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Abstract
Nonlocality is one of the distinctive features of quantum mechanics and has different
forms in practice, e.g., non-separability, quantum steering, and Bell nonlocality. Here,
by exploiting the high-dimensional probability tensor, we propose a quantum magic
square model to characterize the diverse forms of nonlocal phenomena in a single
protocol. In this model, the nonlocalities are manifested in the partial-sums of the
probability tensor, where the uncertainty relation serves as an “indicator” of differ-
ent nonlocal phenomena. We derive a conditional majorization uncertainty relation
criterion to witness the quantum steering. The new criterion is applicable to infinite
number of observables and is found superior to the formerly thought optimal steering
criterion.

Keywords Quantum nonlocalities · Majorization uncertainty relation · Quantum
steering

1 Introduction

Entanglement is a unique nature of the quantum world and now plays a key role
in implementing many quantum information tasks [1]. The first application of the
entangled state may date back to the EPR paradox [2], where Einstein, Podolsky, and
Rosen questioned the completeness of the quantum mechanics. Schrödinger coined
the term “entanglement” to describe those peculiarly correlated systems: onemay steer
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part of the system in spite of no access to it [3]. Later Bell introduced an inequality in
1964 [4] to exhibit the nonlocality of the entangled system. It was not until 2007 that
people realized [5] that the quantum steering is a distinct nonlocal phenomenon from
the Bell nonlocality.

As it is well-known that the Bell nonlocality may manifest in the violations of
various Bell inequalities [6,7], while the ascertainments of quantum steering and non-
separability are subject to different criteria [8,9], e.g., the criteria as per correlation
function [10,11] or uncertainty relation [12,13]. Recently, some delicate measures
[14,15] were employed to witness the entanglement or steerability. But so far, the
question of finding practical necessary and sufficient conditions for steerability or
non-separability still remains open. It is worth mentioning that usually the criteria
based on uncertainty relations have clear physical meanings and function well [16].
However, ascertaining the optimal lower bound of the uncertainty relation, which is
crucial in detecting quantum steering or separability, turns out to be also a challenge
[17]. Remarkably, the optimal bound for direct sum majorization uncertainty relation
is obtained by virtue of the lattice theory recently [18].

In this paper, we propose a quantum magic square (QMS) model to study the
quantum nonlocality, where different forms of nonlocality can be distinguished by
the uncertainty relation ranging from Bell nonlocality/locality to one-way/two-way
quantum steering and then to the separability. In Sect. 2, we introduce the QMS for
the Bell nonlocality and quantum steering systems in light of the magic square game.
A steering criterion is derived based on the QMS model in Sect. 3, by exploring the
optimal majorization uncertainty relation. It is shown that the criterion is applicable
to arbitrary number of observables and is found superior to those ever thought to be
the optimal ones via concrete examples. In Sect. 4, the separability within the QMS
is briefly discussed. And, a summary is presented in Sect. 5.

2 The QMS and quantum nonlocalities

The classical magic square goes as follows: fill an n × n square grid with distinct
positive integers on each cell, provided that the sum of the integers in each row,
column and diagonal are equal (to given value of 15 for n = 3), see Fig. 1. In a
bipartite quantum system, the joint measurements on observables X and Y on both
sides lead to a distribution P(X ,Y ). Two different joint distributions P(X ,Y ) and
P(X ′,Y ′) may be regarded as the marginals of a higher dimensional distribution
mXX ′YY ′ : one may fill mXX ′YY ′ with nonnegative numbers, provided that the sum of
generalized “columns” or “rows” ofmXX ′YY ′ is equal to given marginals P(X ,Y ) and
P(X ′,Y ′), i.e., P(X ,Y ) = ∑

X ′,Y ′ mXX ′YY ′ . In this sense, we call mXX ′YY ′ the QMS
for measurements X , X ′, Y , and Y ′. Though being in the same spirit as Fine’s hidden-
variable model while Bell nonlocality is concerned [19], the QMS is applicable to
witness the quantum steering and non-separability of quantum state as well. We shall
show how different types of nonlocalities emerge when filling themXX ′YY ′ with given
marginals.

It should be noted that of the bipartite system A(lice) and B(ob), the local observ-
ables X andY should be understood as X⊗ I and I⊗Y . IfρAB is entangled and exhibits
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Fig. 1 The 3×3 magic square. In this classical magic square, the sums of the elements in each row, column,
and diagonal all return a 15

Bell nonlocality, the joint distribution does not admit the following decomposition

∀ X and Y , Pi j (X ,Y ) =
∑

λ

κλ · p(λ)
i (x)q(λ)

j (y) . (1)

Here λ denotes the possible hidden variable with normalized weights κλ, and ∀λ,
∑

i p
(λ)
i (x) = ∑

j q
(λ)
j (y) = 1 are two normalized distributions depending on X

and Y , respectively. For different measurements X and X ′ on A, the joint distributions
P(X ,Y ) and P(X ′, Y ) can be expressed as the marginals of a high dimensional tensor
mii ′ j

Pi j (X ,Y ) =
∑

i ′
mii ′ j , Pi ′ j (X

′,Y ) =
∑

i

mii ′ j , (2)

wheremii ′ j ≡ ∑
λ κλ ·

[
p(λ)
i (x)p(λ)

i ′ (x ′)
]
q(λ)
j (y).Wemay further define the following

�mi (y) ≡
∑

i ′
�mii ′(y) , �m′

i ′(y) ≡
∑

i

�mii ′(y) . (3)

Here �mii ′(y) = ∑
λ κλ ·

[
p(λ)
i (x)p(λ)

i ′ (x ′)
]

�q (λ)(y). Now, �mi (y) and �m′
i ′(y) represent

the i th and i ′th rows of P(X ,Y ) and P(X ′,Y ), see Fig. 2a.
Furthermore, for measurements Y and Y ′ on B there exist the tensor

mii ′ j j ′ =
∑

λ

κλ ·
[
p(λ)
i (x)p(λ)

i ′ (x ′)
] [

q(λ)
j (y)q(λ)

j ′ (y′)
]

, (4)

where we callmii ′ j j ′ the QMS of the bipartite system for measurements X , X ′, Y , and
Y ′. Clearly, joint distributions can be obtained from the QMS by partial sums, e.g.,
Pi j ′(X ,Y ′) = ∑

i ′, j mii ′ j j ′ . The generalization to tripartite systemwithmeasurements
X and X ′, Y and Y ′, Z and Z ′ on each particle is straightforward,

mii ′ j j ′kk′ =
∑

λ

κλ ·
[
p(λ)
i (x)p(λ)

i ′ (x ′)
] [

q(λ)
j (y)q(λ)

j ′ (y′)
] [

r (λ)
k (z)r (λ)

k′ (z′)
]

. (5)
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Fig. 2 The QMS representations of Bell locality and non-steering. (a) The cubic cells stand for the
unnormalized distribution vectors �mii ′ (y) and �mi (y) = ∑

i ′ �mii ′ (y); (b) The cubic cells stand for the
unnormalized state mii ′ (ρ) and σi |x = ∑

i ′ mii ′ (ρ). Similarly, summing over the index i gives �m′
i ′ (y) and

σi ′|x ′

Here mii ′ j j ′kk′ is the QMS of tripartite system for measurements of X and X ′, Y and
Y ′, Z and Z ′. It is easy to verify

mii ′ j j ′kk′ ≥ 0 ,
∑

i,i ′, j, j ′,k,k′
mii ′ j j ′kk′ = 1 . (6)

Note, with QMS both Bell and GHZ theorems can be obtained, see the Supplement
Material A for details.

According to Wiseman et al. [5], if A cannot steer B, then B admits the following
decomposition with density matrices ρ(λ) and normalized weights ξλ

∀X , σi |x =
∑

λ

ξλ · p(λ)
i (x)ρ(λ) , (7)

where ∀λ,
∑

i p
(λ)
i (x) = 1 and σi |x is called the assemblage describing the unnor-

malized quantum state of B conditioned on the measurement outcome xi for the
measurement X on A [21]. For different measurements X and X ′, two quantum assem-
blages can be obtained

σi |x =
∑

i ′
mii ′(ρ) , σi ′|x ′ =

∑

i

mii ′(ρ) . (8)

Here mii ′(ρ) ≡ ∑
λ ξλ

[
p(λ)
i (x)p(λ)

i ′ (x ′)
]
ρ(λ) with p(λ)

i (x) and p(λ)

i ′ (x ′) being nor-

malized distributions for all λ. We callmii ′(ρ) the QMS representation of the bipartite
state for measurements X and X ′, see Figure 2(b). Along the same line, one may
readily obtain mi1···iM (ρ) for multiple measurements, and there exists the following
observation:

Observation 1 If A cannot steer B in a bipartite system, then there exists the
QMS representation mi1···iM (ρ) of the quantum state for arbitrary measurements
X (1), · · · , X (M) on A, and vice versa.

The validity of this Observation is demonstrated in the Supplement Material B. It is
also straightforward to formulate the sameObservation for the case that B cannot steer

123



Characterizing Quantum Nonlocalities per Uncertainty Relation Page 5 of 9 109

Fig. 3 The Bell locality and non-steering are distinguished by magic squares. The circled nodes in upper
and lower surfaces stand for �mii ′ (y) and �mii ′ (y′) of observing Y and Y ′ respectively. (a) In Bell locality,
�mii ′ (y) and �mii ′ (y′) are independent distribution vectors; (b) If A can not steer B, �mii ′ (y) and �mii ′ (y′)
are subject to uncertainty relations

A. Following we apply the QMS to the quantum steering to show its performance in
characterizing the quantum nonlocality.

3 Quantum steering shown in QMS

In the framework of QMS, the difference between Bell locality and non-steering is
demonstrated in Fig. 3, where without loss of generality we take the bipartite qubit
system as an example. For Bell local states, the QMS of equation (4) gives

�mii ′(y) =
∑

λ, j ′
κλ ·

[
p(λ)
i (x)p(λ)

i ′ (x ′)
]

�q (λ)(y)q(λ)

j ′ (y′) , (9)

�mii ′(y
′) =

∑

λ, j

κλ ·
[
p(λ)
i (x)p(λ)

i ′ (x ′)
]
q(λ)
j (y)�q (λ)(y′) , (10)

where �mii ′(y) and �mii ′(y′) are two independent distributions because q(λ)
j (y) and

q(λ)

j ′ (y′) in equation (4) are independent normalized distributions for all λ, see Figure
3a. On the contrary, for non-steerable states from A to B, the QMS representation of
mii ′(ρ) in equation (8) can be normalized to a density matrix ρi i ′ = mii ′(ρ)/εi i ′ with
εi i ′ = Tr[mii (ρ)]. Two distributions �mii ′(y) and �mii ′(y′) would be obtained if we
perform two measurements Y and Y ′ on B, i.e.

�mii ′(y) = εi i ′ �qii ′(y) , �mii ′(y
′) = εi i ′ �qii ′(y′) . (11)

Here �qii ′(y) and �qii ′(y′) are distributions of measuring Y and Y ′ on the quantum state
of ρi i ′ . For arbitrary quantum state, there exists the following majorization uncertainty
relation for two observables Y and Y ′ [18]

�qii ′(y) ⊕ �qii ′(y′) ≺ �s(y, y′) , (12)
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where �qii ′(·) is the probability distribution of the corresponding measurement out-
come of Y or Y ′, and �s is a vector depend only on the observables. The majorization in
mathematics defines a partial order over vectors of real numbers, for instancemajoriza-
tion relation of two N -dimensional vectors �a ≺ �b means that

∑k
i=1 a

↓
i ≤ ∑k

j=1 b
↓
j ,∀k ∈ {1, · · · , N }, with equality satisfied when k = N . The superscript ↓ indicates

that the components of the vector are rearranged in descending order. Multiplying εi i ′
on both sides of the uncertainty relation (12), we then have the following constraint
on the distributions in equation (11):

∀i, i ′ , �mii ′(y) ⊕ �mii ′(y
′) ≺ εi i ′ �s(y, y′) . (13)

Here,
∑

i ′ �mii ′(y) = �mi (y) and
∑

i �mii ′(y) = �m′
i ′(y), see Fig. 3b. Given the condi-

tional majorized marginal distributions defined on �mii ′ [20]

�q(y|x) ≡
∑

i

�m↓
i (y) , �q(y′|x ′) ≡

∑

i ′
�m′↓
i ′ (y

′) , (14)

for M different measurements X (i) on A in an N × N bipartite system we then have:

Theorem 1 If A cannot steer B, the conditional majorization uncertainty relation

M⊕

i=1

�q(y(i)|x (i)) ≺ �s (15)

should be satisfied. Here �q(y(i)|x (i)) is defined in (14) and �s is the least upper bound of
the direct summajorizationuncertainty relationwhichdepends only on the observables
Y (1), · · · ,Y (M).

The demonstration of the Theorem 1 is presented in the Supplemental Material C. To
illustrate and verify its effectiveness, we apply it to the Werner and isotropic states.

Two-dimensional Werner and isotropic states are equivalent, and may be repre-
sented in the following form

ρW = 1 − η

4
1 ⊗ 1 + η|ψ−

12〉〈ψ−
12| , (16)

where η is a parameter of relative weight and |ψ−
12〉 = 1√

2
(|12〉 − |21〉). For joint

measurements of X , X ′ on A and Y ,Y ′ on B with X = Y = σx and X ′ = Y ′ = σy ,
Theorem 1 predicts that if A cannot steer B then η ≤ √

2/2, as explained in Supple-
mental Material C.1. For infinite number of measurements in the Bloch vector plane
of σx and σy , we have η ≤ 2/π in case A cannot steer B, as shown in Supplemental
Material C.3. For the mutually unbiased bases (MUB) σx , σy , and σz on both sides,
if A cannot steer B we then have η ≤ 1/

√
3, see the Supplemental Material C.2. For

infinite number of measurements in the three-dimensional Bloch space of SU(2), if
A cannot steer B Theorem 1 gives η ≤ 1/2. For more explanations please refer to
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Table 1 The QMS predicted
values of η for non-steerable
states

Measurements N = 2 N = 3
States 2D 3D MUB

ρW η ≤ 2

π
η ≤ 1

2
η ≤ 1

ρISO η ≤ 3
√
5+1
16

Supplemental Material C.3. It is worth mentioning here, that the above results are
optimal ones up to date.

The three-dimensional Werner and isotropic states may be parameterized as

ρW = 1 − η

9
1 ⊗ 1 + η

3

3∑

i �= j

|ψ−
i j 〉〈ψ−

i j | , (17)

ρISO = 1 − η

9
1 ⊗ 1 + η|ψ+〉〈ψ+| . (18)

Here |ψ−
i j 〉 = 1√

2
(|i j〉 − | j i〉) and |ψ+〉 = 1√

3

∑3
i=1 |i i〉. The degrees of freedom of

3×3 observables are equal to the generator number of SU(3), which is larger than the
number of MUB measurement in 3-dimension Hilbert space. For isotropic state, the
latest research based on the general entropic uncertainty relations predicts the steering
inequality η > 0.5 [22]. However from QMS, we know that the steerability will

exhibits at η > 3
√
5+1
16 ∼ 0.4818. The different performance of QMS in witnessing

the steerability for Werner and isotropic states may be explained by a recent research:
In large dimensions, the Werner states are mostly non-steerable while the isotropic
states are mostly steerably entangled [23]. Results of the steerability for two- and
three-dimensional Werner and isotropic states are summarized in Table 1.

The results inTable 1 indicate that the nonlocal character of steerability is dominated
mainly by the degrees of freedom of the measured observables, rather simply the
number of observables.

4 The separability shown in QMS

By definition, a state ρAB is separable if and only if it can be decomposed as

ρAB =
∑

λ

κλ · ρ(λ) ⊗ σ (λ) , (19)

with unknown normalized weights κλ > 0. Here ρ(λ) and σ (λ) are density matrices.
For measurements X and X ′ on A and Y and Y ′ on B, the QMS description goes as

mii ′ j j ′ =
∑

λ

κλ ·
[
p̃(λ)
i (x) p̃(λ)

i ′ (x ′)
] [

q̃(λ)
j (y)q̃(λ)

j ′ (y′)
]

=
∑

λ

κλ · m(λ)

(i i ′)( j j ′) . (20)
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Here the tildes are employed to denote the distribution vectors satisfying the uncer-
tainty relations [18]

�̃p (λ)
(x) ⊕ �̃p (λ)

(x ′) ≺ �s(x, x ′) , �̃q (λ)
(y) ⊕ �̃q (λ)

(y′) ≺ �s(y, y′) . (21)

It is interesting to compare the difference between the two-way non-steering state and
the separable state. The former in QMS scheme writes

mii ′ j j ′ =
∑

λ

ξ
(1)
λ ·

[
p(λ)
i (x)p(λ)

i ′ (x ′)
] [

q̃(λ)
j (y)q̃(λ)

j ′ (y′)
]

=
∑

λ

ξ
(1)
λ · m(λ)

i i ′( j j ′) , (22)

mii ′ j j ′ =
∑

λ

ξ
(2)
λ ·

[
p̃(λ)
i (x) p̃(λ)

i ′ (x ′)
] [

q(λ)
j (y)q(λ)

j ′ (y′)
]

=
∑

λ

ξ
(2)
λ · m(λ)

(i i ′) j j ′ , (23)

where ξ
(i)
λ are normalized weights and the tilde terms, with subscripts in brackets,

are constrained by the uncertainty relation. The difference between separability and
two-way non-steering shows up in the difference between equations (22, 23) and (20).
For separable state, two uncertainty relations of (21) for m(λ)

(i i ′)( j j ′) should be both
satisfied, whereas for the two-way non-steering states, one uncertainty relation for
either m(λ)

i i ′( j j ′) or m
(λ)

(i i ′) j j ′ satisfied is enough.

5 Summary

In this work we proposed a QMSmodel to characterize the nonlocality in form of high
dimensional probability tensor, whose marginals give the desired joint measurements
distributions of the quantumstate. For different nonlocal phenomena the tensor exhibits
different inner structures, by which the QMS may help us to discriminate the tangible
quantum effects. In this approach, the uncertainty relations in between the tensor
components distinguish the non-steering state from the Bell local state. The difference
between separable state and non-steering state lies in having more constraints on the
tensor components in form of uncertainty relation. Taking Werner and isotropic states
as examples, new steering criterion applicable to infinite number of observables is
obtained.

In the detection of nonlocality, a pivotal advantage the QMS model has is that it
exploits the individual components of the distribution tensor in the form of direct sum
majorization uncertainty relation. Whereas for scalar function based criteria, that is
in form of variance or entropy, the nonlocality of quantum system might have already
been smeared in the course of evaluating scalar functions before enforcing nonlocal
constraints. In this sense, the QMS sets up an alternative but finer framework for the
study of quantum nonlocalities, including separability, non-separability, two/one-way
non-steering, steering, Bell locality, and Bell non-locality, etc.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11128-021-03043-x.
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