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Abstract

Entanglement-assisted quantum error-correcting (EAQEC) codes can be derived from
arbitrary classical linear codes. However, it is a very difficult task to determine the
number ¢ of pre-shared maximally entangled states. In this paper, we first give a new
formula for calculating the number ¢ of pre-shared maximally entangled states. Then,
using this formula, we construct three classes of new entanglement-assisted quantum
error-correcting maximum-distance-separable (EAQEC MDS) codes. In addition, our
obtained EAQEC MDS codes have parameters better than the ones available in the
literature.

Keywords Entanglement-assisted quantum MDS code - Rank of matrix -
Parity-check matrix

1 Introduction

Nowadays quantum technologies become crucial to develop different areas of real
world-life (see [9,10,37,40,41]). So, quantum codes are a necessary tool in quan-
tum computation and communication to detect and correct the quantum errors while
quantum information is transferred via quantum channel. After the pioneering work
in [1,6], the theory of quantum codes has developed rapidly in recent years. As we
know, the approach of constructing new quantum codes which have good parameters
is an interesting research field, where quantum codes with good parameters mean
that their parameters satisfy the quantum Singleton bound. Many quantum codes with
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good parameters were obtained from dual-containing classical linear codes concerning
Euclidean inner product or Hermitian inner product (see [1,2,8,18-20,23]).

The previously mentioned dual-containing conditions prevent the usage of many
common classical codes for providing quantum codes. Entanglement is one of quantum
phenomena that characterize quantum mechanics rather than classical mechanics [42].
Recently, Zidan’s model for quantum computing was proposed to solve quantum
computing problems based on the degree of entanglement (see [3,43—45]). Brun et
al. [5] proposed to share entanglement between encoder and decoder to simplify the
theory of quantum error correction and increase the communication capacity. With this
new formalism, entanglement-assisted quantum stabilizer codes can be constructed
from any classical linear code giving rise to entanglement-assisted quantum error-
correcting (EAQEC) codes. Fujiwara etal. [11] gave a general method for constructing
entanglement-assisted quantum low-density parity check codes. Fan, Chen and Xu
[12] provided a construction of entanglement-assisted quantum maximum distance
separable (EAQEC MDS) codes with a small number ¢ of pre-shared maximally
entangled states. From constacyclic codes, Chen et al. and Lu et al. constructed new
EAQEC MDS codes with larger minimum distance and consumed 4 entanglement
bits in [7,28], respectively. Let ¢ = 5 and ¢ = 9, Mustafa and Emre improved the
parameters of EAQEC MDS codes with length n further in [33]. Recently, in [29,30],
we construct new EAQEC codes by using s-Galois dual codes and parts of them are
EAQEC MDS codes.

Inspired by these works, in this paper, we first give a new formula for calculating
the number ¢ of pre-shared maximally entangled states. Then, using this formula, we
construct new EAQEC MDS codes.

The paper is organized as follows. In Sect.2, we recall some basic knowledge on
linear codes, s-Galois dual codes and EAQEC codes. In Sect.3, we give a formula for
calculating the number ¢ of pre-shared maximally entangled states by using generator
matrix of one code and parity-check matrix of the other code. And, in Sect.4, using the
formula for calculating the number ¢, we obtain three classes of new EAQEC MDS
codes. Finally, some comparisons of EAQEC MDS codes and conclusions are made.

2 Preliminaries

In this section, we recall some basic concepts and results about linear codes, s-Galois
dual codes, and entanglement-assisted quantum error-correcting codes, necessary for
the development of this work. For more details, we refer to [4,5,11,13,24,25,30,32,39].

Throughout this paper, let p be a prime number and [F; be the finite field with
g = p° elements, where e is a positive number. Let F7 be the multiplicative group of
units of Iy,.

For a positive integer n, let IFZ ={x = (x1,---,x,) |x; € Fy} whichis an n
dimensional vector space over IF,. A linear [, k], code C over I, is an k-dimensional
subspace of Fy. The Hamming weight w (¢) of a codeword ¢ € C is the number
of nonzero components of ¢. The Hamming distance of two codewords ¢j,¢; € C
is dy(cr,¢2) = wy(cy — ¢1). The minimum Hamming distance of C is d(C) =
min{wy (a — b)|a,b € C}. An [n, k, d], code is an [n, k], code with the minimum
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Hamming distance d. A k x n matrix G over I, is called a generator matrix of C, if
the rows of G generates C and no proper subset of the rows of G generates C.

2.1 s-Galois dual codes

Let s be an integer with 0 < s < e. In [13], Fan and Zhang introduced the following
form

[x.yls =xiy] 4+ +xyh . VxyeF],

where g = p® and n is a positive integer. We call [x, y]; the s-Galois form on [y . It is
just the usual Euclidean inner product if s = 0. And, it is the Hermitian inner product
when e is even and s = 5. For any code C over [, of length n, let

Ch ={xeF)|le.x];=0,VceC],

which is called the s-Galois dual code of C. It is easy to check that C is linear.
. .. . le , .

Then C0 (simply, C1) is just the Euclidean dual code of C, and C™ 2 (simply, C1#)
is just the Hermitian dual code of C. In particular, if C ¢ C1s, then C is s-Galois
self-orthogonal. Furthermore, we call C is s-Galois self-dual if C = C L

A parity-check matrix H for a linear code C is a generator matrix for the dual code
ct.

In fact, the s-Galois form is non-degenerate, i.e., for any 0 # a € IFZ, there exists
ab e IFZ such that [a, b]; # 0 ( [13, Remark 4.2]). This implies that diqu C +

dim[gq Cts =n.

For an [ x n matrix A = (a;j)ixn over F,, where a;; € IF,, we denote
e—s =S .
AP = (ai’;. Yixn, and AT as the transpose matrix of A. Then for vector
a=(ay,ar,...,a,) € ]F;, we have
e—s pefs pefv peﬁr
a? =(a1 ydy ...,y )

For a linear code C of I}, we define C?P") tobe the set {a? " | a € C} which is
also a linear code.

2.2 Entanglement-assisted quantum error-correcting codes

An|[[n, k, d; c]]; EAQEC code over I, encodes k logical qubits into n physical qubits
with the help of ¢ copies of maximally entangled states (c ebits). The performance of
an EAQEC code is measured by its rate % and net rate kfc

If ¢ = 0, then the EAQEC code is a standard stabilizer code. EAQEC codes can be
regarded as generalized quantum codes.

Ithas been proved that EAQEC codes have some advantages over standard stabilizer
codes. In [39], Wilde and Brun proved that EAQEC codes can be constructed by using
classical binary linear codes. Recently, Luo et al. [26] gave that EAQEC codes can be
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constructed using non-binary linear codes, and many authors have applied this result
to construct EAQEC codes by non-binary linear codes (see [15,31]).

Proposition 2.1 ([15,26,31,39]) Let H| and H; be parity-check matrices of two linear
codes [n, ki, dy], and [n, ky, d2], over Fy, respectively. Then an [[n, ky +ky —n +
¢, min{dy, dz}; clly EAQEC code can be obtained, where ¢ = rank(H HZT) is the
required number of maximally entangled states.

To see how good an EAQEC code is in terms of its parameters, we extend the binary
entanglement-assisted quantum Singleton bound in [5] to any finite field F,,.

Theorem 2.2 Let Q be an|[[n, k, d; clly EAQEC code constructed by Proposition 2.1,
wherek = ki +ky, —n+c. When0 <c <n—1,itholdsthat2(d — 1) <n—k +c.

Proof Let C; be an [n, k;], linear code over I, fori = 1, 2. Then, by Singleton bound

of classical linear codes over any finite field IF;, we have d(C1) < n —k; + 1 and
d(C2) <n — ko + 1. It follows that

2-1) =dCH—-D+UWC)—D=n—ki+n—k
=n—(ki+kr—n+c)+c=n—k+c.

O
If an EAQEC code Q with parameters [[n, k, d; c]], attains the entanglement-

assisted quantum Singleton bound 2(d — 1) = n — k + ¢, then it is called the
entanglement-assisted quantum maximum-distance-separable (EAQEC MDS) code.

3 A new formula for calculating the number ¢

We first verify the following lemma.

Lemma3.1 Let C be an [n, k], linear code over Fy with generator matrix G and
parity-check matrix H. Then

(C(P"_S))J- — (CJ-)(PE_'V).
Proof By assumptions, it is easy to prove that the matrix G?*") is a generator matrix
of the linear code C?*"), and the matrix H?") is a generator matrix of the linear
code (CLH)P™).

Let g1, ..., g be rows of the G, and let hy, ..., h,_; be rows of the H. For any
x € (CHP™), we can assume that

x=yh! 4+ 4 y,xh’ . 3.1
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Then, for any ng € G, by Eq.(3.1), we have

n—k n—k
[x.g7 1=) wlh! gl 1=3 ylh,gl” =o.
i=1 i=1
Therefore, x € (C (I’HV))J-, which implies
(CHPD (et (3.2)
Clearly,
dimg, (CH P = dimp, (CP )L, (3.3)

Combining Egs. (3.2) and (3.3), we have
(C(Peﬂ))J- — (CJ-)(I?#S)'
O
Corollary 3.2 Let C; be an |n, k;, d;], linear code over I, with parity-check matrix

H; fori = 1,2. Then an [[n, k1 + ko — n + ¢, min{dy, d»}; c]l; EAQEC code can

be obtained, where ¢ = rank(Hl(Hz(pe_s))T) is the required number of maximally
entangled states.

Proof By Lemma 3.1, Hz(p Disa parity-check matrix of the code Cf T tis easy

to prove that code Cf - is a linear code with parameters [n, k2, d2],. Then, in light
of Proposition 2.1, there exists an EAQEC code with parameters [[n, k| + k» —n +

¢, min{dy, d»}; c]l4, where ¢ = rank (H (Hz(peﬂ))T) is the required number of maxi-
mally entangled states. O

Lemma3.3 Let C; be an [n, k], linear code over F, with generator matrix G; =

gl h; |
g2 h; >
and parity-check matrix H; = . fori =1,2. Then
8i ki h; i,
. 1 G
dln’qu (C1NCyY) =k +n—ky — rank H(pefx) . (3.4)
2
Proof Leta e C1 N CZL'V. Then there exist xp, ..., Xk, Y1, ..., Yn—k, € Fy such that
. p(’*S p(’*S
xigir+ -+ X8k = —vihy — o —yahy s
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thatis, (X1, ..., Xk, Y1, - - -, Yu—ky) 1s the solution of a system of linear equations

X181,1 + o+ X 8Lk + Y1h§,1_. +o 4+ yn—k2hf,n_;kz =0.

Thus,

dimp, (C) N Cy*) = ki +n — ks — rank(G] |(Hy" HT)T
G|
= kl +n— k2 — rank Hz(pefx) .

This proves the Eq. (3.4). O
In terms of the generator matrix of one linear code C; and the parity-check matrix
of the other linear code C; over F,, we now give a new formula for computing the
number ¢ of pre-shared maximally entangled states.
Theorem 3.4 Let C; be an [n, k|, linear code over ¥ with generator matrix G; and
parity-check matrix H; fori = 1,2. Then
(PNT Gi
¢ =rank(H (H, )" ) = rank PGy e ki. 3.5)
2

In particular, taking s = 0, we have

¢ = rank (H; HZT) = rank (g;) — k. 3.6)

e—s o—s e—ky |
Proof By Lemma 3.1, we have CZL“ = (Cép ))J- = (Cé‘)(” ). Thus, Hz([7 )isa

e—k e—s
generator matrix of C2l ' 1e., Hz(p Visa parity-check matrix of Cép ),
Leth; 1, h; 2, ..., h; ,_ berows of the parity-check matrix H; fori = 1, 2. Then

e—s e—s e—s

hf’l ,hl2 e hp k are rows of the parity- checkH(p )forz=1,2.
Let Z" llczx] € Cy° , where x; € [F, forall 1 < j < n — ky. Then

Yz ’l‘zx,h” = cl mcjx if and only if forany ¢ € {1,2, ..., k1}, we have

n—k»

[D> xjhy,  hi]=0,
j=1
that is
(P T
xH, H{ =0,
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where X = (x1, ..., X,—,). Therefore,

rank(Hy (Hy"" )T = rank(Hy"" " H]) = n — k> — dimz, (C1 N C3*). (3.7)

In light of Lemma 3.3, we have

. 1 G
dlm]Fq(C1 NCy") =n+ky — kp —rank H(pe—k) .
2

G
Substituting this value of dimg, (C; N C;-s) = n + k1 — kp — rank (H(pelk)) in

2
Eq.(3.7), we obtain

e—s G
(PE7NT 1
¢ =rank(H;(H. = rank e—ky | — k1.

Remark 3.5 In the past, the parameter ¢ is computed by using the defining set of
constacyclic codes (see [12,22,27,28]). Theorem 3.4 provides a formula for calculating
parameter ¢ by using the rank of the matrix formed the generator matrix of one linear
code and parity-check matrix of the other linear code over finite field IF,.

4 Construction of EAQEC codes

In this section, we give three classes of EAQEC MDS codes.
Combining Corollary 3.2 and Theorem 3.4, we can immediately get the following
theorem.

Theorem 4.1 Let G| be a generator matrix of the linear code Cy = [n, ky,d]y,

and let Hy be a parity-check matrix of the linear code C, = [n, kz, d2],. Then an
[[n, ki + ko — n + ¢, min{dy, d2}; c]l;, EAQEC code can be obtained, where ¢ =

rank <gl> — k1 is the required number of maximally entangled states.
2

4.1 The first classes of EAQEC MDS codes

To construct a class of new EAQEC MDS codes by using Theorem 4.1, we consider
the Vandermonde matrix.
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A Vandermonde n x n matrix V,, = V(ay, ..., a,) is defined by
1 a alz ~~-a'11_1
2 n—1

layay ---a,
V,1=V(a1,...,an)= . . . . El

n—1

1 a, a,zl S ay
where ay, ap, ..., a, are elements of ]F;‘; It is well-known that the determinant of V,,

is non-zero if and only if the a; are distinct.
We recall the following fact (see [16]).

Lemma4.2 ([16]) Let C be a code generated by taking k consecutive rows of a Van-
dermonde n x n matrix. Then C is an MDS code with parameters [n, k,n — k + 1],.

Theorem4.3 Letn <g— 1,1 <t <k+1landk+1<t+ j <n. Then

(1) there is an EAQEC code with parameters [[n,t — 1, min{n —k + 1, j +2}; j —
k+t]]y.

(2) whenn—k = 1+ j, there is an EAQEC MDS code with parameters [[n,t —1,n —
k+1;j—k+1tlly.

Proof (1) For 0 < k < n, take

2
layay---aj

2 n—1
laya; ---a,

G| =

2 n—1
Laga; - a;

Let Cj be a linear code with the generator matrix G1. Then, by Lemma 4.2, Cy is an
MDS code with parameters [n, k,n — k + 1],.
Take

1 a a? ---a
1 2 g
Ar+1 Ay A1
Hy=1|. . . )

) 2 ...
Lay; a;y; a.

where 1 <t <k+1landk+ 1 <t+4 j <n.Let Cy be alinear code with the parity-
check matrix H,. Then, again by Lemma 4.2, C, is an MDS code with parameters
[n,n—j—1,j+2],.

Since l <t <k+landk+1<t+ j <n,wehave

c:rank<G1>—k=j—k+t. .1
H,
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Table 1 MDS EAQEC codes comparison

q n k t j New EAQEC MDS codes EAQEC MDS codes [31]

13 12 4 5 7 [[12, 4, 9; 81113 [[12,4,7; 41113
12 5 6 6 [112,5,8; 7113 [[12,5,7; 5113
12 6 7 5 [[12,6,7; 61113 [[12, 6, 6; 41113
12 8 9 3 [[12,8,5; 41113 [[12,8,4; 21113

27 15 2 3 12 [[15,2, 14; 13]]»7 [[15,2, 13; 11117
15 3 4 11 [[15,3, 13; 12]]»7 [[15,3, 12; 10]]»7
15 4 5 10 [[15, 4, 12; 11]]27 [[15, 4, 11;9]]7
15 5 6 9 [[15,5, 11; 10117 [[15,5, 10; 8117
15 6 7 8 [[15, 6, 10; 9117 Not
15 7 8 7 [[15,7,9; 8]]»7 [[15,7,7; 4127
15 8 9 6 [[15,8,8; 7117 [[15,8,7; 51127
15 9 10 5 [[15,9,7; 6117 [[15,9, 6; 41127
15 10 11 4 [[15, 10, 6; 51127 [[15, 10, 5; 31127
15 11 12 3 [[15, 11, 5; 41127 [[15, 11, 4; 2]127

Thus, by Theorem 4.1 and Eq. (4.1), there exists an EAQEC code with parameters
[[n,t —1,min{n —k+1,j+2}; j —k+1t]l4.

(2) Whenn —k = 1+ j, according to (1), there is an EAQEC code with parameters
[[n,t—1,d;j—k+1t]ly,whered =min{n —k+1,j+2} =n—k+1.

Since 2(d — 1) =2(n —k) =n—(t — 1)+ (j — k + 1), there is an EAQEC MDS
code with parameters [[n,f — 1,n —k + 1; j — k + t]],. ]

Example 1 By Theorem 4.3, taking some special g, we obtain new EAQEC MDS
codes in Table 1. Compared to the EAQEC MDS codes in [31], when lengths and
dimensions of the EAQEC MDS codes are same, we have that the distance of our
EAQEC MDS codes obtained in Table 1 are larger than all of them. For example, the
distance 9 of our EAQEC MDS code with parameters [[12, 4, 9; 8]];3 in Table 1 is
greater than the distance 7 of EAQEC MDS code with parameters [[12, 4, 7; 4]]13 in
[31].

Remark 4.4 In [34], Corollary 3 proved the EAQEC MDS codes with parameters
[([n,20—1,n—k+1;n+2b—2k —1]],;, where 0 < b < %ando <k<n<gq.
From this to see, they gave that the dimensions of EAQEC MDS codes are odd. In
the above Theorem 4.3, we provide that the dimensions of EAQEC MDS codes can
be either odd or even. Therefore, Theorem 4.3 yields new EAQEC MDS codes ( see
Table 1).

4.2 The second classes of EAQEC MDS codes

We now recall some basic results of Generalized Reed-Solomon codes (see [17]). For k
between 1 andn,leta = («q,...,a,)and v = (vy, ..., v,) be vectors in Fg such that
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oy, ..., q, are distinct and vy, ..., v, are non-zero. The Generalized Reed-Solomon
code G RSk(a, v) is defined by

GRSk(a,v) = {(vi f(ar), ..., v flan))] f(x) € Fylx],
deg(f(x)) =k —1},

where f (x) is polynomial in [F,;[x], and deg(f (x)) denotes the degree of the polyno-
mial f(x).

Furthermore, we consider the extended code of the Generalized Reed-Solomon
code GRSk (a, v) given by

GRSi(a,v,00) = {(v1 f(a1), vaf(@2),...,vuf(an), ficD)] f(x) € Fylx],
deg(f(x)) <k —1},

where fi_| stands for the coefficient of x*~!. The following two results can be found
in [17].

Lemma4.5 ([17]) The code GRSi(a, v, 00) is an MDS code with parameters [n +
Lk,n—k+2],.

Lemma 4.6 ([17]) Let1 be all-one word of lengthn. If 1 < k < g — 1, then the dual
code of GRSk (a, 1,00) is GRSy —k+1(a, 1, 00).

Theorem4.7 Lerl <k < (%]. Then there is an EAQEC MDS code with parameters
[lg+1,1,9g —k+2;q — 2k +2]],.

Proof Taking

1 1 1 0
o o) a; 0

2 2 2
G, = ay o oy 0

k—1 _k—1 k—1
o oy oy 1

Then, G is a generator matrix of GRSk (a, 1, 00).
Set,

1 1 1 0
o] A a; 0

2 2 2
H=| % % a; 0
Olii k oeg_k adTR

Then, by Lemma 4.6, H; is a parity-check matrix of G RS(a, 1, 00).
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Since 1 <k < (qzlll, we have
¢ = rank <G1>—k=q—2k+2. (4.2)
H

Thus, by Theorem 4.1 and Eq. (4.2), there exists an EAQEC code with parameters
llg+1,1,g —k+2;q—2k+2]]4.

Since2(d — 1) =2(g—k+1)=qg+1—-1+ (g — 2k + 2), the EAQEC code
with parameters [[¢ + 1,1, g — k + 2; g — 2k + 2]], is an EAQEC MDS code. O

Example 2 By Theorem 4.7, taking some special ¢, we obtain new EAQEC MDS codes
whose parameters are [[10, 1, 7; 31]o,[[12, 1, 10; 71111, [[14, 1, 9; 31113,[[18, 1, 8; 1]]17.

Theorem 4.8 Let g be an odd prime power, 1 < k < %, and 0 < [ < % — 1.

(1) Ifl < k, then there exists an EAQEC code with parameters [[qg + 1,2l — 1,q —
2k 435 q — 2k + 2]],.

(2) If1 > k, then there is an EAQEC code with parameters [[q + 1,2k — 1,q — 2]l +
3;q — 2l + 2]14. In particular, when | = k, there is an EAQEC MDS code with
parameters [[qg + 1,21 — 1,q — 21 + 3; g — 21 + 2]],.

Proof (1) Let w be denote a primitive element of the finite field F 2. Taking o = o™ L
then « is a primitive (¢ + 1)-th root of unity. So,

g+l _ . .
xq+1 —1=x+1Dkx - I)H/il l(x —Olj)(x —C{_]).

Forl <k < %, we define the following polynomial of degree 2k — 1

) =@ =DM (x —a)x —a ).

Its zeros o/ and =/ are conjugates of each other since «? = «~!. Hence f(x) is a
polynomial over IF,. The resulting cyclic code Cll = (f(x)) has length ¢ 4+ 1 and
dimension g — 2k +2. The generator polynomial f(x) has 2k — 1 consecutive zeros, so
the BCH bound yields d (Cf-) > 2k. Therefore, CIJ- is an MDS code with parameters
lg +1,q —2k+2,2k],.So, Cy is an MDS code with parameters [¢ + 1,2k — 1, q —
2k + 3]4.
+1

Letg(x) = (x+ l)H;Z_l (x—al)(x—a~7),where 0 < [ < % — 1. Obviously,
g(x) is also a polynomial over IF,. The resulting cyclic code C2 = (g(x)) is also an
MDS code with parameters [¢ + 1,2/ — 1, g — 2] + 3],.

Set
1 1 1
ol a? ol
ail afz afq
G =
| okl g2k=D .. gatk=D)

1 a—k=D g=26=1) . g=qtk—1)
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Then G is the generator matrix of Cy. Take

—1 (=D . (=D
o o2 !
! o2 L g4l
H, =
1 oS0 2= e -

1~ -0 208 -n | e -1

Then H> is the parity-check matrix of C.
By Theorem 3.4, we have

B G g —-2k+2,if I <k;
c—rank(H2>—2k+1—{q_21+2, if 1>k )

(1) If I < k, then, by Theorem 4.1 and Eq. (4.3), there exists an EAQEC code with
parameters [[g + 1,21 — 1, g — 2k + 3; g — 2k + 2]],.

(2) If I > k, then, by Theorem 4.1 and Eq. (4.3), there exists an EAQEC code with
parameters [[g + 1,2k — 1,d; g — 2] + 2]],, where d = g — 21 + 3.

Whenk =1[,since2(d—1) =2(q—2[+2) = g+1—(2k—1)+ (g —21+2), there
is an EAQEC MDS code with parameters [[¢g + 1,2/ — 1,9 — 2] +3;q — 2] +2]],.0

Remark 4.9 Theorem 4.8 does not include Theorem 4.7. In fact, the EAQEC MDS
code QO with parameters [[10, 1, 7; 3]]9 is constructed by Theorem 4.7.

4.3 The third classes of EAQEC MDS codes

In this subsection, we assume that ¢ = ["* with [/ prime power.
. . . . i i i d m
For brevity, we will use notion [i] = [! ™4™ glil = 4! "

integer i, where mod operation returns non negative value.

,fora € F,; and

Given a vector (g1, g2, ..., 8&n) € F?, we denote by My (g1, g2,.--,8n) € F’;X”
the matrix
gi g% g,I,
gl e e
[2] (2] [2]
Mk(glvg27"-vgn)= 81 L5) <o &n

k.—l k.—l . k.—l
I G )

.. &n
A definition of rank-metric code, proposed by Gabidulin, is the following.

Definition 4.10 ( [14]) The rank of a vector g = (g1, &2, ..., 8n), & € [, denoted
by rank(g), is defined as the maximal number of linearly independent coordinates g;
over Iy, i.e., rank(g) := dimp, (g1, g2, . . ., &x). Then we have a metric rank distance
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given by dy(a — b) = rank(a — b) fora, b € IE‘Z. An [n, k], Gabidulin (rank-metric)
code of length n with dimension k over F, is an Fg-linear subspace C C Fp. The
minimum rank distance of a Gabidulin code C # 0 is

d:(C) :=min{d;(a—b): a,be C, a#b}.

An [n, k, d,(C)], Gabidulin (rank-metric) code is an [n, k], Gabidulin (rank-metric)
code with the minimum rank distance d, (C).

The Singleton bound for codes in the Hamming metric implies also an upper bound
for Gabidulin codes.

Theorem 4.11 ([14]) Let C C ]FZ be a Gabidulin code with minimum rank distance
d,(C) of dimension k. Then d,(C) <n —k + 1.

A Gabidulin code attaining the Singleton bound is called a Gabidulin maximum
rank distance (MRD) code.

In paper [21], Kshevetskiy and Gabidulin showed the following result on MRD
codes:

Theorem 4.12 Let g1, g2, ..., & € Fy be linearly independent over F;, and let C be
a Gabidulin code generated by matrix My (g1, g2, - - - , &n)- Then Gabidulin code C is
an MRD code with parameters [n, k,n — k + 1].

When n < m, d,(C) < d(C), where d(C) is the minimum Hamming distance of
C. Therefore, we have the following corollary.

Corollary 4.13 Let n < m. If C is an MRD code with parameters [n,k,n — k + 1]
over Fy, then C is also an MDS code with parameters [n, k,n — k + 1] over F,,.

Corollary 4.14 Letn < m. Let g1, &2, ..., g € F, be linearly independent over I,

and let C be a Gabidulin code generated by matrix My (git, gé’, e gf[), where 1 <
t < m — 1. Then Gabidulin code C is an MRD code with parameters [n, k,n —k +1].
Furthermore, C is also an MDS code with parameters [n, k,n — k + 1] over [F.

Proof We first verify that if g, g2,..., g, are linearly independent over FF; then
gllt, glzt, e, gi,l are also linearly independent over [F;. We prove it by contradiction.
Suppose that there is not all zero ay, az, - - - , a, € F; such that

I I I
aigy +gvy +---+ag, =0.

Then
lm—r [mft lnlfl
al gl+a2 82+.'.+an gn:O-
. . . —t -t —t
Since g1, g2, - - ., gy are linearly independent over Iy, a{m = aém =...= a,ﬂm =
. . . . t t t
0. Hence a; = ap = --- = a, = 0. This is a contradiction. Thus, gl1 , gé e gﬁl are

linearly independent over [F;.

@ Springer



103 Page 140f 19 P.Huetal.

Table2 MDS EAQEC codes comparison

q New EAQEC MDS codes EAQEC MDS codes from Corollary 3.19 [30,34]
115 [[57 2, 3; 1]]115 [[5, 3» 3» 2]]115’ [[5’ 2’ 4; 3]]115
136 [[6,2,4; 2]]136 [[6,3,4; 3]]]3& [[6,2,5; 5]]136
178 [[8.4.4; 211,78 [8.5.5: 311,78, [[8, 4, 5: 411,38

Next, let g} = git,gé = gg,...,g,; = g Then 81, &8, € Fy and
gy &hs ., &, are linearly independent over IF;. According to Theorem 4.12, the
Gabidulin code generated by matrix M (g}, ..., g;,) is an MRD code with param-
eters [n, k, n — k + 1]. Since My (¢}, ..., g,) = Mi(g"', g%, ..., g!'), the Gabidulin
code C is an MRD code with parameters [n, k, n — k + 1].

By Corollary 4.13, C is also an MDS code with parameters [n, k, n — k + 1] over
F,. o

Theorem4.15 Letn <m. If0 <t <mand 0 <ky —t+ 1 <ky <m —t, then

(1) there exists an EAQEC code with parameters [[n, t, min{n —k; + 1, ko + 1}; kp —
kl + t]]q~

(2) whenn — k1 = ky, there exists an EAQEC MDS code with parameters [[n, t,n —
ki +1; ky — ky + ]y

Proof Taking

81 82 cee 8n
[1] [1] [1]
I 5 g
[2] [2] [2]
G = My, (81,82, ...,8n) = 81 82 cee &n

k.—l k.—l . k.—l
Q1D Gl=D)lr=D]

Let C; be a linear code with the generator matrix G1. Then, by Theorem 4.12 and
Corollary 4.13, Cy is an MDS code with parameters [n, ki, n — ki + 1] over .

~ t ~ t ~
Letgl=g119g2:g121~--7gn:g,[,lt.set

g1 & ... &
& [;] g~2[;] & [;]
- . - ~ 2] ~ [2] ~ [2]
Hy =My, (81,82, ... 8n) = 81 82 <o 8n

PLUCENIPACE N AN

Suppose that C5 is a linear code with the parity-check matrix H» . Then, by Corollary
4.14, C; is an MDS code with parameters [n, n — k2, k2 + 1] over .
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Since0 <t <ky—1landk; —t+ 1 <ky <m —t, we have
¢ = rank (G1> —ki=ky— ki +1. (4.4)
H,

Thus, by Theorem 4.1 and Eq. (4.4), there exists an EAQEC code with parameters
[[n,t, min{n — ki + 1,k + 1}; ko — k1 +t]],.

(2) When n — k; = kp, according to (1), there is an EAQEC code with parameters
[[n,t,d; ko — ki +t]ly, where d = min{n —k; + 1,k + 1} =n — k; + L.

Since 2(d — 1) = 2(n — k1) = n —t + (ko — k1 + 1), there is an EAQEC MDS
code with parameters [[n, t,n — k + 1; ko — k1 + t]4. O

Example 3 By Theorem 4.15, taking some special ¢, we obtain new EAQEC MDS
codes in Table 2. Compared to the EAQEC MDS codes in [30,34], we have that the
number ¢ of entanglement bits of our EAQEC MDS codes obtained in Table 2 are
smaller than all of them.

In Table 3, we give our general conclusions to make comparisons with those known
results in Refs. [7,12,22,27,30,33,35,36,38]. The results show that the lengths and
entanglement bits of those known conclusions above EAQEC MDS codes studied in
the literatures are fixed. However, the lengths of two classes of EAQEC MDS codes
derived from our construction are very flexible: the lengths of the first classes of
EAQEC MDS codes can be arbitrary between 1 and ¢ — 1; the lengths of the third
classes of EAQEC MDS codes can be arbitrary between 1 and m. The entanglement
bits of three classes of EAQEC MDS codes derived from our construction are very
flexible: the entanglement bits of the first classes of EAQEC MDS codes can be
arbitrary between 1 and n — 1; the entanglement bits of the second classes of EAQEC
MDS codes can be arbitrary between 3 and 9; the entanglement bits of the third classes
of EAQEC MDS codes can be arbitrary between 1 and m.

5 Conclusions

In this paper, we have developed a new method for constructing EAQEC codes by
using generator matrix of one code and parity-check matrix of the other code over
finite field . Using this method, we have constructed three clasess of EAQEC MDS
codes. Notably, the parameters of our EAQEC MDS codes are new and flexible.
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