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Abstract
We investigate the dynamics of quantum correlation (QC) under the effects of reservoir
memory, as a resource for quantum information and computation tasks. Quantum
correlations of two-qubit systems are used for implementing quantum teleportation
successfully, and for investigating how teleportation fidelity, violation of Bell-CHSH
inequality, quantum steering and entanglement are connected with each other under
the influence of noisy environments. Both Markovian and non-Markovian channels
are considered, and it is shown that the decay and revival of correlations follow the
hierarchy of quantum correlations in the state space. Noise tolerance of quantum
correlations is checked for different types of unital and non-unital quantum channels,
with and without memory. The quantum speed limit time (τQSL) is investigated from
the perspective of memory of quantum noise, and the corresponding dynamics is used
to analyze the evolution of quantum correlations.We establish the connection between
information backflow, quantum speed limit time and dynamics of quantumcorrelations
for non-Markovian quantum channels.

Keywords Quantum entanglement · Teleportation · Quantum correlation · Bell’s
nonlocality · Quantum channel

1 Introduction

Quantum correlation (QC) along with the superposition principle, triggered the
advances in the field of quantum enabled science and technology. Right from its
inception, quantum entanglement has exercised a pivotal role as a resource for manip-
ulating the quantum information. In recent times, more general forms of non-classical
correlations have been explored and are widely used as a resource for the success-
ful implementation of various quantum information and computation protocols like
dense coding, teleportation, key distribution, cryptography, parameter estimation,
metrology [1–9], both theoretically and experimentally. Entanglement is an inevitable
resource [10,11] for achieving maximum possible success for a number of quantum
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information protocols (QIP), whereas it is considered as a non-critical resource in
the realization of some of the aforementioned protocols. Nonzero fidelity for quantum
remote state preparation [12] can be achieved using separable states, wherein quantum
discord enables the process. Recently, it has been shown that PPT bound entangled
states are useful for quantum parameter estimation in noisy environment [13].

The study on multipartite quantum teleportation reveals that maximum degree of
entanglement is not necessary [14,15] to attain optimum teleportation fidelity. All
these cases of QC as a resource for QIP [16–18] invite wide attention for the explo-
ration of more general forms of non-classical correlations in bipartite and multipartite
quantum systems, and their dynamics under decoherence. Quantum decoherence is a
phenomenon that occurs when quantum systems interact with their ambient environ-
ment, and is studied under the broader perspective ofOpen Quantum Systems [19,20].
Open quantum systems have been applied extensively in recent times to various facets
of quantum information, condensed matter systems [21], and relativistic as well as
sub-atomic physics [22–28]. Coupling of the quantum system with the reservoir can
be either weak or strong, leading to a wide range of dynamics. Quantum channels
modeling these effects can be Markovian or non-Markovian, both unital as well as
non-unital. The backflow of information from the reservoir to the system for a given
non-Markovian quantum channel reveals many intriguing features of QC [29–31]. In
general, investigating the dynamics of quantum correlations of open quantum sys-
tem, both Markovian and non-Markovian, is pertinent, since the detailed study of
coherence dynamics and correlations of quantum states is essential for the successful
implementation of quantum information and computation protocols [32–38].

The hierarchy of quantum correlations of states of composite systems is known;
to begin with, the classifications of quantum correlations according to entanglement,
steering and nonlocality were considered. The hierarchy of quantum correlations in
the increasing order of their strength was identified as: entanglement, steerability and
nonlocality [39–41]. For pure states, quantum states are either entangled or separa-
ble, and for mixed states, distinctive classification with respect to the aforementioned
order of quantum correlations is more prominent. When correlated quantum states are
used as a resource for teleportation, teleportation fidelity reveals two different aspects
of nonclassicality or measures of correlations of quantum nature. If the teleportation
fidelity is greater than 2

3 (classical limit), the state is non-classically correlated in the
sense that it is useful for quantum teleportation. In addition to this, if the fidelity is
greater than Flhv ≈ 0.87 [39], then the state is nonlocal in the sense that its teleporta-
tion fidelity is incompatible with local hidden variable descriptions, and a state with
fidelity greater than Flhv satisfies all the measures of quantum correlations. In [42,43],
connection among the different measures of quantum correlations for achieving quan-
tum teleportation fidelity, and the order of hierarchy of quantum correlations were
discussed.

Decoherence of quantum states occurs due to the influence of noise, and it is known
that the order of hierarchy of quantum correlations is preserved [40,42,44] under
Markovian noisy channels for different class of pure and mixed states. The decay of
quantum correlations happens in such a way that higher degree quantum correlations
are lost for a lower value of noise, whereas lower degree QCs are lost for higher noise
parameters [44].
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The classification of quantum channels based on the divisibility properties is quite
noteworthy in open systemdynamics.According to the divisibility criterion, a quantum
channel isMarkovian if any intermediatemap is completely positive (i.e., if the channel
is CP-divisible) [45]. In [46,47], a broader concept of memory is introduced, whereby
CP-divisible quantum processes can occur in non-Markovian regimes as well. CP-
divisibility of a quantum process always indicates the lack of information backflow.
On the other hand, the absence of P-divisibility canmanifest in the form of oscillations
in correlationmeasures such as quantummutual information, and trace distance,which
are monotonic functions of time if the dynamics is P-divisible [34]. These oscillations
indicate the backflow of information from the environment to the system. Here, we
take into account Markovian as well as CP-divisible and P-indivisible non-Markovian
channels, and their dynamics are investigated and compared

Quantum speed limit time (τQSL) [48,49], the minimal evolution time between
two states, is another quantity that captures Markovianity of the quantum processes.
The role of τQSL as a witness of non-Markovianity associated with the non-unitary
quantum evolution has been studied [50,51]. We investigate the dynamics of τQSL ,
and avail its connection with the information backflow to analyze the behavior QC.

We consider entanglement, quantum steering, and Bell-CHSH nonlocality as a
resource for quantum teleportation [52], and establish their connectionwith the telepor-
tation fidelity for different class of pure and mixed states in the presence of unital and
non-unital noisy channels. This points to the significance of considering the dynamics
of two different aspects of nonclassicality/ measures of QC (F > 2

3 and F > Flhv)
associated with the teleportation fidelity along with the entanglement, steering and
Bell-nonlocality. It is known that the effects of noise on a quantum system are not
always detrimental in nature, and the revival of quantum correlations occurs due to the
backflow of information from the environment to the system. We show that the decay
and revival of quantum correlations under non-unitary evolution follow the order of
hierarchy of QC. Also, we study the quantum speed limit time as a witness of the
memory effects of quantum channels. It is shown that dynamics of quantum corre-
lations can be described using τQSL . Markovian and non-Markovian noisy models
of amplitude damping which are non-unital, as well as unital channels such as phase
damping, depolarizing and random telegraph noise (RTN), are considered, and noise
tolerance of QC in these cases is discussed.

The work is organized as follows. In Sect. 2, we briefly define different measures of
quantum correlations, quantum speed limit time in noisy environment, and methods
to quantify them. In Sect. 3, the effect of noisy channels on a quantum system taken to
be in a pure entangled state is described, followed by the investigation of the dynamics
of QC and τQSL under the influence of various channels. We establish the connection
among different measures of quantum correlations when they are used as a resource
for quantum teleportation. A corresponding analysis for initial mixed states is made
in Sec. IV. We show that quantum speed limit time can be availed to describe the
dynamics of quantum correlations. Results and discussions in Sect. 5 are followed by
the concluding section (Sect. 6).
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2 Quantum correlations

Quantum correlations and quantum speed limit time, which can serve as indicators of
quantumness in a system, are defined. Quantum correlations are used as a resource
for quantum teleportation. The connections between quantum entanglement, steering
and violation of Bell-CHSH inequality with two different aspects of nonclassicality
associated with the teleportation fidelity are established. In this section, we discuss
the methods to estimate different QC for a two-qubit state, ρAB and the derivation of
τQSL in open system dynamics.

2.1 Teleportation fidelity and Bell-CHSH inequality

In general, a two qubit state is given as:

ρAB = 1

4
(I2 ⊗ I2 +

3∑

i=1

riσi ⊗ I2 +
3∑

i=1

si I2 ⊗ σi +
3∑

i, j=1

ti, j (σi ⊗ σ j )). (1)

We have
∑3

i=1 ri = 1 and
∑3

i=1 si = 1. The correlationmatrix is defined as T = {ti, j }
and the matrix elements ti, j = Tr [σi ⊗ σ jρ]. Two-qubit entangled states are used as
a resource for quantum teleportation, and the teleportation fidelity [52] is calculated

F(ρ) = 1

2

(
1 + N (ρ)

3

)
, (2)

where N (ρ) = ∑3
i ui ; ui ′s are the square root of the eigenvalues of T

†T . The given
state is useful for quantum teleportation iff N (ρ) > 1, i.e., F(ρ) > 2

3 (classical limit).
The violation of Bell-CHSH inequality can be checked by estimating the

expectation value of Bell observable B [52] for a given state ρ, and Bmax =
2
√
max j>k(u2j + u2k). The state ρ violates Bell-CHSH inequality for B(ρ) > 2.

2.2 Quantum steering

Quantum steering [53,54] makes a reference to the fact that in the case of biseparable
quantum systems, the state of a quantum system can be changed by the action of local
measurements on the other system. The degree of steerability of a given quantum state
is estimated by considering the amount by which a steering inequality is maximally
violated [6]. The formula for two qubit-steering is:

Sn(ρ) = max

{
0,

�n − 1√
n − 1

}
, (3)

�2 =
√
c2 − c2min and �3 = c are steering values in which measurements, n =

2, 3 per party are involved, called two measurement and three measurement steering,
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respectively. Here, c = √
c2, ci ′s are the eigenvalues of correlation matrix T = {ti, j }

(Eq. 1), and cmin ≡ min {|ci |}.

2.3 Quantum entanglement

We use concurrence [55,56] as a measure to estimate the entanglement of a quantum
state. The concurrence of a state ρ is defined

C(ρ) = max{0,√λ1 − √
λ2 − √

λ3 − √
λ4}, (4)

whereλi ′s are the eigenvalues ofρρ̃ in the descending order and ρ̃ = σy⊗σyρ
∗σy⊗σy ,

ρ∗ is the complex conjugate of the state ρ. We have 0 < C(ρ) ≤ 1 for entangled states
and C = 0 for separable states.

2.4 Quantum speed limit time (�QSL)

Quantum speed limit time defines a bound on the minimum time required for a quan-
tum system to evolve between two states [57–59]. The bound on the quantum speed
limit time for open quantum systems [60,61], whose evolution is governed by general
quantum channels, is

τQSL ≥ 2θ2

π2

√
trρ2

0
∑

α ||Kα(t, 0)ρ0 K̇
†
α(t, 0)||

, (5)

where X = τ−1
∫ τ

0 Xdt .ρ0 is the initial state, Kα′s are theKraus operators characteriz-

ing the channel responsible for the evolution of the quantum state, ||A|| = √
tr(A†A)

is the Hilbert–Schmidt norm of A, and θ = cos−1(Tr [ρ0ρt ]/Tr [ρ2
0 ]). In this work,

we investigate the dynamics of τQSL for various noisy quantum channels, and the
relationship between quantum correlations and speed limit time is demonstrated.

3 Action of noisy channels

The effect of noise on a system can be described using the operator-sum formalism.
We consider various noisy models, both quantum and classical in nature, for example,
the amplitude damping channel, phase damping, depolarizing and random telegraph
noise (RTN). The evolution of a quantum system interacting with its environment is

ρ(t) =
∑

i

Ei (t)ρ(0)E†
i (t), (6)

where Ei ′s are the Kraus operators characterizing the noise. They satisfy the complete-
ness relation

∑
i E

†
i Ei = 1. In general, local interactions of a two qubit system with
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noisy environments can be described as follows:

ρ(t) =
∑

i, j

Ei (t) ⊗ E j (t)ρ(0)E†
i (t) ⊗ E†

j (t). (7)

Here, we consider the scenario wherein the first qubit interacts with the noisy channel,
whereas the second qubit evolves under the noise free condition. We consider the
dynamics of quantum correlations under the influence of different noisy models, both
Markovian and non-Markovian (unital as well as non-unital), and τQSL is analyzed
for both pure and mixed entangled initial states. A similar dynamics can be observed
for the cases where both qubits evolve under noisy quantum channels.

3.1 Amplitude damping channel

The Kraus operators of non-Markovian dissipative quantum channel [62] are given
as:

E0 = |0〉〈0| + √
q|1〉〈1|, E1 = √

1 − q|0〉〈1|, (8)

we have q = exp(−
t){cos( dt2 ) + 

d sin( dt2 )}2, d = √

2γ
 − 
2. Where 
 is the
line width that depends on the reservoir correlations time (τr ≈ 
−1) and γ is the
coupling strength related to qubit relaxation time τs ≈ γ −1. The Kraus operators of
the amplitude damping channel in the Markovian regime [63–65] can be obtained by
assuming q = 1 − ν, where ν is a Markovian exponential decay function .

Let us consider the pure entangled state as initial state,

|ψ〉 = α|00〉 + β|11〉, (9)

where |α|2 + |β|2 = 1. Quantum correlations are calculated, and their dynamics are
investigated for maximally entangled Bell state (α = β = 1√

2
).

In Fig. 1, the behavior of quantumcorrelations ofmaximally entangledBell state as a
function of dimensionless quantity γ t under the influence of non-Markovian amplitude
damping channel is depicted. We investigate the dynamics of two different aspects
of nonclassicality associated with the quantum teleportation fidelity ( F(ρ) > 2

3
and F(ρ) > Flhv(ρ) ≈ 0.87) along with entanglement, quantum steering and the
violation of Bell-CHSH inequality. QCs of Bell state evolving under the influence of
the non-Markovian amplitude damping channel decay initially and revive back after
all quantum correlations reach their minimum values, and this process continues. It is
clear from Fig. 1 that the decay and revival of quantum correlations follow a particular
order, and higher degree quantum correlations are lost for small values of channel
parameter compared to the lower degree quantum correlations. The decay of QC,
as a function of channel parameter, occurs in the following decreasing order: state’s
teleportation fidelity less than Flhv ≈ 0.87, non-violation of Bell-CHSH inequality,
vanishing two and three measures of quantum steering, fidelity less than the classical
limit and vanishing entanglement. Thus, qFlhv

≤ qB ≤ qS2 ≤ qS3 ≤ qT ≤ qE ,
where qFlhv

, qB , qS2 , qS3 , qT and qE are the channel parameter values at which,
teleportation fidelity becomes less than 0.87, the states stop violating Bell-CHSH
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Fig. 1 Quantum correlations are plotted as a function of γ t (
 = 0.01γ ) in the case of non-Markovian
amplitude damping quantum channel acting on maximally entangled bell state
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Fig. 2 Quantum correlations of Bell state are plotted as a function of γ t for Markovian amplitude damping
channel
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Fig. 3 Dynamics of quantum speed limit time of maximally entangled Bell state for non-Markovian ampli-
tude damping channel (
 = 0.01γ )

inequality, non-violation of two measure steering inequality, disappearance of three
measure quantum steering, teleportation fidelity of states less than the classical limit
( 23 ) and vanishing entanglement (zero concurrence), respectively. Hereafter, we use
qFlhv

, qB , qS2 , qS3 , qT and qE as the channel parameter values at which corresponding
measure of quantum correlation fails to capture the quantumness of the state, i.e.,
qFlhv

,qB , qS2 , qS3 , qT and qE are the channel parameter values at which F(q) = 0.87,
B(q) = 2, S2(q) = 0, S3(q) = 0, F(q) = 2

3 and C(q) = 0, respectively. This
is considered for both the cases of decay and revival of QC interchangeably for all
noisy models used in this work. The revival of the quantum correlations occurs in the
reverse order, i.e., quantum correlations with lowest degree revive first, followed by
the restoration of QC with increasing degree of their strength. The revival of quantum
correlations follows the order: entanglement, teleportation fidelity greater than the
classical limit, steerability of quantum states, violation of Bell-CHSH inequality and
teleportation fidelity greater than Flhv (qE ≤ qT ≤ qS3 ≤ qS2 ≤ qB ≤ qFlhv

). The
dynamics of quantum correlations under the Markovian amplitude channel are shown
in Fig. 2, and sudden death occurs for all quantum correlations except entanglement.
The decay of quantum correlations follows the above discussed order of QC. Here, as
expected, revival ofQC is not observed. FromFigs. 1 and 2, it is clear that the decay and
revival of quantum correlations preserve the hierarchy of non-classical correlations.

The dynamics of τQSL has been considered as a signature of information backflow
to the principle system from the reservoir [50]. From the dynamics of quantum speed
limit time (Fig. 3) for non-Markovian amplitude damping channel, it is clear that
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Fig. 4 Dynamics of quantum speed limit time of maximally entangled Bell state for Markovian amplitude
damping channel

τQSL increases initially and starts decreasing after a certain time. The time at which a
shift appears in the dynamics of τQSL exactly matches with the time at which revival
of lowest degree of quantum correlations starts (Fig. 1). This is interesting, since
the investigation of τQSL reveals the details of non-classical correlations’ evolution
in the non-Markovian regime. The connection between the dynamics of quantum
correlations and the speed limit time ascertain the importance of using the latter to
analyze the behavior of QC in the case of non-Markovian quantum channels. For
Markovian noise, the coupling between the system and reservoir is weak, and hence,
there is no information backflow and no revival of QC occurs. This could be inferred
from the dynamics of τQSL . The steady increase in τQSL in Fig. 4 warrants the absence
of both information backflow and the revival of quantum correlations for a Markovian
approximation.

3.2 CP-divisible phase damping channel

We now discuss dephasing quantum channel and its influence on the evolution of
quantum correlations. The Kraus operators for a dephasing channel that is historically
taken to be non-Markovian [66] but is nevertheless P-divisible [47] are:

E0 = |0〉〈0| + q|1〉〈1|, E1 =
√
1 − q2|1〉〈1|. (10)
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Fig. 5 Quantum correlations are plotted as a function of γ t for maximally entangled Bell state in the case
of phase damping channel. a Non-Markovian (
 = 0.01γ ) and bMarkovian

We have q = exp[−γ
2 {t + 1



(exp(−
t) − 1)}]. 
−1 ≈ τr defines reservoir’s finite

correlation time, and γ is the coupling strength related to qubit’s relaxation time. In the
limit 
 → ∞, phase damping channel reduces to the Markov case, and q = √

1 − ν

identifies the Kraus operators for Markovian dephasing quantum channel.
The behavior of QC of maximally entangled Bell state as a function of γ t in the

non-Markovian andMarkovian regimes is given in Fig. 5. In both cases, revival of non-
classical correlations does not occur, and the order of decay satisfies the same hierarchy
as in the case of amplitude damping channel, i.e., we have qFlhv

≤ qB ≤ qS2 ≤
qS3 ≤ qT ≤ qE . Due to the memory effects of the non-Markovian phase damping
channel, decay of QC occurs slowly as compared to their Markovian counterparts.
The non-revival of QC for the non-Markovian regime here is due to the noise being
CP-divisible and hence also P divisible [47], which indicates the absence of backflow.
The dynamics of quantum speed limit time for non-Markovian and Markovian phase
damping channels is given in Fig. 6, and in the absence of revival ofQC, τQSL increases
steadily in both the cases.
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Fig. 6 Dynamics of quantum speed limit of maximally entangled Bell states for a non-Markovian (
 =
0.01γ ) and bMarkovian phase damping channels

3.3 Depolarizing quantum channel

The Kraus operators of non-Markovian depolarizing quantum channel [67] are

Ei = √
qiσi , (11)

where σ0 = I , rest of the σi ′s are the three Pauli’s matrices. The complete positivity
condition is ensured by identifying the values of qi ′s as positive and are given as:

q0 = 1

4
[1 + �1 + �2 + �3],

q1 = 1

4
[1 + �1 − �2 − �3],

q2 = 1

4
[1 − �1 + �2 − �3],
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Fig. 7 Quantum correlations are plotted as a function of 
t for damped oscillating non-Markovian depo-
larizing quantum channel. The values of coupling strengths are chosen as γi = 0.2
i , i ∈ {1, 2}, γ3 = 5
3
and 
i = 


q3 = 1

4
[1 − �1 − �2 + �3]. (12)

Here,�i = exp(−
t
2 )[cos(
di t

2 )+ 1
di
sin(
di t

2 )],di =
√

(
4μi

i

)2 − 1withμ2
i = γ 2

j +γ 2
k

for i �= j �= k. Here, γ is the coupling strength of the system with the external
environment, and 
−1 determines the most preferable frequency of the system. The
function � has two regimes—pure damping and damped oscillations. μ



determines

the behavior of the dynamics. When 0 ≤ μ



≤ 1/4, the behavior is purely damping.
In the regime μ



> 1/4, damped oscillations exist along with the pure damping. The

parameters for which the depolarizing quantum channel is in theMarkovian regime are
�i = e−νi t and νi = 4



(γ 2

j +γ 2
k ); here, the positivity condition in Eq. 12 is satisfied if

and only if νi ≤ ν j +νk . For an initial Bell state, the evolution of quantum correlations
in the non-Markovian regime is depicted in Fig. 7. Differently from non-Markovian
phase damping channel, both decay and revival of non-classical correlations happen
for non-Markovian depolarizing noise.

The decay and revival dynamics of quantum correlations of an entangled initial state
under the influence of depolarizing channel is seen to be consistent with the hierarchy
of QC. The channel parameter values for which measures of QC fail to capture the
quantumness of the state are in the order qFlhv

≤ qB ≤ qS2 ≤ qS3 ≤ qT ≤ qE . The
restoration of quantum correlations occurs in the reverse order (qE ≤ qT ≤ qS3 ≤
qS2 ≤ qB ≤ qFlhv

). Initially, for a small value of noise parameter, the state become
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Fig. 8 Dynamics of quantum speed limit time for depolarizing quantum channel in the fluctuating non-
Markovian regime. The values of coupling strengths are chosen as γi = 0.2
i , i ∈ {1, 2}, γ3 = 5
3 and

i = 


entangled, followed by the creation of other correlations in the increasing order of
their strength. Figure 8 brings out the effect of non-Markovian depolarizing quantum
channel on the evolution of quantum speed limit time for Bell state; the oscillatory
nature of τQSL is the signature of information backflow. In the case of unital non-
Markovian depolarizing channel, we do not find a connection between τQSL and
QC as seen for the non-unital amplitude damping channel. The decay of QC and the
behavior of τQSL for depolarizing channel in theMarkovian regime are given in Figs. 9
and 10, respectively. Purely damping behavior of QC and non-fluctuation of τQSL are
due to the lack of backflow of information.

3.4 Random telegraph noise (RTN): P-indivisible phase damping

The quantum dephasing induced by random telegraph noise is now discussed. The
Kraus operators representing random telegraph noise [34,68–70], a P-indivisible phase
damping channel, are

E0 =
√
1 + q(t)

2
(|0〉〈0| + |1〉〈1|),

E1 =
√
1 − q(t)

2
(|0〉〈0| − |1〉〈1|). (13)
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Fig. 9 Quantum correlations of Bell state are plotted as a function of 
t for depolarizing quantum channel
in the Markovian regime (γi = 0.1
)
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Fig. 10 Dynamics of quantum speed limit time of Bell state for depolarizing quantum channel in the
Markovian regime (γi = 0.1
)

123



Hierarchy of quantum correlations under non-Markovian dynamics Page 15 of 26 141

0 2 4 6 8 10 12 14 16 18 20

 t

0

0.5

1

1.5

2

2.5

3

Q
u

a
n

tu
m

 C
o
r
r
e
la

ti
o
n

s
F(q)
B(q)
S2(q)
S3(q)
C(q)
F(q)=0.87
B(q)=2
S2(q)=0
S3(q)=0
F(q)=2/3
C(q)=0

Fig. 11 Dynamics of quantum correlations of maximally entangled Bell state under the influence of non-
Markovian random telegraph noise ( aγ = 40)

where q(t) is the noise parameter based on the damped harmonic oscillator model that
accounts the effects of both Markovian and non-Markovian noise limits on quantum
states,

q(t) = e−γ t
[
cos

⎛

⎝
√

[(
2a

γ

)2

− 1
]
γ t

⎞

⎠ +
sin

(√
[(

2a
γ

)2 − 1
]
γ t

)

√(
2a
γ

)2 − 1

]
. (14)

The frequency of the harmonic oscillators is
√

( 2a
γ

)2 − 1. The noise parameter

describes two regimes of systems dynamics: For a
γ

< 0.5, the channel corresponds
to the Markovian dynamics, and the purely damping regime and damped oscillations
for a

γ
> 0.5 (damped oscillations) correspond to the non-Markovian evolution. The

dynamics of quantum correlations in the non-Markovian regime of RTN channel is
shown in Fig. 11. Initially, all QCs fluctuate and decay afterward. In the Markovian
regime (Fig. 12), these non-classical correlations decay without fluctuating. The noise
parameter values at which each measure of QC reaches its classical threshold limit
obey the order qFlhv

≤ qB ≤ qS2 ≤ qS3 ≤ qT ≤ qE . The oscillatory behavior of
τQSL for non-Markovian RTN channel in Fig. 13 captures the presence of information
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Fig. 12 Dynamics of quantum correlations of Bell state for Markovian random telegraph noise ( aγ = 0.4)

backflow, whereas quantum speed limit time increases (Fig. 14) without fluctuation
in the Markovian regime.

4 Mixed entangled states

The dynamics of quantum correlations and speed limit time for a class of initial mixed
states under the influence of different quantum channels are investigated. The initial
mixed state we consider is the Werner state, given as the convex sum of maximally
entangled Bell state and maximally mixed separable state

ρw = 1 − p

4
I4 + p|B〉〈B|. (15)

Here, |B〉 can be any one of the four maximally entangled Bell diagonal states. ρw

is entangled for p > 1
3 , and it violates Bell-CHSH inequality and ST2 steering for

the values p > 1√
2
. Here, we mainly focus on the decoherence effects of amplitude

damping and RTN channels on ρw, for a fixed value of mixedness.
In Figs. 15 and 16, the effect of amplitude damping channel with and without

memory on Werner state for a state parameter value p = 0.9 is depicted. As in the
case of a pure state (Fig. 1), in the presence of memory, decay of QC takes place,
followed by the revival (Fig. 15). Quantum correlations decay and do not revive
(Fig. 16) in the Markovian regime. The deterioration of QC of mixed state under
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Fig. 13 Dynamics of τQSL of maximally entangled Bell state for non-Markovian random telegraph
noise( aγ = 40)
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Fig. 14 Dynamics of τQSL of maximally entangled Bell state for Markovian random telegraph noise( aγ =
0.4)
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Fig. 15 Dynamics of quantum correlations of maximally entangled mixed Werner state for p = 0.9
(
 = 0.01γ ) under non-Markovian amplitude damping channel
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Fig. 16 Dynamics of quantum correlations of maximally entangled mixed Werner state for p = 0.9 under
the Markovian amplitude damping channel
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Fig. 17 Dynamics of quantum speed limit time ofWerner state for p = 0.9 (
 = 0.01γ ) for non-Markovian
amplitude damping channel

(non-) Markovian regimes upholds the hierarchy order. Similar to the pure state sce-
nario, τQSL (Fig. 17) can be used to analyze the dynamics of non-classical correlations
for the non-Markovian amplitude damping channel. It can be seen that the shift in the
nature of τQSL matches exactly with the revival of lowest degree quantum correlation
(quantum entanglement in the present case) (Fig. 15). In the absence of information
backflow, τQSL increases steadily for Markovian noise (Fig. 18). QC and τQSL of
Werner state for non-Markovian RTN channel are depicted in Figs. 19 and 20, respec-
tively. It can be seen from Fig. 19 that the strength of QC initially decreases, but due
to the system-reservoir coupling and the backflow of information, restoration of non-
classical properties of states takes place. The dynamics of non-classical correlation of
mixed states under non-Markovian channel is consistent with the order of hierarchy
of QC.

5 Results and discussion

In this paper, we systematically investigated the dynamics of quantum correlations of
two qubit states that are used as a resource for quantum teleportation in a noisy environ-
ment. We established the connection between quantum correlations and two different
aspects of non-classicality associated with the teleportation fidelity. The dynamics
of quantum speed limit time can be availed to demonstrate the decay and revival of
quantum correlations in the case of memory and memory less quantum channels. We
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Fig. 18 Dynamics of quantum speed limit time of Werner state for p = 0.9 for Markovian amplitude
damping channel
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Fig. 19 Dynamics of quantum correlations of maximally entangled mixed Werner state for p = 0.9 for
non-Markovian random telegraph noise ( aγ = 40)
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Fig. 20 Quantum speed limit time of Werner state for p = 0.9 as a function of γ t for non-Markovian
random telegraph noise ( aγ = 40)

Table 1 The evolution of quantum correlations under the influence of various unital and non-unital Marko-
vian and non-Markovian quantum channels

State Noise Markovian Non-Markovian Decay/revival

Bell state AD � Decay

� Both

PD � Decay

� Decay

DP � Decay

� Both

RTN � Decay

� Both

Werner state (p = 0.9) AD � Decay

� Both

RTN � Decay

� Both

123



141 Page 22 of 26 K. G. Paulson et al.

considered the case of QC in Markovian as well as CP-divisible and P-indivisible
non-Markovian regimes. From the study of Markovian and non-Markovian channels,
it can be inferred that the longevity of quantum correlations gets enhanced due to
the memory effects of system-reservoir interaction. The dynamics of QC under the
effect of various channels is tabulated in Table I. The revival of quantum correla-
tions occurs for all considered non-Markovian channels in the case of both pure and
mixed states, except for CP-divisible channels. The non-revival of QC in CP-divisible
channels is due to the absence of backflow of information. In the case of non-unital
non-Markovian amplitude damping channel, τQSL exactly describes the decay and
revival of quantum correlations. This is not true for unital non-Markovian quantum
channels, and is consistent with [51]. For unital P-indivisible non-Markovian chan-
nels, fluctuating τQSL and QC imply the existence of information backflow, whereas
this is absent in CP-divisible non-Markovian regime. For a given Markovian quantum
channel, quantum speed limit time increases as time increases, i.e., there occurs no
oscillation of τQSL . This brings forth the marked differences in the behavior of τQSL

for Markovian, CP-divisible and P-indivisible non-Markovian dynamics [51]. This
is highlighted by the shift in τQSL coinciding with the revival of entanglement, for
non-Markovian evolution that are P indivisible, exemplified by the non-Markovian
amplitude damping channel.

6 Conclusions

We investigated the effects of reservoir memory on the dynamics of quantum cor-
relations of two qubit quantum states. We considered quantum teleportation fidelity,
Bell-CHSH function, quantum steering and entanglement as various measures that
capture the non-classical aspects of quantum states. We discussed how these mea-
sures of QC are connected with each other under the influence of memory of quantum
channels. We showed the existence of an order of hierarchy in the decay and revival
of quantum correlations under both Markovian and non-Markovian noises, which is
consistent with the previous works. The channel parameter values at which decay
of non-classical correlations occur follow the order qFlhv

≤ qB ≤ qS2 ≤ qS3 ≤
qT ≤ qE , whereas the revival of quantum correlations occurs in the reverse order
(qE ≤ qT ≤ qS3 ≤ qS2 ≤ qB ≤ qFlhv

), i.e., QC with lowest degree of strength revives
first, followed by the revival of correlations in the increasing order of strength. QC
revives under all non-Markovian noisy models (P-indivisible) considered except for
the CP-divisible channels, which could be ascribed to the lack of backflow. Noise
tolerance of QC under non-Markovian noise is seen to be high compared to that of
their Markovian counterpart. We estimated the quantum speed limit time of states
under different noises and showed that the study of τQSL can be used to explain
the characteristic dynamics of QC. Dynamics of QC and τQSL were examined for
both pure and mixed states in Markovian and non-Markovian regimes. Under Marko-
vian noise, there exists no information backflow and this can be witnessed from the
dynamics of quantum speed limit time, as it increases steadily as time increases with-
out fluctuations. Among the non-Markovian noisy models studied here, except for the
CP-divisible phase damping noise, fluctuation of τQSL was observed for P-indivisible
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non-Markovian amplitude damping, depolarizing and RTN channels, which could
be attributed to the (non-)existence of information backflow. It was seen that for a
given non-Markovian non-unital amplitude damping channel, the dynamics of quan-
tum speed limit time sheds light into the behavior of quantum correlations.We showed
that for non-Markovian amplitude damping noise, the time at which the lowest degree
QC decays exactly matches with the time at which a shift in the behavior of τQSL

occurs. The connection between QC and τQSL as seen for non-unital channels cannot
be easily established for unital quantum channels and requires further studies.
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