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Abstract
Since the uncertainty about an observable of a system prepared in a quantum state
is usually described by its variance, when the state is mixed, the variance is a hybrid
of quantum and classical uncertainties. Besides that complementarity relations are
saturated only for pure, single-quanton, quantum states. For mixed states, the wave–
particle quantifiers never saturate the complementarity relation and can even reach
zero for a maximally mixed state. So, to fully characterize a quanton it is not sufficient
to consider its wave–particle aspect; one has also to regard its correlations with other
systems. In this paper, we discuss the relation between quantum correlations and local
classical uncertainty measures, as well as the relation between quantum coherence
and quantum uncertainty quantifiers. We obtain a complete complementarity relation
for quantum uncertainty, classical uncertainty, and predictability. The total quantum
uncertainty of a d-paths interferometer is shown to be equivalent to theWigner–Yanase
coherence and the corresponding classical uncertainty is shown to be an entanglement
monotone. The duality between complementarity and uncertainty is used to derive
quantum correlations measures that complete the complementarity relations for l1-
norm and l2-norm coherences. Besides, we show that Brukner–Zeilinger’s invariant
information quantifies both thewave and particle characters of a quanton andwe obtain
a sum uncertainty relation for the generalized Gell-Mann’s matrices.
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1 Introduction

Quantum phenomena are manifestly unpredictable. While classical uncertainty arises
from ignorance, quantum uncertainty is intrinsic. Even for pure quantum states that
represent the maximal knowledge that one could have about quantum states, we can
only make probabilistic predictions. The situation gets even worse when we consider
two incompatible observables of a system.This is captured by the uncertainty relations,
like the Heisenberg–Robertson uncertainty relation [1], which is represented by the
expression

V(ρ, A)V(ρ, B) ≥ 1

4
|Tr(ρ[A, B])|2 , (1)

whereV(ρ, A) = TrρA2−(TrρA)2 is the variance of the observable A in the quantum
state ρ, and V(ρ, B) is defined similarly. The existence of incompatible observables
in quantum mechanics is somewhat related to quantum coherence, a kind of quantum
superposition [2]. However, in experiments, most quantum states are mixed, which
means that a part of the unpredictability is actually classical. Since the uncertainty of
an observable in a quantum state is usually described using the variance, when the
states are mixed, the variance is a hybrid of quantum and classical uncertainties. In
Ref. [3], Luo proposed a decomposition of the variance into classical and quantum
parts. As pointed out by Luo, the key observation is that the Wigner–Yanase skew
information [4] can be interpreted as a measure of quantum uncertainty and the clas-
sical uncertainty can be captured by the difference between the total variance and the
quantum uncertainty. Later, the same author also established a different uncertainty
relation, which is stronger than Eq. (1), by taking into account only the quantum uncer-
tainties [5]. More recently, the same decomposition was done, in Ref. [6], for entropic
uncertainty relations. In addition, it is worth mentioning that in this manuscript, we
deal with the classical local uncertainty that arises from the entanglement of the sys-
tem A with another system B such that the global system state is pure. Therefore,
the mixture of the quantum system A is due to the fact that we are ignoring system
B. This is known as an improper mixture. In contrast, proper mixtures arise from the
ignorance that we have about the preparation of the system, and this is known as the
ignorance interpretation [7]. However, in Refs. [3,5], Luo did not make distinction
between these two types of mixtures.

Another intriguing aspect of quantum mechanics is the wave–particle duality [8].
This characteristic is generally captured, in a qualitative way, by Bohr’s complemen-
tarity principle. It states that quantons [9] have characteristics that are equally real,
but mutually exclusive. It is known that in a two-way interferometer, such as the
Mach–Zehnder interferometer or the double-slit interferometer, the wave aspect is
characterized by interference fringes, meanwhile the particle nature is given by the
which-way information of the path along the interferometer, so that the complete
knowledge of the path destroys the interference pattern and vice-versa. A quantitative
version of the wave–particle duality was first investigated by Wooters and Zurek [10],
and later this work was extended by Englert, who derived a wave–particle duality rela-
tion [11] between distinguishability and visibility as measures of the particle and wave
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aspects, respectively. In addition, Englert and Bergou [12] pointed out the possible
connection between the distinguishability and quantum correlations and even conjec-
tured that an entanglement measure was hidden in the measure of distinguishability.
However, there is another way wherein the wave–particle duality has been captured,
without introducing path-detecting devices. Greenberger and Yasin [13], considering
a two-beam interferometer, in which the intensity of each beam was not necessarily
the same, defined a measure of path information, called predictability. This line of
reasoning resulted in a different kind of wave–particle relation

P2 + V 2 ≤ 1, (2)

where P is the predictability and V is the visibility of the interference pattern. Several
important steps have been taken towards the quantification of thewave–particle duality
by many authors, such as Dürr [14] and Englert et al. [15], who established minimal
and reasonable conditions that any visibility and predictability measure should satisfy.
As well, with the rapid development of the field of quantum information science, it
was suggested that quantum coherence [16] would be a good generalization of the
visibility measure [17–20]. Meanwhile, predictability is a measure of the knowledge
about the quantum levelwherein a quanton [9] can be found. These levels can represent,
besides the paths on aMach–Zehnder interferometer, energy levels of an atom [21] or,
more generally, population levels [22]. So far, many lines of reasoning were taken for
quantifying thewave–particle properties of a quantum system [23–28]. It is noteworthy
that in [2,16,29], the authors put forward a resource theory for quantum coherence,
wherein it established minimum conditions that any measures of coherence must
satisfy. However, it is worth to emphasize that the criteria for measures of coherence
are not the same as the criteria for measures of visibility. So much so that Hilbert–
Schmidt’s (or l2-norm) quantum coherence is considered a good measure of visibility,
as shown in Ref. [27], while it does not meet all the criteria for a good measure of
quantum coherence, since it does not satisfy the condition of not increasing under
incoherent operations.

Complementarity relations like the one in Eq. (2) are saturated only for pure, single-
particle, quantum states. For mixed states, the left-hand side is always less than one
and can even reach zero for a maximally mixed state. Hence, no information about
the wave and particle aspects of the system can be obtained. As noticed by Jakob and
Bergou [30], this lack of knowledge about the system is due to quantum entanglement
[31,32]. This means that the information is being shared with another system and this
kind of quantum correlation can be seen as responsible for the loss of purity of each
subsystem such that, for pure maximally entangled states, it is not possible to obtain
information about the local properties of the subsystems. So, to fully characterize a
quanton, it is not enough to consider its wave–particle aspect, one has also to account
for its correlations with other systems. Therefore, triality relations like the ones in
[30,33,34], which completely quantifies the complementarity aspect of a quantum
system. These triality relations are also known as complete complementarity relations,
since inRef. [35] the authors interpreted this equality as completing the duality relation
given by Eq. (2), thus turning the inequality into an equality.
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Hence, in the context of complementarity relations, we discuss, in this work, the
relationship between Luo’s criteria for quantum and classical uncertainties and Dürr–
Englert et al.’s criteria for wave–particle duality quantifiers together with the criteria
for entanglement measures for global pure states, from which it follows naturally
that quantum entanglement gives rise to local classical uncertainties, provided that
the quanton is part of a pure bipartite quantum system, while quantum coherence
gives rise to quantum uncertainties. In addition, we show that the quantum uncertainty
of all d paths is equivalent to the Wigner–Yanase quantum coherence [36], whereas
the classical uncertainty can be taken as a entanglement monotone for bipartite pure
cases. These results strengthen the idea stated in Ref. [37] that quantum coherence and
quantum uncertainty are dual viewpoints of the same quantum substrate, and extend
this statement by relating classical uncertainty with quantum correlations. Finally,
by exploring the relation between complementarity and uncertainty, we obtain quan-
tum entanglement measures completing the l1-norm and l2-norm complementarity
relations reported in Ref. [27]. Such measures, as well, can be taken as measures of
classical uncertainty. However, it is worth pointing out that, for the general case of a
bipartitemixed state, themeasures of classical uncertainty cannot be taken asmeasures
of entanglement.

The remainder of our paper is organized as follows: in Sect. 2, we discuss the
relationship between Luo’s criteria for quantum and classical uncertainties and Dürr–
Englert et al.’s criteria for wave–particle duality quantifiers. In Sect. 3, we obtain
a complete complementarity relation (CCR) involving quantum and classical uncer-
tainties and predictability. In addition, we show that the quantum uncertainty of all
d-paths is equivalent to the Wigner–Yanase quantum coherence, meanwhile the clas-
sical uncertainty can be taken as a correlation quantifier. In Sect. 4, by exploring the
duality of complementarity and uncertainty, we obtain quantum correlation measures
that complete the l1-norm and l2-norm complementarity relations. For last, our con-
clusions are given in Sect. 5.

2 Relating criteria for uncertainties and criteria for complementarity
quantifiers

In the formalism of quantum mechanics [38], when the system is in the state ρ, the
uncertainty of an observable A, here restricted to be an Hermitian operator, like the
path of a multi-slit interferometer, is given by the variance

V(ρ, A) = TrρA2
0 = TrρA2 − (TrρA)2, (3)

where A0 = A − TrρA. Since, in general, ρ describes a mixed state, the variance
V(ρ, A) quantifies both quantum and classical uncertainties. Luo [3] proposed to split
the variance in its quantum and classical parts

V(ρ, A) = Q(ρ, A) + C(ρ, A), (4)
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where Q(ρ, A) and C(ρ, A) correspond to the quantum and classical uncertainties,
respectively. Luo also established a set of reasonable conditions that any measure of
quantum and classical uncertainty should satisfy. ForQ(ρ, A), these required proper-
ties can be stated as follows:

Q.1 If ρ is pure, then V(ρ, A) = Q(ρ, A) and C(ρ, A) = 0, because there is no
classical mixing and all uncertainties are intrinsically quantum.

Q.2 If [ρ, A] = 0, both are diagonal in the same basis and ρ and A behaves like
classical variables. Hence, all uncertainties are classical, i.e., Q(ρ, A) = 0 and
V(ρ, A) = C(ρ, A).

Q.3 Q(ρ, A) must be convex in ρ, once classical mixing does not increase quantum
uncertainty, i.e., Q(

∑
i λiρi , A) ≤ ∑

i λiQ(ρi , A) with
∑

i λi = 1, λi ∈ [0, 1],
and ρi are valid quantum states.

Meanwhile, for C(ρ, A):

C.1 The same as Q.1.
C.2 The same as Q.2.
C.3 C(ρ, A)must be concave inρ, once classicalmixing increases classical uncertainty,

i.e., C(
∑

i λiρi , A) ≥ ∑
i λiC(ρi , A)with

∑
i λi = 1, λi ∈ [0, 1], and ρi are well-

defined quantum states.

Also, Dürr [14] and Englert et al. [15] established criteria that can be taken as a
standard for checking for the reliability of newly defined predictability measures P(ρ)

and interference pattern visibility quantifiers V (ρ). For P , these required properties
can be stated as follows:

P.1 P must be a continuous function of the diagonal elements of the density matrix.
P.2 P must be invariant under permutations of the states indexes.
P.3 If ρ j j = 1 for some j , then P must reach its maximum value.
P.4 If {ρ j j = 1/d}dj=1, then P must reach its minimum value.
P.5 If ρ j j > ρkk for some ( j, k), the value of P cannot be increased by setting

ρ j j → ρ j j − ε and ρkk → ρkk + ε, for ε ∈ R+ and ε � 1.
P.6 P must be a convex function, i.e., P(

∑
i λiρi ) ≤ ∑

i λi P(ρi ), with
∑

i λi = 1,
λi ∈ [0, 1] and for ρi being valid density matrices.

Meanwhile, for any measure of the wave aspect V of a quanton:

V.1 V must be a continuous function of the elements of the density matrix.
V.2 V must be invariant under permutations of the states’ indexes.
V.3 If ρ j j = 1 for some j , then V must reach its minimum value.
V.4 If ρ is a pure state and {ρ j j = 1/d}dj=1, then V must reach its maximum value.
V.5 V cannot be increasedwhendecreasing |ρ jk |by an infinitesimal amount, for j �= k.
V.6 V must be a convex function, i.e., V (

∑
i λiρi ) ≤ ∑

i λi V (ρi ) with
∑

i λi = 1,
λi ∈ [0, 1], and ρi are well-defined density matrices.

In order to explore the relationship between the conditions for a quantumuncertainty
measure and those for a visibility measure, let us restrict ourselves to the context of
multi-slit interferometry, i.e, let us consider that the observable A is the projection
onto one of the d-paths of the interferometer: A = | j〉 〈 j |, for some path (state) label
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j . In the extreme case where ρ is pure and ρ j j = 1/d ∀ j , the quantum uncertainty
must be maximal V(ρ, A) = Q(ρ, A) = Qmax, and the visibility also reaches its
maximum value. Besides there is no classical uncertainty C(ρ, A) = 0. In the other
extreme case, when [ρ, A] = 0, ρ is an incoherent state in the basis shared by ρ and A,
thus all uncertainties are classical and V = Q(ρ, A) = 0, since there is no coherence
in this basis. Besides, if the state of the quanton is known, we have that ρ is pure, and
ρ j j = 1 for some state index j . Thus, V = Q(ρ, | j〉 〈 j |) = C(ρ, | j〉 〈 j |) = 0 and the
predictability reaches its maximum value. In addition, the visibility and the quantum
uncertainty must be convex functions of ρ, since classical mixture does not increase
the coherence of ρ and its quantum uncertainty.

On the other hand, the relation between classical uncertainty and quantum corre-
lation is more subtle. It is known that complementarity relations for wave–particle
duality are saturated only for pure, single-quanton, quantum states. For a maximally
incoherent state, the wave and particle quantifiers can reach zero, and no information
about the wave and particle aspects of the system can be obtained. So, the information
is being shared with other systems, and these correlations can be seen as responsible
for the increase in entropy of the quanton [30]. Thus, if the system ρ is not corre-
lated with other systems, then ρ must be pure. In this case, the classical uncertainty is
C(ρ, | j〉 〈 j |) = 0. Moreover, when [ρ, A] = 0, ρ is an incoherent state in the eigenba-
sis shared by ρ and A, all uncertainties are classical. However, we can always purify ρ

and think of it as resulting from entanglement with another system [39]. For instance,
we can consider ρ entangled with the states of a path detector device such that ρ is
incoherent in the path basis. Therefore, in this case, C(ρ, | j〉 〈 j | j) �= 0 is a signature
of quantum entanglement. In addition, maximally incoherent reduced states are used
to classify multipartite pure entangled states as maximally entangled. Beyond that, it
is known that, for multipartite quantum systems, any entanglement measure must be a
convex function [31]. However, the condition (C.3) is related to the particular subsys-
tem ρ. Hence, the classical mixture ρ = ∑

i λiρi can be recast as the effect of local
measurements, which is classified as a local operation and classical communication
procedure (LOCC) [40]. This fact is a direct consequence of the Neumark’s theorem
[40]. Hence, any entanglement measure must be concave under classical mixtures.
Finally, we could add that the quantum and classical uncertainties should be continu-
ous functions of the density matrix elements and invariant under permutations of the
paths (states) indexes.

3 A complementarity view of uncertainty

To introduce quantum uncertainty, Luo considered the following definition [3]:

Q(ρ, A) := Iwy(ρ, A) = −1

2
Tr([√ρ, A0]2), (5)

where I(ρ, A) is the skew information introduced byWigner and Yanase, also known
as the Wigner–Yanase entropy. As pointed out by Luo [3], their interpretation is that
Q(ρ, A) quantifies the information contents of the quantum state ρ with respect to
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observables not commutingwith (i.e., skew to) the observable A. Besides that,Q(ρ, A)

can also be regarded as quantifying the information of observables not commutingwith
A in the state ρ. Because of Bohr’s complementarity principle, we can further interpret
Q(ρ, A) as some kind of uncertainty of A itself in ρ. Hence, a natural definition of
classical uncertainty is:

C(ρ, A) := V(ρ, A) − Q(ρ, A) = Tr
√

ρA0
√

ρA0. (6)

As before, let us consider the observable A as the projection onto one of the paths
(or slit) of the interferometer, i.e., A = | j〉 〈 j |, for some path (state) label j . It is worth
pointed out that, in this work, we restrict ourselves to orthogonal measurements, since
the path states can be considered orthogonal to each other. In this case, the quantum
uncertainty of the path j is given by

Q(ρ, | j〉 〈 j |) = −1

2
Tr([√ρ, | j〉 〈 j |0]2) (7)

= −1

2

(

〈 j |√ρ| j〉2 + 〈 j |√ρ| j〉2 −
∑

k

〈k| √ρ | j〉 〈 j | √ρ |k〉 − 〈 j |ρ| j〉
)

(8)

= 〈 j |ρ| j〉 − 〈 j |√ρ| j〉2. (9)

If ρ is pure, then
√

ρ = ρ andQ(ρ, A) = 〈 j |ρ| j〉− 〈 j |√ρ| j〉2. For 〈 j |ρ| j〉 = ρ j j =
1/d ∀ j , the quantum uncertainty reaches its maximum Qmax = (d − 1)/d2. On the
other hand, if the path is known, i.e., ρkk = 1 for some path index k, thenQ(ρ, A) = 0,
even for k = j . Now, if [ρ, | j〉 〈 j |] = 0 ∀ j , then ρ is diagonal in the path basis and
ρ j j = (

√
ρ j j )

2 ∀ j , which implies thatQ(ρ, A) = 0. We can also define the quantum
uncertainty of all d-paths:

Uq :=
∑

j

Q(ρ, | j〉 〈 j |0) =
∑

j

(〈ρ j〉 − 〈 j〈|√ρ| j〉2) (10)

=
∑

j

(
∑

k

〈 j | √ρ |k〉 〈k| √ρ | j〉 − 〈 j〈|√ρ| j〉2
)

=
∑

j,k

∣
∣〈 j | √ρ |k〉∣∣2 −

∑

j

〈 j〈|√ρ| j〉2 (11)

=
∑

j �=k

∣
∣〈 j | √ρ |k〉∣∣2 = Cwy(ρ), (12)

where Cwy(ρ) is the Wigner–Yanase quantum coherence [36], which is a bonafide
measure of visibility, as we shown in Ref. [27]. Besides, Uq also satisfies Luo’s criteria
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for a quantum uncertainty. For the classical uncertainty of the path j , we have

C(ρ, | j〉 〈 j |)=Tr
√

ρ | j〉 〈 j |0 √
ρ | j〉 〈 j |0=〈 j |√ρ| j〉2−〈 j |ρ| j〉

∑

k

〈k| ρ | j〉 〈 j | ρ |k〉
(13)

= 〈 j〈|√ρ| j〉2 − 〈 j |ρ| j〉2. (14)

If ρ is pure, then C(ρ, A) = 0. On the other hand, if ρ is incoherent, then C(ρ, A) �=
0, and for the extreme case ρ = ∑

j
1
d | j〉 〈 j |, the classical uncertainty reaches its

maximum Cmax = (d − 1)/d2. Meanwhile, the classical uncertainty of all d-paths is
given by

Uc =
∑

j

C(ρ, | j〉 〈 j |) =
∑

j

(〈 j〈|√ρ| j〉2 − 〈 j |ρ| j〉2). (15)

Now, summing both uncertainties, we have

Uq + Uc =
∑

j,k

|〈 j | ρ |k〉|2 −
∑

j

〈 j |√ρ| j〉2 = Tr(
√

ρ)2 −
∑

j

〈 j |√ρ| j〉2

= 1 −
∑

j

〈 j |√ρ| j〉2 (16)

= Sl(ρdiag), (17)

where Sl(ρ) = 1−Trρ2 is the linear entropy. So, we can establish a complementarity
relation between classical and quantum uncertainties:

Uq + Uc ≤ Smax
l . (18)

But it is possible to explore Eq. (17) even further. Since for d paths with probabilities
ρ11, ρ22, . . . , ρdd , the lack of information about the j-th path is given by ρ j j (1−ρ j j ),
the total lack of information about all the d-paths is given by

∑
j ρ j j (1 − ρ j j ) =

1 − ∑
j ρ

2
j j , which is equal to Sl(ρdiag) = 1 − Trρ2

diag [41]. In other words, defining
� j := | j〉 〈 j | as the the projection onto the path (state) index j , the uncertainty of the
path index j is given by

V(ρ,� j ) = Trρ�2
j − (Trρ� j )

2 = ρ j j − ρ2
j j , (19)

such that the total uncertainty of the paths is obtained by summing over j :

∑

j

V(ρ,� j ) = 1 −
∑

j

ρ2
j j . (20)
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Hence, as expected,Uq+Uc = ∑
j V(ρ,� j ). Beyond that, Eq. (17) can also be rewrit-

ten as a complete complementarity relation between uncertainty and predictability:

Uq + Uc + Pl = Smax
l . (21)

Once Sl(ρdiag) is measuring our total uncertainty (or ignorance) about the paths, we
can interpret Pl(ρ) := Smax

l − Sl(ρdiag) as measuring our capability of making a cor-
rect guess about the possible outcomes in the path basis, i.e., if our total uncertainty
about the path decreases, our capability of making a correct guess has to increase.
Actually, Pl(ρ) is a bonafide predictability measure [27]. It is worthwhile emphasiz-
ing that predictive information is defined outside the realm of quantum information
science as the difference between a prior and posterior entropy measures, and can be
interpreted as the average information about the state contained in a prediction [42].
The following theorem, which relies largely on known results [17,43,44], is presented
here as extensions regarding the facts that the coherences of ρ give rise to quantum
uncertainties and that the classical uncertainty is due to the possible quantum corre-
lations with others systems, if we consider ρ as part of a pure multipartite quantum
system.

Theorem 1 Let |�〉A,B be a bipartite pure state of a quantum system. Then, quantum
correlations give rise to local classical uncertainties and quantum coherences give
rise to quantum uncertainties. Conversely, classical uncertainties are signatures of
quantum correlations and quantum uncertainties are signatures of quantum coher-
ences.

Proof Without loss of generality, in the context of d-slit interferometry, let | j〉 describe
the state corresponding to the quanton taking the j-th path, the general state is given
by |ψ〉A = ∑

j a j | j〉, where a j represents the probability amplitude of the quanton

to take the j-th path, and {| j〉}dj=1 can be regard as a orthonormal path basis. Consider
now a path-detector which is capable of recording which path the quanton followed.
This path detector is also a quantum object. In a von Neumann pre-measurement (
[43], Chapters V and VI), the detector interacts with a quanton and gets entangled
with it, i.e., U (| j〉 ⊗ |d0〉) → | j〉 ⊗ |d j 〉, where |d0〉 is the initial detector state and
U represents the unitary evolution operator. Then, the state of the quanton and the
detector is given by

|�〉A,B =
∑

j

a j | j〉 ⊗ |d j 〉 , (22)

where |d j 〉 is the state of the path-detector corresponding to the quanton following
the j-th path, and |�〉A,B represents a bipartite pure quantum system. Also, without
loss of generality, we consider the detector states {|d j 〉}dj=1 to be normalized, but not
necessarily orthogonal. Now, if we consider only the state of the quanton, we have a
mixed state described by [43]

ρA = TrB(|�〉A,B 〈�|) =
∑

j,k

a ja
∗
k 〈dk〉 d j | j〉 〈 j | k. (23)
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If the states of the detector are completely distinguishable, i.e., 〈dk |d j 〉 = δ jk , then

ρA = ∑
j

∣
∣a j

∣
∣2 | j〉 〈 j | is an incoherent state, and ρA commutes with any | j〉 〈 j |.

Hence, we have just classical uncertainty. On the other hand, if the detector does not
couple with the quanton, then the bipartite quantum system is separable, and the state
of the quanton is pure. Therefore, the uncertainty is only quantum. For last, if the
detector states are not mutually orthogonal to each other, the off-diagonal elements
of the reduced density matrix ρA = ∑

j,k a j a∗
k 〈dk |d j 〉 | j〉 〈 j | k do not necessarily

vanish. But the coherence of the quanton will be certainly reduced in comparison with
the pure state |ψ〉A = ∑

j a j | j〉 [17]. Thus, part of the quantum uncertainty will
be transformed into classical uncertainty, and we will have a mixture of both. It is
easy to see this from Eq. (21), since Smax

l is a constant and Pl(ρ) is not affected by
the states of the path detector. Conversely, if we have only quantum uncertainty, ρ

describes a pure state and there will be at least a superposition of two elements of the
path basis, otherwise the path will be known, which contradicts the hypothesis that we
have quantum uncertainty. At the other end, if we have only classical uncertainty, ρ is
incoherent in the path basis. However, it is always possible to purify ρ by entangling
it with another system. The trivial case where ρ is a projector on one of the uni-
dimensional sub-spaces of the path basis, then ρ is pure and the path is known, which
contradicts the hypothesis that we have classical uncertainty. ��

Hence, if we accept that Uq = Cwy(ρ) is measuring the wave aspect and Pl(ρ) is a
measure of the particle aspect of the quanton, thenUc = ∑

j Tr
√

ρ | j〉 〈 j |0 √
ρ | j〉 〈 j |0

can be considered a measure of entanglement of the quanton with other systems or
degrees of freedom, provided that the global state is pure.

Theorem 2 Let |�〉A,B ∈ HA ⊗ HB be the state of a bipartite pure quan-
tum system, with ρA = TrB(|�〉A,B 〈�|). Then, Uc := ∑

j C(ρA, | j〉 〈 j |) =
∑

j Tr
√

ρA | j〉 〈 j |0 √
ρA | j〉 〈 j |0 is a entanglement monotone1, with

∑d
j=1 | j〉 〈 j | =

Id×d .

Proof • If |�〉A,B is separable, then ρA = TrB(|�〉A,B 〈�|) is pure and Uc =
∑

j (〈 j |√ρA| j〉2 − 〈 j |ρA| j〉2) = 0. Conversely, if Uc = 0, then
√

ρA = ρA,
which implies that ρA is pure, and thus separable.

• Uc ≥ 0, once that Uc := ∑
j Tr

√
ρA | j〉 〈 j |0 √

ρA | j〉 〈 j |0 = ∑
j Trρ

1/4
A

| j〉 〈 j |0 ρ
1/4
A ρ

1/4
A | j〉 〈 j |0 ρ

1/4
A = ∑

j TrX
†
j X j ≥ 0,where X j := ρ

1/4
A | j〉 〈 j |0 ρ

1/4
A .

• Uc is invariant under unitary local transformations. To see this, letUA⊗UB |�〉A,B ,
where UA,UB are unitary operators in HA,HB , respectively. Thus, ρ′

A =
UAρAU

†
A. Following Ref. [45], it is enough to note that

∑

j

C(UAρAU
†
A, | j〉 〈 j |0) =

∑

j

C(ρA,U †
A | j〉 〈 j |0UA), (24)

which implies that for any local unitary transformationUA, the set {U †
A | j〉 〈 j | jU †}

still is an orthonormal basis. Hence, Uc is invariant under unitary transformations.

1 Entanglement monotones are nonnegative functions whose value does not increase under local operations
and classical communication (LOCC) [32].
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• Uc does not increase under classical mixing of ρA, which is a special type
of LOCC [3]. More generally, using the Schmidt decomposition |�〉A,B =∑

k
√

λk |φk〉A ⊗ |ψk〉B , we can write
√

ρA = ∑
k
√

λk |φk〉 〈φk |. Thus, Uc =∑
j Tr(

∑
k
√

λk |φk〉 〈φk | | j〉 〈 j |0
∑

l
√

λl |φl〉 〈φl | | j〉 〈 j |0) is obviously invariant
under the permutation of the Schmidt coefficients. Besides,

∂Uc

∂λm
=

∑

j

Trλ−1/2
m |φm〉 〈φm | | j〉 〈 j |0

∑

l

√
λl |φl〉 〈φl | | j〉 〈 j |0 ,

for m = 1, 2. Without loss of generality, if λ1 ≥ λ2, then λ
−1/2
1 ≤ λ

−1/2
2 and

(λ1 − λ2)

(
∂Uc

∂λ1
− ∂Uc

∂λ2

)

≤ 0. (25)

Therefore, Uc is monotonously decreasing under LOCC [46].
��

It is worth pointing out the we are not claiming that Uc is an entanglement measure
in the sense of concurrence, which applies to any bipartite quantum system (pure and
mixed). We are claiming that Uc can be taken as a entanglement monotone, just as the
von Neumann entropy can be taken as a entanglement monotone, for a bipartite pure
quantum system. Actually, in Ref. [47], by a different route, we succeed in showing
that Uc is an entanglement monotone.

3.1 Brukner–Zeilinger invariant information and its relation with
complementarity

It is noteworthy the apparent similarity between the predictability Pl(ρ) := Smax
l −

Sl(ρdiag) = Trρ2
diag − 1/d and the Brukner–Zeilinger (BZ) invariant information

IBZ(ρ) := Trρ2 − 1/d [48]. However, there is a fundamental difference between
these quantities: the predictability is basis-dependent while the BZ information is not.
We can see this by considering a two-level quantum system, whose state space is
C
2. Instead of using a Mach–Zehnder interferometer, we choose particles with spin-

1/2 whose magnetic moment is measured using a Stern–Gerlach apparatus [49]. The
observables that we will consider are the components of the magnetic moment of
these particles in the direction z, Sz = (�/2) |z+〉 〈z+| − (�/2) |z−〉 〈z−|, and in the
direction x , Sx = (�/2) |x+〉 〈x+| − (�/2) |x−〉 〈x−|, where � is Planck’s constant,
|z+〉 = [1 0]†, |z−〉 = [0 1]†, and |x±〉 = (|z+〉± |z−〉)/√2. In this case, {|z+〉 , |z−〉}
plays the role of the path basis, and Sz can be the observable related to the path
information. Meanwhile, Sx is an incompatible observable of Sz . Now, if we consider
an ensemble of particles prepared in the state

ρ = p1 |z+〉 〈z+| + p2 |x+〉 〈x+| , (26)
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Fig. 1 (Color online) Brukner–Zeilinger invariant information and linear predictability of the states (26)
and (27)

with p1 + p2 = 1, which possesses quantum uncertainty due to the incompatible
observables |z+〉 〈z+| and |x+〉 〈x+|, therefore possessing quantum coherence in the
basis {|z+〉 , |z−〉}. We can see that IBZ(ρ) reaches a maximum when p1 = 0 or 1
(and p2 = 0 or 1), while Pl(ρ) reaches a maximum when p1 = 1 and a minimum
when p1 = 0, once the predictability is a measure related to the state (path) basis
{|z+〉 , |z−〉}. In contrast, let us consider the state

σ = p1 |z+〉 〈z+| + p2 |z−〉 〈z−| , (27)

with p1 + p2 = 1, which possesses only classical uncertainty. If we consider p1 =
p2 = 1/2, then IBZ(σ ) = 0, whereas I (ρ) = 1/4, and Pl(ρ) = Pl(σ ). Thus, the BZ
information can be lifted by quantum uncertainties, while the behavior of Pl is the
same regardless of whether the nature of uncertainty is quantum, classical, or even
a mixture of both. This stems from the fact that BZ information can be taken as a
measure of the local properties of a quanton, i.e., its particle-wave nature. In Fig. 1,
we plot the behavior of IBZ(ρ), IBZ(σ ), Pl := Pl(ρ) = Pl(σ ) as function of p1.

Theorem 3 The Brukner–Zeilinger invariant information IBZ(ρ) := Trρ2−1/d mea-
sures the local aspects of a quanton, i.e., its particle and wave aspects.

Proof The proof follows directly by the definition of BZ information:

IBZ(ρ) := Trρ2 − 1/d =
∑

j,k

∣
∣ρ jk

∣
∣2 − 1/d (28)

=
∑

j

ρ2
j j − 1/d +

∑

j �=k

∣
∣ρ jk

∣
∣2 (29)

= Pl(ρ) + Chs(ρ), (30)
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whereChs(ρ) := ∑
j �=k

∣
∣ρ jk

∣
∣2 is the Hilbert–Schmidt quantum coherence [50], which

is also a bonafide measure of visibility [27], that was already used in the works by
Jakob and Bergou [30,33]. ��

4 An uncertainty view of complementarity

Within this framework, we can interpret any complete complementarity relation in
terms of uncertainty. For instance, for any quantum state ρ of dimension d, the relative
entropy of coherence is defined as [16]

Cre(ρ) = min
ι∈I Svn(ρ||ι), (31)

where I is the set of all incoherent states, and Svn(ρ||ι) = Tr(ρ ln ρ − ρ ln ι) is the
relative entropy. The minimization procedure implies that ι = ρdiag = ∑

i ρi i |i〉 〈i |,
thus

Cre(ρ) = Svn(ρdiag) − Svn(ρ). (32)

Once Cre(ρ) ≤ Svn(ρdiag), it is possible to obtain an incomplete complementarity
relation from this inequality:

Cre(ρ) + Pvn(ρ) ≤ ln d, (33)

with Pvn(ρ) := ln d − Svn(ρdiag) = ln d + ∑
i ρi i ln ρi i as a measure of the pre-

dictability, already defined in Refs. [15,27]. Such measure is only possible to define
because we can interpret the diagonal elements of ρ as a probability distribution,
which is a consequence of the properties of ρ [27]. The complementarity relation (33)
is incomplete due to the presence of correlations. However, if ρ is a subsystem of a
bipartite pure quantum system |�〉A,B , which allows us to take Svn(ρ) as a measure
of entanglement of the subsystem A with B [40], so it is possible to interpret Eq. (32)
as a complete complementarity relation:

Cre(ρ) + Svn(ρ) + Pvn(ρ) = ln d. (34)

Now, we can interpret Cre(ρ) and Svn(ρ) in terms of quantum and classical uncer-
tainties, respectively, i.e., U(ρ) := Cre(ρ) + Svn(ρ)2. Following Ref. [6], we can
consider the dephasing map D(ρ) = ∑

j 〈 j | ρ | j〉 | j〉 〈 j |. The projective measure-

ments {| j〉 〈 j |}dj=1 related to the paths are a repeatable measurement, and so it is
reasonable to demand that a second measurement should not reveal any quantum
uncertainty in the state and is entirely classical. Thus, we can take S(ρ||D(ρ)) =
minι∈I S(ρ||ι) = Cre(ρ) as the quantum uncertainty and S(ρ) as the classical
uncertainty. If ρ is pure, Svn(ρ) = 0 and U(ρ) = Cre(ρ). On the other hand, if
[ρ, |k〉 〈k|] = 0, for some path index k, then ρ is diagonal on the path basis. Hence,

2 Here, we will not define Cre(ρ) + Svn(ρ) as V(ρ) because the first is not a variance.
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Cre(ρ) = 0, since S(ρdiag) = S(ρ) and U(ρ) = S(ρ). Also, it is known that Cre(ρ)

is convex under classical mixtures [16] and S(ρ) is concave under classical mixtures
[39]. Hence, we can also interpret Eq. (34) as a complete complementarity relation
between uncertainties and predictability.

Furthermore, we can use the fact that the coherences and the quantum correlations
of ρ give rise to quantum and classical uncertainties, respectively, to obtain a complete
complementarity relation. In Ref. [27], we obtained an incomplete complementarity
relation using the l1-norm as a measure of quantum coherence [16], just by exploring
the properties of the density matrix: since ρ is positive semi-definite, we can use the
fact that

∣
∣ρ jk

∣
∣ ≤ √

ρ j jρkk , ∀ j �= k [51], to obtain

Cl1(ρ) ≤
∑

j �=k

√
ρ j jρkk ≤ d − 1 (35)

which can be recast as a complementarity relation:

Cl1(ρ) + Pl1(ρ) ≤ d − 1, (36)

where Cl1(ρ) := ∑
j �=k

∣
∣ρ jk

∣
∣ is the l1-norm quantum coherence, and Pl1(ρ) := d −

1 − ∑
j �=k

√
ρ j jρkk is a bonafide measure of predictability. Now, we notice that

Cl1(ρ) + Pl1(ρ) = d − 1 +
∑

j �=k

(
∣
∣ρ jk

∣
∣ − √

ρ j jρkk) (37)

can be rewritten as a CCR,

Cl1(ρ) + Wl1(ρ) + Pl1(ρ) = d − 1, (38)

if we define Wl1(ρ) = ∑
j �=k(

√
ρ j jρkk − ∣

∣ρ jk
∣
∣) as a measure of entanglement of the

quanton, provided that the system is part of a bipartite pure quantum system. And we
can see that Cl1(ρ) and Wl1(ρ) give rise to quantum and classical uncertainties by
showing that these measures satisfy Luo’s criteria: if ρ is pure ∴

∣
∣ρ jk

∣
∣ = √

ρ j jρkk ,
∀ j �= k, and Wl1(ρ) = 0. In this case, we can interpret that ρ is part of a bipartite
pure separable quantum system. On the other hand, if ρ is incoherent in the path
basis, then Cl1(ρ) = 0 and Wl1(ρ) = ∑

j �=k
√

ρ j jρkk . For the extreme case ρ =
∑

j
1
d | j〉 〈 j |, Wl1(ρ) = d − 1 reaches its maximum. Now, the convexity of Cl1(ρ)

was shown in Refs. [16,27]. To show the concavity of Wl1(ρ), it is enough to note
that Cl1(ρ) = ∑

j �=k

∣
∣ρ jk

∣
∣ and f (x1, ..., xd) = −∑

j �=k
√
x j xk , with x j ∈ [0, 1], are

convex functions, therefore −Cl1(ρ) and − f (x1, ..., xd) are concave [55]. Besides, it
is worth mentioning that, in Ref. [47], we succeed to show thatWl1 is an entanglement
monotone for bipartite pure cases, when restricted to the Schmidt’s coefficients.

In addition, it is worth pointing out that Ref. [17] obtained (incomplete) comple-
mentarity relations using the relative entropy and the l1-norm quantum coherences as
measures of visibility, while distinguishability measures were used for the ‘particle-
ness’ of the system. In contrast, in this work, we use predicatibility measures for the

123



An uncertainty view on complementarity… Page 15 of 21 201

Fig. 2 (Color online) Quantum coherence and correlation and predictability measures, and their comple-
mentarity, for the state in Eq. (39)

particle aspect of the quanton. Besides, if the bipartite quantum system is mixed, the
classical uncertainty measures can be taken as measures of the mixedness of the sys-
tem, as in Refs. [52,53]. For a recent discussion on this subject, the reader is referred
to Ref. [54].

To illustrate this complete complementarity relation, let us consider the state [56]
|(p, ε)〉=√

pε |0, 0, 0〉A,B,C+
√
p(1−ε) |1, 1, 1〉A,B,C+

√
(1− p)/2(|1, 1, 0〉A,B,C+

|1, 0, 1〉A,B,C ), with p, ε ∈ [0, 1]. The reduced state ρA is incoherent, meanwhile

ρB = ρC =(pε + (1 − p)/2)|0〉〈0| + (p(1 − ε) + (1 − p)/2)|1〉〈1|
+ (

√
p(1 − ε)(1 − p)/2)|0〉〈1| + t .c.), (39)

where t.c. stands for the transpose conjugate. In Fig. 2a, we plotted the coherence of
ρB, ρC , aswell as the correlation and predictabilitymeasures in Fig. 2b, c, respectively.
By summing all three measures, we must saturate the complementarity relation, as
represented by the plane in Fig. 2d, i.e., Cl1(ρ) + Wl1(ρ) + Pl1(ρ) is constant.

Now, for a bipartite quantum system in the state |�〉A,B = x |0, 1〉A,B +√
1 − x2 |1, 0〉A,B , with x ∈ [0, 1], we have

Wl1(ρA) = Wl1(ρB) = 2x
√
1 − x2, (40)

Pl1(ρA) = Pl1(ρB) = 1 − 2x
√
1 − x2, (41)
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Fig. 3 (Color online) Comparison between different measures of predictability and their respective corre-
lation measures of Eqs. (40)–(45)

Uc(ρA) = Uc(ρB) = 2x2(1 − x2), (42)

Pl(ρA) = Pl(ρB) = 1/2 − 2x2(1 − x2), (43)

Svn(ρA) = Svn(ρB) = −x2 ln x2 − (1 − x2) ln(1 − x2), (44)

Pvn(ρA) = Pvn(ρB) = ln 2 + x2 ln x2 + (1 − x2) ln(1 − x2), (45)

whereUq(ρA) = 1
2 E

2(�A,B), with E(�A,B) being the concurrencemeasure of entan-
glement [57] and Wl1(ρA) = Cc

l1
(ρA,B), with Cc

l1
(ρA,B) being the l1-norm correlated

coherence [58]. In Fig. 3, we plotted the different measures of predictability and cor-
relation for comparison.

4.1 The generalized Gell-Mann’s matrices and its relation with complementarity

From the variance of the generalized Gell-Mann’s matrices (GMM), wewill obtain the
complete complementarity relation for the Hilbert–Schmidt norm (or l2-norm) given
by

Pl(ρ) + Chs(ρ) + Sl(ρ) = d − 1

d
, (46)

where Pl(ρ) := Smax
l − Sl(ρdiag) is the predictability already defined in Sect. 3,

Chs(ρ) := ∑
j �=k

∣
∣ρ jk

∣
∣2 is the Hilbert–Schmidt quantum coherence and Sl(ρ) = 1 −

Trρ2 is the linear entropy. By doing this, we generalize the relationship betweenwave–
particle quantifiers and uncertainties explored in Refs. [59,60] for qubits. Let {| j〉}dj=1

be any given vector basis forC
d . Using this basis, we can define the generalized GMM

as [61]:

�d
m :=

√
2

m(m + 1)

m+1∑

l=1

(−m)δl,m+1 |l〉 〈l| , (47)

123



An uncertainty view on complementarity… Page 17 of 21 201

�s
j,k := | j〉 〈k| + |k〉 〈 j | , (48)

�a
j,k := −i (| j〉 〈k| − |k〉 〈 j |) , (49)

where if not stated otherwise, we use the following possible values for the indexes
m, j, k: m = 1, . . . , d − 1 and 1 ≤ j < k ≤ d. For d = 2, the generalized Gell-
Mann’s matrices reduce to the well-known Pauli matrices. Besides, one can easily see
that these matrices are Hermitian and traceless. If we use �d

0 for the d × d identity
matrix, it is not difficult to see that under the Hilbert–Schmidt’s inner product,

〈A|B〉hs := Tr(A†B), (50)

with A, B ∈ C
d×d , the set

{
�d
0√
d

,
�d
m√
2
,
�τ

j,k√
2

}

, (51)

with τ = s, a, forms an orthonormal basis for C
d×d [61]. So, any matrix X ∈ C

d×d

can be decomposed in this basis. In particular, we can decompose the density operator
as follows:

ρ = 1

d
Tr(ρ)�d

0 + 1

2

∑

j

〈�d
j |ρ〉�d

j + 1

2

∑

k,l,τ

〈�τ
k,l |ρ〉�τ

k,l . (52)

Now, since

d−1∑

m=1

〈�d
m〉2 = 2

(∑

j

ρ2
j j − 1/d

) = 2Pl(ρ), (53)

∑

j<k

(〈�s
j,k〉2 + 〈�a

j,k〉2
) = 2

∑

j �=k

∣
∣ρ jk

∣
∣2 = 2Chs(ρ), (54)

where Chs(ρ) = ∑
j �=k

∣
∣ρ jk

∣
∣2 is the Hilbert–Schmidt (or l2-norm) quantum coher-

ence [50], and 〈�〉 = Tr(ρ�). The sum of the variances of these subsets of observables
is given as follows:

∑

m

V(ρ, �d
m) = 2(d − 1)

d
− 2Pl(ρ), (55)

∑

j<k

(
V(ρ, �s

j,k) + V(ρ, �a
j,k)

)
= 2(d − 1) − 2Chs(ρ). (56)
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By summing Eqs. (55) and (56), we obtain the complete complementarity relation

Pl(ρ) + Chs(ρ) + C(ρ, �) = d − 1

d
. (57)

where C(ρ, �) := 1
2

∑
m V(ρ, �d

m) + 1
2

∑
j<k(V(ρ, �s

j,k) + V(ρ, �a
j,k)) − (d − 1)

is a measure of classical uncertainty, once it satisfies Luo’s criteria. In addition, Eq.
(57) is equivalent to the complete complementarity relation obtained by us in Ref.
[34], exploring the purity of multipartite quantum systems, where C(ρ, �) = 1 −
Trρ2 = Sl is measuring the quantum correlations of ρ with other systems, provided
that the quanton is part of a multipartite pure quantum system. Besides, for bipartite
pure quantum systems, the CCR in Eq. (57) is equivalent to that obtained by Jakob
and Bergou [33] using the concurrence as a measure of quantum correlation. As ρ

represents a mixed quantum state in general, Pl(ρ) + Chs(ρ) ≤ d−1
d and we have the

following uncertainty relation for the generalized Gell-Mann’s matrices:

∑

m

V(ρ, �d
m) +

∑

j<k

(V(ρ, �s
j,k) + V(ρ, �a

j,k)) ≥ 2(d − 1). (58)

For instance, for d = 2, the generalized Gell-Mann’s matrices reduce to the well-
known Pauli matrices (σx , σy, σz), and Eq. (58) reduces to

V(ρ, σx ) + V(ρ, σy) + V(ρ, σz) ≥ 2, (59)

while from Eqs. (53) and (54), we have a trade-off between the variances of the Pauli
matrices and the measures that quantify complementarity:

V(ρ, σx ) + V(ρ, σy) + V(ρ, σz) = 3 − 2(Chs(ρ) + Pl(ρ)), (60)

which is a equivalent to equation (8) of Ref. [60]. One can see this by noting that
Pl = 1

2 P
2 andChs = 1

2V
2,where P, V are thewell-knownpredictability andvisibility

measures used in Refs. [13,60]. The only difference is that the authors in Ref. [60]
consider the visibility operator as V̂ = cosφσx + sin φσy and the predictability
operator as P̂ = σz such that the trade-off relation adds up to 2: P2 + V 2 + V(V̂ ) +
V(P̂) = 2. Therefore, one can see that Eq. (57) generalizes such relationship between
complementarity measures and uncertainties for d-dimensional quantum systems.

5 Conclusions

The relationships between Luo’s criteria for quantum and classical uncertainties and
Dürr–Englert et al.’s criteria for wave–particle duality together with the criteria for
entanglement measures was discussed. This lead naturally to the notion that quantum
entanglement gives rise to local classical uncertainties, provided that the quanton
is part of a pure bipartite quantum system, while quantum coherence gives rise to
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Table 1 Role of different entropies in uncertainty and complementarity relations

Entropy Usefulness in uncertainty relations Usefulness in complementarity relations

Sl (ρ) Measure of classical uncertainty Measure of correlation with other systems

Sl (ρdiag) Measure of total uncertainty Can be used to define predictability

Svn(ρ) Measure of classical uncertainty Measure of correlation with other systems

Svn(ρdiag) Measure of total uncertainty Can be used to define predictability

quantum uncertainties. In addition, we showed that the quantum uncertainty of all d-
paths is equivalent to theWigner–Yanase quantum coherence;meanwhile, the classical
uncertainty can be taken as a correlation quantifier. By exploring the relation between
uncertainties and wave–particle duality, we obtained quantum correlation measures
completing the l1-norm and l2-norm complementarity relations that can also be taken
as classical uncertainty measures. Therefore, our work connects two crucial concepts
that were guidelines for the development of quantum mechanics, which have been
recently formalized: the separation of the total uncertainty in its classical and quantum
parts developed by Luo; and the quantification of complementarity made by several
authors, as emphasized in Sect. 1.

Besides, we believe that our results will help in the realization that neither comple-
mentarity nor uncertainty can be considered a more fundamental aspect of quantum
theory, what is still a vivid debate [62–66]. Instead, complementarity and uncertainty
are intrinsically connected to each other, for both follow directly from the mathemat-
ical structure of quantum mechanics. Lastly, to summarize the role of the different
entropies in uncertainty and complementarity relations of multipartite pure quantum
states explored in this paper, we use Table 1.

Lastly, in this work we noticed that the overall distinction between classical, total,
and quantum uncertainty is that classical uncertainty is characterized from the eigen-
values of the density matrix, the total uncertainty is characterized from the diagonal
elements of the density matrix (i.e., the probability distribution acquired in a experi-
ment) and the quantum uncertainty is defined as the difference between the two using
whichever measure of uncertainty is most convenient.
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