and the
inter-block Hamiltonian HBB ,

H = HB + HBB (4)

The block Hamiltonian hB
k for an arbitrary k-th block is,

hBk = J

4

[
(σ x

(2,2),kσ
x
(2,1),k + σ x

(2,2),kσ
x
(2,3),k + σ x

(2,2),kσ
x
(1,2),k + σ x

(2,2),kσ
x
(3,2),k )

+(σ
y
(2,2),kσ

y
(2,1),k + σ

y
(2,2),kσ

y
(2,3),k + σ

y
(2,2),kσ

y
(1,2),k + σ

y
(2,2),kσ

y
(3,2),k )

+�(σ z
(2,2),kσ

z
(2,1),k + σ z

(2,2),kσ
z
(2,3),k + σ z

(2,2),kσ
z
(1,2),k + σ z

(2,2),kσ
z
(3,2),k )

]
, (5)

and the interaction between k-th and (k + 1)-th block is represented by an inter-block
Hamiltonian hBB

k,k+1 and can be written as,

hBB
k,k+1 = J

4

[
(σ x

(2,3),kσ
x
(2,4),k+1 + σ x

(2,3),kσ
x
(1,3),k+1 + σ x

(2,3),kσ
x
(3,3),k+1 + σ x

(3,2),kσ
x
(3,1),k+1

+σ x
(3,2),kσ

x
(3,3),k+1 + σ x

(2,1),kσ
x
(3,1),k+1) + (σ

y
(2,3),kσ

y
(2,4),k+1 + σ

y
(2,3),kσ

y
(1,3),k+1

+σ
y
(2,3),kσ

y
(3,3),k+1 + σ

y
(3,2),kσ

y
(3,1),k+1 + σ

y
(3,2),kσ

y
(3,3),k+1 + σ

y
(2,1),kσ

y
(3,1),k+1)

+�(σ z
(2,3),kσ

z
(2,4),k+1 + σ z

(2,3),kσ
z
(1,3),k+1 + σ z

(2,3),kσ
z
(3,3),k+1 + σ z

(3,2),kσ
z
(3,1),k+1
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Fig. 1 Upper panel: two-dimensional spin lattice is divided into blocks each containing five spins interacting
with coupling strength J . Lower panel: the effective lattice is depicted by big blocks interacting with
renormalized coupling strength J ′ after QRG evolution

+σ z
(3,2),kσ

z
(3,3),k+1 + σ z

(2,1),kσ
z
(3,1),k+1)

]
. (6)

The block Hamiltonian (HB) and inter-block Hamiltonian (HBB) for the whole lattice
are,

HB =
N/5∑
k=1

hB
k and HBB =

N/5∑
k=1

hBB
k,k+1.
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Diagonalization of HB gives two possible lowest energy levels, i.e., ε10 = − J
4 (� +√

9�2 + 16) and ε20 = − J
4 (� + √

�2 + 24). The degenerate eigenvectors corre-
sponding to the eigenenergy ε10 are,

|ψ1
0 〉 = 1√

p2 + 4[
p(| ↓↓↑↓↓〉) + (| ↓↓↓↓↑〉 + | ↓↓↓↑↓〉 + | ↓↑↓↓↓〉 + | ↑↓↓↓↓〉)]

|ψ2
0 〉 = 1√

p2 + 4[
p(| ↑↑↓↑↑〉) + (| ↓↑↑↑↑〉 + | ↑↓↑↑↑〉 + | ↑↑↑↓↑〉 + | ↑↑↑↑↓〉)],(7)

and the degenerate eigenvectors corresponding to the eigenenergy ε20 are,

|φ1
0 〉 = 1√

2(2q2 + 3)[
q(| ↓↓↑↓↑〉 + | ↓↓↑↑↓〉 + | ↓↑↑↓↓〉 + | ↑↓↑↓↓〉) + (| ↓↓↓↑↑〉

+| ↓↑↓↓↑〉 + | ↓↑↓↑↓〉 + | ↑↓↓↓↑〉 + | ↑↓↓↑↓〉 + | ↑↑↓↓↓〉)]

|φ2
0 〉 = 1√

2(2q2 + 3)[
q(| ↓↑↓↑↑〉 + | ↑↓↓↑↑〉 + | ↑↑↓↓↑〉 + | ↑↑↓↑↓〉) + (| ↓↓↑↑↑〉

+| ↓↑↑↓↑〉 + | ↓↑↑↑↓〉 + | ↑↓↑↓↑〉 + | ↑↓↑↑↓〉 + | ↑↑↑↓↓〉)], (8)

where p = − 1
2

(
3� + √

9�2 + 16
)
, q = − 1

4

(
� + √

�2 + 24
)
, | ↑〉 and | ↓〉 are

the eigenstates of σ z .
In Fig. (2), we plot the two lowest eigenenergies (ε10 and ε20 ). A level crossing

is seen at � = 1. ε10 = − J
4 (� + √

9�2 + 16) is the lowest energy for � > 1,

whereas ε20 = − J
4 (� + √

�2 + 24) attains the lowest energy value for � < 1. The

degenerate eigenvectors |ψ1,2
0 〉 and |φ1,2

0 〉 are associated with the eigenenergies ε10 and
ε20 , respectively. The most suitable way is to solve the model separately for different
regions, i.e., for � > 1 and � < 1. Here, we cannot follow this scheme because
the projection operator constructed by the state vectors |ψ1,2

0 〉 does not reproduce a
self-similar Hamiltonian. If we choose the state vectors |φ1,2

0 〉, the projection operator
constructed by these state vectors successfully reproduce the self-similar Hamiltonian
but the critical value comes out to be � = 5 that is far beyond the critical value
(�c ∼ 1) calculated in previous literature for two-dimensional XXZ square lattice
[64,65] due to the reason that |φ1,2

0 〉 are not the degenerate ground states for� > 1. To
resolve the problemwe have to find some normalized combinations of the state-vectors
|ψ1,2

0 〉 and |φ1,2
0 〉, that should be able to capture the true critical value� ∼ 1.We define

these combinations as, |χ1
0 〉 = 1√

2
(|ψ1

0 〉 − |φ1
0〉) and |χ2

0 〉 = 1√
2
(|ψ2

0 〉 + |φ2
0〉).

We build the projection operator, Pk
0 = | ⇑〉k〈χ1

0 | + | ⇓〉k〈χ2
0 |, that projects onto

the lowest energy subspace to obtain the required eigenstates. The new bases in the
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Fig. 2 Plot shows a comparison
of the eigenenergies against
anisotropy � with J = 1

effective Hilbert space are | ⇑〉 and | ⇓〉. The projection operator P in factorized form
is,

P =
N/5∏
k=1

Pk
0 . (9)

The renormalized Hamiltonian is [37–39],

H → Hef f = P†HP

= P†HB P + P†HBB P

= Hef f
0 + Hef f

1 , (10)

where

Hef f
0 = P†HB P

Hef f
1 = P†HBB P. (11)

The renormalized Pauli matrices σ ′a are,

P I
0 σ a

i,I P
I
0 = αa

i σ
′a
I , (12)

with

αx
1245 = α

y
1245 = − 3q

2(2q2 + 3)
and αx

3 = α
y
3 = − 3

2(2q2 + 3)

αz
1245 = − (p2(q2 + 3) + 6)

2(p2 + 4)(2q2 + 3)
and αz

3 = 3p2 − 8q2

(p2 + 4)(2q2 + 3)
, (13)

where the indices 1, 2, 3, 4 and 5 indicate the sites in a single block as shown in Fig.
(1). The effective Hamiltonian of the renormalized two-dimensional XXZ spin lattice
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is again a two-dimensional XXZ spin lattice with the renormalized parameters, i.e.,
the renormalized coupling strength J ′ and renormalized anisotropy �′,

Hef f = J ′

4

N/2∑
i=1

N/2∑
j=1

[
(σ x

i, jσ
x
i+1, j + σ x

i, jσ
x
i, j+1) + (σ

y
i, jσ

y
i+1, j + σ

y
i, jσ

y
i, j+1)

+�′(σ z
i, jσ

z
i+1, j + σ z

i, jσ
z
i, j+1)

]
, (14)

where the renormalized parameters are

J ′ = J
( 3q

2(2q2 + 3)

)2

�′ = �
( (p2(q2 + 3) + 6)

3q(p2 + 4)

)2
. (15)

To find the fixed points of the QRG equations, we put�′ = � and compute the values
of �, i.e., � = 0, 1 and � → ∞. � = 0 and � → ∞ represent the stable fixed
points whereas � = 1 is the unstable fixed point that also represents the critical point
�c. For � > 1, the coupling strength parameter tends to be infinite which shows that
the model goes down to the Isingmodel universality class, whereas for 0 ≤ � < 1, the
model approaches the stable fixed point � = 0. We may classify two different phases
and the transition between the two phases can be achieved by the QRG technique.

3 Entanglement in two-dimensional XXZ spin lattice

3.1 Multipartite entanglement

In many-body quantum systems, more than two parties cannot freely share the entan-
glement because of the monogamy property of the entanglement. For an N -qubit
system HX1 ⊗ HX2 · · · ⊗ HXN , an entanglement measure satisfies the monogamous
relation if the entanglement of the particles X1, X2, X3, · · · , XN satisfies the inequal-
ity,

EX1|X2,X3,...,XN ≥ EX1X2 + EX1X3 + ..... + EX1XN , (16)

where EX1X j with j = 2, 3, · · · , N and j �= 1, is the entanglement quantification
in two qubit system and EX1|X2,X3,··· ,XN is the entanglement quantification in the
partition X1|X2, X3, · · · , XN .

According to the Schmidt decomposition for an N -qubit pure state |ψ〉X1|X2,...,XN

[66], the subsystem X2, · · · , XN is equal to a logic qubit X2,··· ,N or XR . It means
that by utilizing the equation for a two qubit state ρXY the bipartite entanglement of
formation EXY can be computed as a function of concurrence CXY [22].
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EXY = h
(1 +

√
1 − C2

XY

2

)
, (17)

where h(x) = −x log2(x) − (1 − x) log2(1 − x) is the Shannon binary entropy and
the concurrence CXY is [22],

CXY = max{0,√λ1 − √
λ2 − √

λ3 − √
λ4}, (18)

λi (i = 1, 2, 3, 4) are the nonnegative eigenvalues of thematrixρXY (σy⊗σy)ρ
∗
XY (σy⊗

σy) in descending order. The multipartite entanglement of formation EX1|X2,X3,··· ,XN

can be computed for both pure and mixed states. For a pure state,

EX1|X2,X3,··· ,XN = S(ρX1) =
∑
k

λk log2(λk), (19)

where S(ρX1) is the von Neumann entropy with λk are the eigenvalues of ρX1 . For a
mixed state, it can be computed by Koashi–Winter formula [67], by a purified state
|ψ〉X1|X2,··· ,XN with ρX1|X2,··· ,XN = TrR(|ψ〉〈ψ |) = trR(ρX2,X3,··· ,XN ),

EX1|X2,X3,··· ,XN = D(X1|XR) + S(X1|XR), (20)

where S(X1|XR) = S(X1XR) − S(XR) is the quantum conditional entropy and
D(X1|XR) is the quantum discord [68–72],

D(X1|XR) = min
Mk

∑
k

pk S(X1|X R
k ) − S(X1|XR)

= min
Mk

∑
k

pk S(ρ(X1)k ) − S(X1|XR), (21)

where {Mk} is a complete set of projection operators performed locally on the subsys-
tem XR and theminimum running over all possible positive operator-valuedmeasures.

We have already discussed that for an arbitrary N -qubit mixed state the monogamy
inequality is obeyed by the squared entanglement of formation E2

f . The proposedMEI
τ for the quantification of the multipartite entanglement can be written as,

τX1|X2,X3,··· ,XN = E2
X1|X2,··· ,XN

−
∑
j �=1

E2
X1|X j

. (22)

To calculate τ for the two-dimensional XXZ spin lattice, the density matrix ρ is
computed by considering one of the degenerate ground states |ψ1

0 〉,

ρ = |ψ1
0 〉〈ψ1

0 |. (23)

It has been mentioned earlier that in our five site model the middle site is the site-3.
When we trace out four subsystems, we get the density operators of the individual
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Fig. 3 Variation of the MEIs τ3
(symmetric) and τ1
(non-symmetric) versus
anisotropy �

subsystems, which are ρ1 = ρ2 = ρ4 = ρ5 �= ρ3, where ρ1 = Tr2345(ρ). If three
subsystems are traced out, the reduced density operators of the neighboring sites
are, ρ12 = ρ14 = ρ15 �= ρ13 and ρ13 = ρ23 = ρ34 = ρ35. Following this, we
can find the pairwise entanglement of formation, E12 = E14 = E15 �= E13 and
E13 = E23 = E34 = E35 [73]. The reduced density matrices ρ12 and ρ13 can be
computed from the density matrix ρ by using the definition of partial trace,

ρ12 = 1(
p2 + 4

)

⎛
⎜⎜⎝
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0

(
p2 + 2

)

⎞
⎟⎟⎠ , ρ13 = 1(

p2 + 4
)

⎛
⎜⎜⎝
0 0 0 0
0 1 p 0
0 p p2 0
0 0 0 3

⎞
⎟⎟⎠ . (24)

The symmetric and non-symmetric MEIs can be computed by using Eq. (22) and
in our five-partite case,

τ3|1245 = E2
3|1245 − (

E2
13 + E2

23 + E2
34 + E2

35

)
. (25)

In a similar way, we can compute the MEI for the non-symmetric case,

τ1|2345 = E2
1|2345 − (

E2
12 + E2

13 + E2
14 + E2

15

)
. (26)

For the convenience, we denote the indicators as τ3 and τ1 for the symmetric and
non-symmetric case, respectively. The multipartite entanglement can be distinguished
by using the definition ofMEIs, τ3 and τ1. To find the analytical forms of τ3 and τ1, we
have to solveEqs. (17)–(19) and thenuse inEqs. (25)–(26). To avoid complexity,we list
only the symmetricMEI, τ3. It is clear that τ3 and τ1 are the functions of the anisotropy
� only. In Fig. (3), the variation of the MEIs τ3 and τ1 with the anisotropy parameter
� is shown. We note that the value of τ3 is effectively greater than τ1 for � < 5, since
site-3 is directly correlated with the other four sites, whereas site-1 is not directly
correlated with the other sites except site-3. Both τ3 and τ1 decrease with an increase
in anisotropy parameter � and have almost similar behavior. Therefore, we only
consider the symmetric MEI τ3 for detailed analysis. For instance, we discuss shortly
the ratios of the MEIs with the pairwise entanglement to highlight the importance of
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(a) (b)

Fig. 4 The ratios of the symmetric MEI to the entanglement of formation are plotted against anisotropy �,
a τ3

E13
and τ3

E34
and b τ3

E3|1245

the monogamy property in a many-body quantum system. It can be seen in Fig. (4)
that the ratios τ3

E13
, τ3
E34

and τ3
E3|1245 decrease with an increase in anisotropy � as in the

case of τ3.
τ3
E13

and τ3
E34

are same for any value of anisotropy �, since the pairwise
entanglement E13 and E34 are equal because of symmetry. For non-symmetric case,
the plots of the ratios τ1

E12
, τ1
E13

and τ1
E1|2345 are shown in Fig. (5). We would like to point

out that the effect of the anisotropy � on these ratios are similar to the symmetric
ones. Moreover, the ratio τ1

E12
remains stronger than the ratio τ1

E13
for a wide range of

anisotropy. This difference is because of the pairwise entanglement E13 is stronger
than E12, as site-1 and site-2 are not directly correlated. Furthermore, at � = 0 the
value of τ3 is approximately four times greater than τ1 while the ratio

τ3
E3|1245 is twice

of the value of τ1
E1|2345 and hence strengthens the fact that the entanglement distribution

in a many-body quantum system is more complex than in a two-body system. The
analytical form of the MEI τ3 is,

τ3 = − 1

4(ln 2)2

[ (
2 +

√
s2 + 3

)

ln

(
1

4

(
2 +

√
s2 + 3

))
+

(
2 −

√
s2 + 3

)
ln

(
1

4

(
2 −

√
s2 + 3

)) ]2

+ 1

4(ln 2)2

[
(1 − s) ln

(
1 − s

2

)
+ (1 + s) ln

(
1 + s

2

) ]2
, (27)

where s = p2−4
p2+4

. Since p = − 1
2

(√
9�2 + 16 + 3�

)
; consequently, the MEI τ3 is a

function of anisotropy � only.

3.2 Trace distance

Along with the QRG method, we apply the trace distance measure (T D) for the
investigation of QPT of the two-dimensional XXZ spin lattice. The numerical value
of trace distance varies from 0 to 1. T D = 0 if and only if the two states are identical
and T D = 1 if the two states are maximally non-identical. Trace distance has been
verified as a successful quantifier to capture the QPT for one-dimensional XXZ and
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(a) (b)

Fig. 5 The ratios of the non-symmetricMEI to the entanglement of formation are plotted against anisotropy
�, a τ1

E12
and τ1

E13
and b τ1

E1|2345

XY spin chains [48,49]. If the positive operators ρX and ρY represent two quantum
states, then the T D is defined as half the trace norm of ρX − ρY ,

T D(ρX , ρY ) = 1

2
‖ρX − ρY ‖. (28)

The trace norm of the operator ρX − ρY is, ‖ρX − ρY ‖ = Tr |ρX − ρY | =
Tr

√
(ρX − ρY )†(ρX − ρY ). T D can also be calculated using the eigenvalues λ j of

the operator ρX − ρY by using the following relation,

T D(ρX , ρY ) = 1

2

∑
j

|λ j | = 1

2

∑
j

√
λ∗
jλ j . (29)

In our model, there are five sites per block so we calculate the T D between the
state ρ = |ψ1

0 〉〈ψ1
0 | and its marginal state ρ1234 ⊗ ρ5, where ρ1234 = Tr5(ρ) and

ρ5 = Tr1234(ρ). Thus,

T D = 1

2
‖ρ12345 − ρ1234 ⊗ ρ5‖. (30)

We find the analytical form of the trace distance T D and further utilize it to find the
criticality of the model.

T D = 1

2

[∣∣∣ p2 + 3(
p2 + 4

)2
∣∣∣ +

∣∣∣ p2 + 5(
p2 + 4

)2
∣∣∣ + 2

|p2 + 4|2
]
, (31)

where p = − 1
2

(√
9�2 + 16 + 3�

)
. Hence, the trace distance T D is a function of

anisotropy � only. In Fig. (6), the T D is plotted against the anisotropy �. The plot is
similar to that of theMEI τ3, a decrease in the entanglement quantifier with an increase
in anisotropy �.
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Fig. 6 Variation of the trace
distance (T D) between the
neighboring sites, e.g., (site-1
and -5) versus anisotropy �

4 Criticality in two-dimensional XXZ spin lattice

The plots of the MEI, τ3 as a function of the anisotropy parameter � for different
numbers of QRG iterations are shown in Fig. (7). After enough QRG iterations, it can
be seen that the plots of τ3 cross each other at the critical point �c = 1 and there are
two non-identical saturated values of τ3. τ3 → 0, in the Ising limit and � > 1, can
be due to the lack of the quantum correlations. τ3 ≈ 0.5 for 0 ≤ � < 1, and that
may be due to the transverse interactions and any long range order may be destroyed.
These two, unlike saturated values of τ3 represent two separate phases, the Néel phase
(� > 1) and the spin-fluid phase (0 ≤ � < 1). The divergence between the two
phases is more clear for the large-sized systems as in the case of one-dimensional
XXZ spin chain [9].

A non-analytic behavior at a critical point in some physical quantity is an attribute
of QPT. Quantum critical point is characterized by scale invariance and universal-
ity, dictated by the symmetry. The existence of the quantum critical point has large
influence on the physics near the critical value �c at absolute zero, where a system
undergoes a QPT between two distinct stable phases [74]. A QPT approach mainly
focuses on the identification of an order parameter that quantifies the symmetry break-
ing [48]. Furthermore, at critical point, the correlation length is divergent and hence
leads to a scaling behavior [19]. It has been verified that the entanglement for an Ising
transverse field and for XX model in a transverse field shows a scaling behavior in
the vicinity of the critical point [2]. For the two-dimensional XXZ model, the entan-
glement between a block and the rest of the system shows an extreme at the critical
point. It has been discussed that for the two-dimensional XXZ model, a large system
(N = 5n+1) can be described effectively by five sites per block with the renormalized
coupling parameters of the n-th QRG iteration. Thus, the entanglement between the
two parties of the system each containing N

5 effective sites can be represented by the
entanglement between the two renormalized sites.

For increasing QRG iterations, we plot dτ3
d�

versus � in Fig. (8), that shows the
non-analytic behavior near the critical point as the thermodynamic limit is achieved.
The non-analyticity is because of the discontinuous change of τ3 at �c = 1, in the
thermodynamic limit. In Fig. (9), we estimate the critical exponent μ1 � 0.15 by
plotting the log of the equation�m = �c+N−μ1 , where�m is the value of anisotropy
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Fig. 7 Evolution of MEI τ3
versus anisotropy � for different
numbers of QRG iterations

Fig. 8 The divergence of first
derivative of MEI τ3 with
increasing number of QRG
iterations is plotted in the range
0 ≤ � ≤ 3

(a) (b)

Fig. 9 a A straight line shows the scaling behavior of �m in terms of system size N , where �m is the

position of the minimum in Fig. (8). b A linear plot of ln
∣∣ d τ3
d�

∣∣
�m

against ln N , shows a scaling behavior

where dτ3
d�

is minimum. Near the critical point, the behavior of the correlation length
ξ refers to the scaling of the position of �m . The correlation length covers the system
size, i.e., ξ ∼ N , as the thermodynamic limit is reached. On comparison with ξ ∼
(�m − �c)

−ν , we can compute the expression �m = �c + N 1/ν , the scaling form of
�m , that implies that the critical exponentμ1 and the correlation length exponent ν are
inverse of each other, μ1 = ν−1 [19]. Furthermore, the scaling behavior of

∣∣ dτ3
d�

∣∣
�m

versus N can be extrapolated. Figure (9) shows a linear graph between ln
∣∣ dτ3
d�

∣∣
�m

and ln N . From it we can easily deduce that
∣∣ dτ12
d�

∣∣
�m

∼ Nμ2 , where the critical
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Fig. 10 Evolution of the trace
distance T D versus anisotropy
� for few QRG iterations

exponentμ2 � 0.13. Near the critical point, the correlation length exponent ν predicts
the behavior of the correlation length ξ near the critical point �c, by following the
relation ξ ∼ (� − �c)

−ν . After first QRG iteration, the correlation length scales
as ξ → ξ (1) = ξ/nB , where nB = 5 is the number of sites in each individual
block. The n-th QRG iteration for the correlation length can be predicted as, ξ (n) ∼
(�n −�c)

−ν = ξ/nnB . The above mentioned expressions are useful to relate
∣∣ d�n
d�

∣∣
�c

and the correlation length exponent ν by an equation,
∣∣ d�n
d�

∣∣
�c

= N 1/ν . Therefore,
by comparison the correlation length exponent ν and the critical exponent μ2 can be
related to each other, μ2 = ν−1, similar to that in case of the bipartite entanglement
[8]. These results endorse that the implementation of the QRG on the multipartite
entanglement genuinely captures the criticality (at � = 1) of the two-dimensional
XXZ model.

Moreover, we would like to indicate that instead of bipartite entanglement, multi-
partite entanglement might be a more suitable indicator for studying QPT in the spin
lattice systems. To capture many-body characters in a spin lattice system the ability
of the bipartite entanglement is limited. Although the bipartite entanglement has been
proven a good indicator that successfully captures the quantum critical points but it
may fail to characterize the true quantum critical points [75,76].We computed themul-
tipartite entanglement to explore the characters of many-body systems and found it a
better indicator as compared to the bipartite entanglement because we may lose some
important information about the many-body system. It means that the multipartite
entanglement provides a better view and a deeper physical insight into the charac-
teristics of a many-body system and may be more advantageous than the bipartite
entanglement to reveal the QPT of spin chain systems [77–79].

The trace distance T D is also capable to capture the QPT point. In Fig. (10), it
can be seen that T D attains different saturated values for the regions 0 ≤ � < 1 and
� > 1. Here, � = 1 represents the QPT point as mentioned earlier in the case of τ3.
To observe the criticality in the model, the first derivative of the trace distance,

∣∣ d T D
d�

∣∣
is analyzed. Figure (11) shows a singular behavior of

∣∣ d T D
d�

∣∣ at the critical point with
increasing QRG iterations. The scaling behavior of both �m and

∣∣ d T D
d�

∣∣ is plotted
in Fig. (12). �m are the values where the first derivative of the trace distance T D
is minimum. It represents that �m scales as �m = �c + N−μ3 , where μ3 � 0.15.
Furthermore, the scaling of the derivatives of T D and τ3 resemble with each other,
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Fig. 11 The divergence of first
derivative of trace distance T D
for few QRG iterations is plotted
in the range 0 ≤ � ≤ 3

(a) (b)

Fig. 12 a The scaling behavior of�m in terms of system size N is represented by a straight line, where�m
is the position of the minimum of d T D

d�
in Fig. (11). b A linear plot of ln

∣∣ d T D
d�

∣∣
�m

against ln N shows a
scaling behavior

and
∣∣ d T D

d�

∣∣
�m

∼ Nμ4 , where μ4 � 0.13, for a large-sized system. The two critical
exponents (μ3 and μ4) obtained by the trace distance T D are in agreement with the
ones computed by the MEI τ3. Near the critical point, these critical exponents are
related to the correlation length exponent ν. It indicates that in the limit of large scale
behavior both the entanglementmeasures, theMEI τ3 and the trace distance T D, scales
in the same manner and both are capable to depict the ground state characteristics and
show distinctive behavior at the critical point. Apart from this, the alike characteristics
govern to estimate the consistent critical exponents for the MEI (μ1 ≈ μ2) and for
the trace distance (μ3 ≈ μ4) that presents the universality of the QPT and shows that
the chosen physical quantity does not affect the existence of the QPT.

5 Conclusion

We computed the two entanglement quantifiers, MEI (τ ) and the trace distance (T D)
for the two-dimensional Heisenberg XXZ model. We explored the dependence of the
MEI and trace distance on anisotropy parameter �. We found that the multipartite
entanglement is a better indicator as compared to the bipartite entanglement and pro-
vides more physical insight of a many-body quantum system. The QRG method is
implemented to the two-dimensional XXZ model to produce the self-similar Hamil-
tonian and the renormalized coupling parameters are obtained. Both quantifiers are
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equally capable to capture the QPT at the critical point �c = 1. Besides the similar
behavior of both the quantifiers, the critical exponents too are consistent. At critical
point, the non-analytic behavior of the first derivative of the quantifiers represents that
the model obeys the scaling behavior in the thermodynamic limit.
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