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Abstract
To distill quantum coherence, in [Phys. Rev. A 99, 012321 (2019)], authors proposed
a strictly incoherent operation that produces one of a family of maximally coherent
states of variable dimension from any pure quantum state. For a d-dimensional pure
state, an incoherent state may be obtained with a nonzero probability, which results
in a complete waste of resource, namely the probability of transforming a given pure
state to the incoherent state is not zero. Here, we give a specific method to avoid a
complete waste of resource with the maximal probability to transform the pure state to
a d-dimensional maximally coherent state and study the range of average coherence
of the corresponding output state in this case. We also give a method to transform a
mixed state to a maximally coherent state with probability.
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1 Introduction

The resource theory of quantum coherence [1–8] plays an important role in character-
izing the intrinsic feature of quantummechanics. Over the past decades, the properties
of a resource have been extensively investigated under a suitable set of allowed free
operations [9–14]. In this setting, quantum coherence is regarded as a useful quantum
resource allowing us to do many tasks more efficiently. The free states, i.e., the inco-
herent states are defined as the diagonal density matrices under a fixed reference basis.
Free operations are the ones that transform the free states to free states. To single out
a unique class of free operations under which the operational features of coherence
should be investigated, many definitions of free operations are proposed, such as the
maximally incoherent operations (MIOs) [1], the incoherent operations (IOs) [2], the
dephasing-covariant incoherent operations (DIOs) [9,15], and the strictly incoherent
operations (SIOs) [16–21].

One of the most fundamental operational problems within a resource theory is how
to manipulate the resource by using free operations. Among such manipulations, the
coherence distillation stands out as one of the most important problems in the resource
theory of quantum coherence [19,22–27]. It focuses on the conversion of copies of
a given d-dimensional state ρ into the canonical unit resource |�q〉 (q-dimensional
maximally coherent state). In a realistic setting, only finite supply of states is available.
Thus, it is of significance to consider the one-shot version of coherence distillation
[29–32].

In Ref. [26], the authors proposed a method to transform a pure state to a max-
imally coherent state with certain probability via SIOs. They presented an optimal
probabilistic protocol to distill quantum coherence with reduced waste of resources.
The protocol was expanded to possibly avert a complete waste of resources by exploit-
ing an additional transformation into a suitable intermediate state.

In this paper, we give specific conditions when a d-dimensional pure state can be
transformed to a maximally coherent state |�d〉 = 1√

d

∑
i |i〉 without complete waste

of resource with the maximal probability for a given protocol proposed in Ref. [26].
We also give a protocol to transform amixed state ρ to amaximally coherent state via a
series of SIOs with probability based on the pure state decomposition of ρ. Moreover,
we show that the probability to get a maximally coherent state is independent of the
pure state decomposition.

2 Preliminary

For a given d-dimensional Hilbert space H with an orthonormal basis {|i〉}di=1, the

incoherent states are defined as: σ = ∑d
i=1 pi |i〉〈i |, with pi ≥ 0, and

∑d
i=1 pi = 1.

The set of all the incoherent states is denoted as I. Without loss of generality, any
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d-dimensional pure coherent state can be expressed as

|ψ〉 =
d∑

i=1

ψi |i〉, (1)

where {ψi } are nonnegative real numbers in nonincreasing ordering, i.e.,ψi ≥ ψi+1 ≥
0, and

∑d
i=1 ψ2

i = 1. Here, one should note that not every pure state can be expressed
in this form, but it can be brought into this form by using an SIO unitary in a reversible
manner.

The one-shot coherence distillation is the process of transforming a given state ρ

into a maximally coherent pure state under different classes of free operations [28,29].
For a given state ρ and ε ≥ 0, the one-shot coherence distillation rate with error ε

under free operation O is defined as

C (1),ε
d,O (ρ) := logmax{m ∈ N, FO(ρ, ψm) ≥ 1 − ε},

where FO(ρ, ψm) = max
�∈O

〈�(ρ), ψm〉 is the fidelity. Such one-shot distillable rates

can be quantified by the relative entropy of coherence [28].
A completely positive trace-preserving map � is called a strictly incoherent

operation (SIO) if �(ρ) = ∑
i KiρK

†
i , with the Kraus operators {Ki } satisfying

KiIK †
i ⊆ I, K †

i IKi ⊆ I, and ∑
i K

†
i Ki = I . In this paper, by using a class of par-

ticular SIOs, we focus on transforming a single copy of the input state ρ given in Eq.
(1) to a maximally coherent state with certain probability under incoherent operations.
A class of SIOs � for the coherence distillation from |ψ〉 defined in Eq. (1) has been
presented in [26],

�(ρ) =
d∑

q=1

KqρK
†
q , (2)

with the Kraus operators Kq satisfying

Kq |ψ〉 = √
pq |�q〉, (3)

where

Kq = √
pq

(
1√
q

q∑

i=1

|i〉〈i |
ψi

)

, (4)

pd = dψ2
d , pq = q(ψ2

q − ψ2
q+1), q = 1, 2, . . . , d − 1, (5)

and |�q〉 = 1√
q

∑q
j=1 |i〉 (1 ≤ q ≤ d) is the q-dimensional maximally coherent state.

From Eqs. (3), (4), and (5), one can see that the expression of SIO depends on the pure
state from which we want to distillate the maximally coherent states.
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As the coherence cannot be increased under SIOs, one may want to know how
much coherence is lost on average during the protocol. Here, we adopt the l1-norm as
the measure of coherence [2]. The l1-norm of coherence is defined as

Cl1(ρ) =
∑

i 	= j

|ρi j |,

where ρi j = 〈i |ρ| j〉. Thus, the average coherence for the output ensemble
{pq , |�q〉}q=1,2,...,d of |ψ〉out can be given by [26]

C̄l1(|ψ〉out ) =
d∑

j=2

(2 j − 2)ψ2
j . (6)

3 The extreme value of C̄l1(|Ã〉out)without complete waste of
resources

In this section, for a given initial pure state |ψ〉, we give a specific method to avoid a
complete waste of resources with the maximal probability to get |�d〉, and calculate
the range of the average coherence of |ψ〉out via SIOs defined in Eq. (2).

We first recall the concept of majorization introduced in [33,34]. For two d-
dimensional real vectors x = (x1, x2, . . . , xd)t and (y1, y2, . . . , yd)t , we say that
x is majorized by y if

∑k
j=1 x

↓
j ≤ ∑k

j=1 y
↓
j , where x

↓
j (y

↓
j ) denotes the components

of x (y) arranged in decreasing order. We denote x ≺ y if x is majorized by y.
Without a complete waste of resources means that the probability of transforming

the given pure state |ψ〉 to the incoherent state |�1〉 is zero via SIO defined in Eq. (2),
namely p1 = 0 in Eq. (3) [26]. By different IOs, a pure state |ψ〉 can be transformed

into different pure states |φ〉, |ψ〉 I O−→ |φ〉 iff |ψ〉 ≺ |φ〉 [35]. Thus, for the case
p1 	= 0, there may exit many IOs to make p1 = 0 while keep pd unchanged if we
first transform |ψ〉 to |φ〉 via a proper IO. Specifically, when we say that |�d〉 can
be distilled from a pure state |ψ〉 given in Eq. (1) with maximal probability via SIOs
defined in Eq. (2) and avoid a complete waste of resources, we mean the following
two cases: if ψ1 = ψ2, then pd = dψ2

d is the maximal probability to transform |ψ〉
to |�d〉, and p1 = 0 via the SIOs defined in Eq. (2); if ψ1 > ψ2, and there exists at

least one incoherent operation such that |ψ〉 I O−→ |φ〉 = ∑d
i=1 φi |i〉, where {φi } are

nonnegative real numbers in nonincreasing ordering with φ1 = φ2 and φd = ψd , one
gets that p′

1 = 0, and p′
d = dψ2

d is the maximal probability, with p′
1 and p′

d similarly
defined in Eq. (5). One can see that if such IOs exist, |φ〉 can be always transformed
into amaximally coherent one via SIOs defined in Eq. (2) with p′

1 = 0, and p′
d = dψ2

d ,
although p1 may be larger than 0 for |ψ〉.

For the case d = 2, if ψ1 > ψ2, there are no IOs to change the value of ψ1 while
keep ψ2 unchanged. Thus, |�2〉 cannot be distilled from a pure state |ψ〉 given in Eq.
(1) for the case ψ1 > ψ2, with maximal probability via SIOs defined in Eq. (2) and
avoid a complete waste of resources. For the case d = 3, if ψ1 > ψ2, there are no
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IOs that transform |ψ〉 to |φ〉 such that φ1 = φ2 ≥ ψ1 and φ3 = ψ3. In other words,
|�3〉 cannot be distilled from a pure state |ψ〉 given in Eq. (1) for the case ψ1 > ψ2,
with maximal probability via SIOs defined in Eq. (2) and avoid a complete waste of
resources. Nevertheless, for the cases d ≥ 4, we have

Theorem 1 For a pure state |ψ〉 given in (1), we can obtain the maximally coherent
state |�d〉 with the maximal probability via SIOs defined in Eq. (2), and avoid a
completewaste of resources at the same time if and only if

∑d−1
j=2 ψ2

j ≥ ψ2
1+(d−3)ψ2

d .

Proof Suppose
∑d−1

j=2 ψ2
j ≥ ψ2

1 + (d − 3)ψ2
d . Let |φ〉 = ∑

j φ j | j〉 with φ1 = φ2 =
√

1−(d−2)ψ2
d

2 , and φ j = ψd , j = 3, 4, . . . , d. Obviously, {φ j } is in a nonincreasing
order.We prove now there indeed exists an incoherent operation which transforms |ψ〉
to |φ〉. In other words, we need to prove

∑s
j=1 ψ2

j ≤ ∑s
j=1 φ2

j for s = 1, 2, . . . , d.

From
∑d−1

j=2 ψ2
j ≥ ψ2

1 + (d − 3)ψ2
d , we see that 2ψ

2
1 + (d − 2)ψ2

d ≤ ∑d−1
j=2 ψ2

j +
ψ2
1 + ψ2

d = 1. Thus, ψ2
1 ≤ 1−(d−2)ψ2

d
2 = φ2

1 . Then, one can also find that ψ
2
1 + ψ2

2 ≤
2ψ2

1 ≤ 2φ2
1 = φ2

1 + φ2
2 . For any s ≥ 3, we have

∑s
j=1 ψ2

j = 1 − ∑d
j=s+1 ψ2

j ≤
1 − (d − s)ψ2

d = ∑s
j=1 φ2

i .
Now suppose that one wants to obtain the maximally coherent state |�d〉 with the

maximal probability, and avoid a complete waste of resources at the same time via
SIOs defined in Eq. (2), i.e., p1 = 0 and pd = dψ2

d . Assume there exists an incoherent
operation which transforms |ψ〉 to |φ〉 = ∑

i φi |i〉. Then, φ1 = φ2 ≥ ψ1, φd = ψd ,
and φi ≥ φi+1 for i = 1, 2, . . . , d − 1. Thus,

d−1∑

j=2
ψ2

j = 1 − (ψ2
1 + ψ2

d )

=
d∑

j=1
φ2
d − (ψ2

1 + ψ2
d )

≥ 2ψ2
1 + (d − 2)ψ2

d − (ψ2
1 + ψ2

d )

= ψ2
1 + (d − 3)ψ2

d .

(7)

��
In fact, for a given |ψ〉, there may exist many IOs satisfying |ψ〉 I O−→ |φ〉, such that

one obtains |�d〉 with maximal probability and avoid a complete waste of resource

at the same time. Different |φ〉 given in |ψ〉 I O−→ |φ〉 gives rise to different values of
Cl1(|φ〉out ) via the corresponding SIOs defined in Eq. (2). Then, for a given pure state
|ψ〉, we can get a range of Cl1(|φ〉out ) over all |φ〉 satisfying φ1 = φ2 and φd = ψd .

In the following, Cl1(|ψ〉out ) also stands for Cl1(|φ〉out ) with |ψ〉 I O−→ |φ〉 satisfying
φ1 = φ2, φd = ψd and ψ1 ≥ ψ2.

Next, we study the lower and upper bounds of Cl1(|ψ〉out ) at the conditions of
obtaining the maximally coherent state |�d〉 with maximal probability and avoiding
a complete waste of resource at the same time via SIOs defined in Eq. (2).

Our approach can be summarized as follows. For remain the condition p1 = 0 and
pd = dψ2

d , we should always fix φ1 = φ2 and φd = ψd while we transform |ψ〉 into
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|φ〉 under IOs. From Eq. (6), one can see that the value of C̄l1(|ψ〉out ) depends on the
values of {ψ j }. Specifically, the value of ψ j is related to its coefficient 2 j − 2 and
∑d

j=1 ψ2
j = 1. Thus, for an arbitrary pure state |ψ〉 defined in Eq. (1), if we want to

get the maximal value Cl1(|ψ〉out )max of Cl1(|ψ〉out ), from Eq. (6), we should keep φi

as large as possible under the condition |ψ〉 I O−→ |φ〉 when i increases. Similarly, if
we want to get the minimal value Cl1(|ψ〉out )min of Cl1(|ψ〉out ), we should keep φi as

small as possible under the condition |ψ〉 I O−→ |φ〉 when i increases.
For d = 4, from Theorem 1 we obtain the maximal probability of getting |�4〉 and

avoid a complete waste of resource at the same time if and only ifψ2
1 +ψ2

4 ≤ ψ2
2 +ψ2

3 .
Hence, to get the Cl1(|ψ〉out )max, one should keep φ1 = φ2 as small as possible under

the condition |ψ〉 I O−→ |φ〉. Thus, φ1 = φ2 = ψ1. In this case, φ3 =
√

ψ2
2 + ψ2

3 − ψ2
1

and Cl1(|ψ〉out )max = 4+2ψ2
4 −6ψ2

1 . To get Cl1(|ψ〉out )min, one should keep φ1 = φ2

as large as possible and φ3 as small as possible under the condition |ψ〉 I O−→ |φ〉. Thus,
φ3 = φ4 = ψ4, φ1 = φ2 =

√
1−2ψ2

4
2 , and Cl1(|ψ〉out )min = 1 + 8ψ2

4 . Easily, one can
see that for both cases, |ψ〉 ≺ |φ〉. Therefore, we have

Theorem 2 For d = 4 and |ψ〉 given in (1) with ψ2
1 + ψ2

4 ≤ ψ2
2 + ψ2

3 , we have

1 + 8ψ2
4 ≤ C̄l1(|ψ〉out ) ≤ 4 + 2ψ2

4 − 6ψ2
1 , (8)

if the maximally coherent state |�4〉 is obtained with the maximal probability via
SIOs defined in Eq. (2) without a complete waste of resources. Moreover, the left

equality holds if φ1 = φ2 =
√

1−2ψ2
4

2 and φ3 = φ4 = ψ4. The right equality holds if

φ1 = φ2 = ψ1, φ3 =
√

ψ2
2 + ψ2

3 − ψ2
1 and φ4 = ψ4.

To illustrate Theorem 2, we show the lower and upper bounds of C̄l1(|ψ〉out ) in
Fig. 1, where the intersecting line of the green and blue surfaces stands for the case
ψ2
1 + ψ2

4 = 1
2 , and from the nonincreasing order of {ψ j }4j=1 and

∑4
j=1 ψ2

j = 1, we

have 0 ≤ ψ4 ≤ 1
2 and

√
1−ψ2

4
3 ≤ ψ1 ≤

√
1
2 − ψ2

4 . Specially, for ψ4 = 0, see Fig. 2.

For d = 5, from (6) one gets Cl1(|ψ〉out )max when φ1 = φ2 = ψ1, φ3 =√
ψ2
2 + ψ2

3 − ψ2
1 , φ4 = ψ4 and φ5 = ψ5 under the condition |ψ〉 I O−→ |φ〉 when

ψ2
1 + ψ2

4 ≤ ψ2
2 + ψ2

3 via SIOs defined in Eq. (2). In this case, Cl1(|ψ〉out )max =
4ψ2

2 + 4ψ2
3 + 6ψ2

4 + 8ψ2
5 − 2ψ2

1 . Similar to the discussions on the case of d = 4,
we have Cl1(|ψ〉out )min = 1 + 15ψ2

5 . However, for ψ2
1 + ψ2

4 > ψ2
2 + ψ2

3 , there

exist no incoherent operations such that |ψ〉 I O−→ |φ〉 with φ1 = φ2 = ψ1,

φ3 =
√

ψ2
2 + ψ2

3 − ψ2
1 , φ4 = ψ4 and φ5 = ψ5, since one can find that φ3 < φ4.

Thus, one needs to change φ3 and φ4 while keeps φ1 = φ2 = ψ1. From Eq. (6),

we have φ3 = φ4 =
√

ψ2
2+ψ2

3+ψ2
4−ψ2

1
2 . However, the condition |ψ〉 I O−→ |φ〉 requires
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Fig. 1 The green surface corresponds to the maximal value of C̄l1 (|ψ〉out ), and the blue one corresponds

to the minimal value of C̄l1 (|ψ〉out ). From the relations
∑4

i=1 ψ2
i = 1,ψ1 ≥ ψ2 ≥ ψ3 ≥ ψ4, and

ψ2
1 + ψ2

4 ≤ ψ2
2 + ψ2

3 , one can see 0 ≤ ψ4 ≤ 1
2 , and

√
1−ψ2

4
3 ≤ ψ1 ≤

√
1−2ψ2

4
2 . Particularly, from Fig. 1,

one can see that for the case ψ1 = ψ4 = 1
2 , C̄l1 (|ψ〉out )max = C̄l1 (|ψ〉out )min. This is in consistent with

the fact that for the case |ψ〉 = 1
2

∑4
j=1 | j〉 and p4 = 1, C̄l1 (|ψ〉out )max = C̄l1 (|ψ〉out )min = 3

Fig. 2 The case of ψ4 = 0. Blue
line and green line correspond to
the minimal and maximal value
of C̄l1 (|ψ〉out ), respectively

that φ4 ≥ φ5, i.e., ψ2
2 + ψ2

3 + ψ2
4 ≥ ψ2

1 + 2ψ2
5 . In this case, Cl1(|ψ〉out )max =

5ψ2
2 + 5ψ2

3 + 5ψ2
4 + 8ψ2

5 − 3ψ2
1 . Similarly, Cl1(|ψ〉out )min = 1 + 15ψ2

5 . By The-
orem 1, one cannot obtain the maximal probability with respect to |�5〉 without a
complete waste of resource when ψ2

2 + ψ2
3 + ψ2

4 < ψ2
1 + 2ψ2

5 via SIOs defined in
Eq. (2).

Following the discussions above, for a general d-dimension pure state |ψ〉 with
d ≥ 5, one can deal with the problem via SIOs defined in Eq. (2) according to the
following d − 3 cases.

Case 1: ψ2
2 + ψ2

3 ≥ ψ2
1 + ψ2

4

From Eq. (6), if φ1 = φ2 = ψ1, φ3 =
√

ψ2
2 + ψ2

3 − ψ2
1 and φ j = ψ j , j =

4, 5, . . . , d, we have the maximal value, C̄l1(|ψ〉out )max = 4
∑3

j=2 ψ2
j + 2

∑d
j=4( j −

1)ψ2
j − 2ψ2

1 .
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Conversely, we can get theminimal value of C̄l1(|ψ〉out ) if φ1 = φ2 =
√

1−(d−2)ψ2
d

2 ,
and φ j = ψd , j = 3, 4, . . . , d, C̄l1(|ψ〉out )min = 1 + d(d − 2)ψ2

d .

Case 2: ψ2
2 + ψ2

3 < ψ2
1 + ψ2

4 and ψ2
2 + ψ2

3 + ψ2
4 ≥ ψ2

1 + 2ψ2
5

From Eq. (6), if φ1 = φ2 = ψ1, φ3 = φ4 =
√

ψ2
2+ψ2

3+ψ2
4−ψ2

1
2 and φ j = ψ j , j =

5, 6, . . . , d, we get the maximal value C̄l1(|ψ〉out )max = 5
∑4

j=2 ψ2
j + 2

∑d
j=5( j −

1)ψ2
j − 3ψ2

1 . If φ1 = φ2 =
√

1−(d−2)ψ2
d

2 and φ j = ψd , j = 3, 4, . . . , d, we get the

minimal value of C̄l1(|ψ〉out ), C̄l1(|ψ〉out )min = 1 + d(d − 2)ψ2
d .· · · · · ·

Case k:
∑k+1

j=2 ψ2
j < ψ2

1 + (k − 1)ψ2
2+k and

∑k+2
j=2 ψ2

j ≥ ψ2
1 + kψ2

3+k

From Eq. (6), if φ1 = φ2 = ψ1, φ3 = φ4 = · · · = φ2+k =
√


k+2
j=2ψ

2
j −ψ2

1
k and

φ j = ψ j , j = 3 + k, 4 + k, . . . , d, we get the maximal value

C̄l1(|ψ〉out )max = (k + 3)
∑k+2

j=2
ψ2

j + 2
∑d

j=k+3
( j − 1)ψ2

j − (k + 1)ψ2
1 .

If φ1 = φ2 =
√

1−(d−2)ψ2
d

2 and φ j = ψd , j = 3, 4, . . . , d, we obtain the minimal
value of C̄l1(|ψ〉out ), C̄l1(|ψ〉out )min = 1 + d(d − 2)ψ2

d .· · · · · ·
Case d − 3:

∑d−2
j=2 ψ2

j < ψ2
1 + (d − 4)ψ2

d−1 and
∑d−1

j=2 ψ2
j ≥ ψ2

1 + (d − 3)ψ2
d

From Eq. (6), if φ1 = φ2 = ψ1, φ3 = φ4 = · · · = φd−1 =
√


d−1
j=2ψ2

j −ψ2
1

d−3 and

φd = ψd , we have the maximal value,

C̄l1(|ψ〉out )max = d
d−1∑

j=2

ψ2
j + 2(d − 1)ψ2

d − (d − 2)ψ2
1 .

If φ1 = φ2 =
√

1−(d−2)ψ2
d

2 and φ j = ψd , j = 3, 4, . . . , d, we get the minimal value
of C̄l1(|ψ〉out ), C̄l1(|ψ〉out )min = 1 + d(d − 2)ψ2

d .

One can see that the d − 3 cases together are just the condition
∑d−1

j=2 ψ2
j ≥ ψ2

1 +
(d−3)ψ2

d in Theorem 1 to realize the one-shot coherence distillation via SIOs defined
in Eq. (2). Thus, we can just discuss the d − 3 cases above based on the SIOs defined
in Eq. (2). Here, in the discussions of the d − 3 cases above, we have assumed that

|ψ〉 I O−→ |φ〉, i.e., ∑ j
m=1 ψ2

m ≤ ∑ j
m=1 φ2

m , and φm ≥ φm+1 for m = 1, 2, . . . , d − 1
and j = 1, 2, . . . , d, which needs to be proved further.

For case k (1 ≤ k ≤ d − 3), concerning the maximal value of C̄l1(|ψ〉out ), as
φ1 = φ2 = ψ1 and φ j = ψ j for j = 3+k, 4+k, . . . , d, for the proof of

∑ j
m=1 ψ2

m ≤
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∑ j
m=1 φ2

m , we only need to prove
∑ j

m=1 ψ2
m ≤ ∑ j

m=1 φ2
m for j = 3, 4, . . . , k + 2.

We have

∑ j
m=1 φ2

m − ∑ j
m=1 ψ2

m = (k+2− j)ψ2
1+k(ψ2

j+1+···+ψ2
k+1)+( j−2)ψ2

k+2−(k+2− j)(ψ2
2+···+ψ2

k+1)

k

≥ (k+2− j)ψ2
1+[k(k− j+1)+ j−2]ψ2

k+2−(k+2− j)(ψ2
2+···+ψ2

k+1)

k

= (k+2− j)[ψ2
1+(k−1)ψ2

k+2−(ψ2
2+···+ψ2

k+1)

k ]
≥ 0

(9)

for j = 3, 4, . . . , k + 2. The last inequality is due to the condition
∑k+1

j=2 ψ2
j <

ψ2
1 + (k − 1)ψ2

2+k .
For the proof of φm ≥ φm+1 for m = 1, 2, . . . , d − 1, we only need to prove

φ2 ≥ φ3 and φ2+k ≥ φ3+k . Obviously,

φ2 ≥ φ3 ⇔ φ2
2 ≥ φ2

3 ⇔ ψ2
1 ≥

∑k+2
j=2 ψ2

j −ψ2
1

k ⇔ (k + 1)ψ2
1 ≥ ∑k+2

j=2 ψ2
j ,

(10)

and

φ2+k ≥ φk+3 ⇔ φ2
2+k ≥ φ2

k+3 ⇔
∑k+2

j=2 −ψ2
1

k ≥ φ2
3+k ⇔ ∑k+2

j=2 ψ2
j ≥ ψ2

1 + kψ2
3+k .

(11)

Thus, we get φm ≥ φm+1 for m = 1, 2, . . . , d − 1. Concerning the minimal value of

C̄l1(|ψ〉out ), similarly, one can also prove that |ψ〉 I O−→ |φ〉. Altogether, we have the
following theorem for the general Case k.

Theorem 3 For the pure state |ψ〉 given in Eq. (1)with∑k+1
j=2 ψ2

j < ψ2
1 +(k−1)ψ2

2+k

and
∑k+2

j=2 ψ2
j ≥ ψ2

1 + kψ2
3+k (1 ≤ k ≤ d − 3), C̄l1(|ψ〉out ) satisfies the following

relations,

1 + d(d − 2)ψ2
d ≤ C̄l1(|ψ〉out ) ≤ (k + 3)

k+2∑

j=2

ψ2
j + 2

d∑

j=k+3

( j − 1)ψ2
j − (k + 1)ψ2

1 ,

(12)

if the maximal probability of getting |�d〉 is attained without a complete waste of
resources via SIOs defined in Eq. (2). The left equality holds when φ1 = φ2 =√

1−(d−2)ψ2
d

2 andφ j = ψd , j = 3, 4, . . . , d. The right equality holdswhenφ1 = φ2 =

ψ1, φ3 = φ4 = · · · = φ2+k =
√


k+2
j=2ψ

2
j −ψ2

1
k and φ j = ψ j , j = 3 + k, 4 + k, . . . , d.

From Theorem 3, we know that the average coherence of output ensemble depends
on the dimensional d. To illustrate this, we show the lower bound of C̄l1(|ψ〉out ) in
Fig. 3.
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Fig. 3 The dependence of the
average coherence C̄l1 on the
dimension d as well as on the
value of ψd

From Theorems 2 and 3, for a given initial pure state, one can judge which method
one can use to get |�d〉 with the maximal probability, and avoid a complete waste of
resources at the same time via SIOs defined in Eq. (2). One can also obtain the range of
the corresponding average loss of coherence. From the inequality (12), one can see that
C̄l1(|ψ〉out )min only depends on the value ofψd , while C̄l1(|ψ〉out )max depends on {ψi }.
Since the lower and upper bounds of C̄l1(|ψ〉out ) depend on the initially given pure
states, one can only estimate C̄l1(|ψ〉out )max or C̄l1(|ψ〉out )min for given pure states. In
other words, if one does not know the specific expressions of two initial pure states |ψ〉
and |ψ̃〉 which belong to different cases, one cannot say which one of C̄l1(|ψ〉out )min
and C̄l1(|ψ̃〉out )min is larger, as one cannot assure which one of ψd and ψ̃d is larger.
The same is for case of C̄l1(|ψ〉out )max. What is more, if we want to get the maximal
value of C̄l1(|ψ〉out )max over all pure states, ψ1 should be as small as possible. Thus,
the maximal value of C̄l1(|ψ〉out )max over all pure states can be attained at ψ1 = 1√

d
,

i.e., |ψ〉 = |�d〉.
To illustrate our results, let us consider an example for the case d = 4.

Example 1 Let

|ψ〉 = √
0.28|1〉 + √

0.25|2〉 + √
0.22|3〉 + √

0.15|4〉 + √
0.1|5〉,

|ψ̃〉 = √
0.305|1〉 + √

0.25|2〉 + √
0.2|3〉 + √

0.13|4〉 + √
0.115|5〉

and

|ψ ′〉 = √
0.3|1〉 + √

0.25|2〉 + √
0.2|3〉 + √

0.14|4〉 + √
0.11|5〉.

For the pure state |ψ〉, one finds that ψ2
1 + ψ2

4 = 0.43 ≤ ψ2
2 + ψ2

3 = 0.47. Thus, |ψ〉
is a pure state of the Case 1. By Theorem 3, we have

C̄l1(|ψ〉out )max = C̄l1((|φ〉max)out ) = 3.02,
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with |ψ〉 I O−→ |φ〉max = √
0.28|1〉 + √

0.28|2〉 + √
0.19|3〉 + √

0.15|4〉 + √
0.1|5〉,

and

C̄l1(|ψ〉out )min = C̄l1((|φ〉min)out ) = 2.5

with |ψ〉 I O−→ |φ〉min = √
0.35|1〉 + √

0.35|2〉 + √
0.1|3〉 + √

0.1|4〉 + √
0.1|5〉.

Let |φ〉max, |φ̃〉max and |φ′〉max be the corresponding pure states satisfying |ψ〉 I O−→
|φ〉max, |ψ̃〉 I O−→ |φ̃〉max and |ψ ′〉 I O−→ |φ′〉max, respectively. Similarly, one finds that

|ψ̃〉 belongs to the Case 1 with C̄l1(|ψ̃〉out )max = 2.89 and C̄l1(|ψ〉out )min = 2.725.

|ψ ′〉 belongs to the Case 2 with C̄l1(|ψ ′〉out )max = 2.93 and C̄l1(|ψ〉out )min = 2.65.

4 Coherence loss related tomixed states

In Ref. [27], Lami et.al showed that one may have a very limited coherence distillation
power via SIOs when mixed input states are concerned. In Ref. [36], the authors
showed that no mixed qubit state can be distilled to a maximally coherent qubit state
with nonzero probability using a SIO. In fact, we can generally prove the following.

Lemma 1 No d-dimensional mixed states ρ can be distilled to any d-dimensional pure
states via a SIO with nonzero probability.

Proof First, a ρ is pure if and only if ρ j jρkk = |ρ jk |2, since

tr ρ2 = ∑

jk
|ρ jk |2

= ∑

j
|ρ j j |2 + 2

∑

j<k
|ρ jk |2

= ∑

j
|ρ j j |2 + 2

∑

j<k
ρ j jρkk

=
(

∑

j
ρ j j

)2

= 1.

(13)

Let � be a SIO. Then, the Kraus operators {Kn} of � can be the form of Kn =∑
j Knj | f ( j)〉〈 j | with f a bijection. One has

KnρK
†
n =

∑

jk

Knj K
∗
nkρ jk | f ( j)〉〈 f (k)|. (14)

If ρ can be distilled to a d-dimensional pure state via�with nonzero probability, then
|Knj |2|Knk |2ρ j jρkk = |Knj K ∗

nk |2|ρ jk |2, which give rise to ρ j jρkk = |ρ jk |2, i.e., ρ is
a pure state, which completes the proof. ��

Therefore, to find a method to transform a mixed state into a maximally coherent
state via a series of SIOs is necessary, which also generalizes the results of coherence
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loss for pure states [26]. In the following, we present a way to transform a mixed state
into maximally coherent states with probability via a series of SIOs on the pure states
of the ensemble of the mixed state.

For a mixed state ρ, without loss of generality, one can assume ρi i ≥ ρi+1,i+1 for
i = 1, 2, . . . , d − 1. Let ρ = ∑

i qi |ϕi 〉〈ϕi | be a pure state decomposition of ρ, where
|ϕi 〉 = ∑d

j=1 ϕi j | j〉 with ϕi j ≥ ϕi, j+1 ≥ 0 for j = 1, . . . , d − 1. Here, it should
be noted that the coefficients of the pure states may be not in non-increasing order.
Nevertheless, one can always apply unitary SIOs to let the corresponding pure states
satisfy this condition. Define �i to be the SIO corresponding to |ϕi 〉,

�i (|ϕi 〉) =
d∑

j=1

Ki j |ϕi 〉〈ϕi |K †
i j , (15)

where

Ki j = √
pi j

⎛

⎝ 1√
j

j∑

q=1

|q〉〈q|
ϕiq

⎞

⎠ , (16)

with

pid = dϕ2
id , piq = q(ϕ2

iq − ϕ2
i,q+1), q = 1, 2, . . . , d − 1. (17)

First, we prepare a series of SIOs {�i } on |ϕi 〉, with {pi , |ϕi 〉} the pure state decom-
position of ρ and �i defined in Eq. (15). Define � as

�(ρ) =
∑

i

pi�i (|ϕi 〉). (18)

Theorem 4 Let � defined in Eq. (18) with �i defined in Eq. (15). � can transform ρ

into amaximally coherent state |�q〉with the probability pq = q(ρqq−ρq+1,q+1), q =
1, 2, . . . , d−1, and pd = dρdd .Moreover,� is independent of the pure decomposition
of ρ.

Proof FromEq. (15) and the expression of |ϕi 〉,�i can transform |ϕi 〉 into amaximally
coherent state |�q〉 with the probability piq . Then, � can transform ρ to |�q〉 with
probability pq = ∑

i qi piq . Then, the conclusion follows from Eq. (17). ��
Corollary 1 For an arbitrary mixed state ρ, we have

C̄l1(ρout ) = 2
∑d

q=2
(q − 1)ρqq (19)

with ρout = �(ρ) and � defined in Eq. (18).

Similar to the pure state case, one can also get the conditions related to the no
complete waste of resource for mixed states ρ.
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Theorem 5 For a given d-dimensional mixed state ρ with d ≥ 4, if one can avoid
a complete waste of resource while pd = dρdd via � defined in Eq. (18), then∑d−1

j=2 ρ j j ≥ ρ11+(d−3)ρdd , where pq are defined in Theorem 4 for q = 1, 2, . . . , d.

Proof Let ρ = ∑
i qi |ϕi 〉〈ϕi | with |ϕi 〉 = ∑

j ϕi j | j〉, ϕi j ≥ ϕi, j+1 ≥ 0 for j =
1, . . . , d − 1. Assuming p1 = 0 we have pi1 = 0, where pi1 is defined in Eq. (17).

Thus, for each pure state |ϕi 〉, one has
∑d−1

j=2 ϕ2
i j ≥ ϕ2

i1 + (d − 3)ϕ2
id . Therefore,∑d−1

j=2 ρ j j ≥ ρ11 + (d − 3)ρdd . ��
From Theorem 5, one sees that via operations defined in Eq. (18), there is always

possibility of a complete waste of resource while pd remains nonzero if
∑d−1

j=2 ρ j j <

ρ11 + (d − 3)ρdd .

5 Conclusion

We presented a protocol of one-shot coherence distillation with the maximal proba-
bility to transform a d-dimensional pure state |ψ〉 into the maximally coherent state
|�d〉without complete waste of resource. In this process, an incoherent operation may
be used to transform |ψ〉 to |φ〉. For mixed states ρ, we also proposed a method to
transform ρ into a maximally coherent state without complete waste of resource. Our
method is independent of the pure decompositions of ρ. These results may highlight
further investigations on the theory of coherence manipulations.
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