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Abstract
Wepresent ameasurement-device-independent quantumkey distribution (MDI-QKD)
using single photons in a linear superposition of three orthogonal time-bin states, for
generating the key. The orthogonal states correspond to three distinct paths in the delay
line interferometers used by two (trusted) sources. The key information is decoded
based on themeasurement outcomes obtained by an untrusted third party Charles, who
uses a beamsplitter to measure the phase difference between pulses traveling through
different paths of the two delay lines. The proposed scheme combines the best of
both differential-phase-shift (DPS) QKD and MDI-QKD. It is more robust against
phase fluctuations, and also ensures protection against detector side-channel attacks.
We prove unconditional security by demonstrating an equivalent protocol involving
shared entanglement between the two trusted parties. We show that the secure key
rate for our protocol compares well to existing protocols in the asymptotic regime.
For the decoy-state variant of our protocol, we evaluate the secure key rate by using
a phase-post-selection technique. Finally, we estimate the bit error rate and the phase
error rate, in the finite key regime.

Keywords MDI-QKD · DPS-QKD · Finite-key

1 Introduction

Quantum key distribution (QKD) is proven to be unconditionally secure in theory [1–
5]. However, QKD protocols may be rendered insecure in practice, because of the
difference in the behavior of practical devices and the respective theoretical mod-
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els used in security proofs. For example, the standard protocols and their security
proofs fail to take into account side-channel attacks on the detectors [6–15], thereby
compromising security.

Various solutions have been proposed to counteract side-channel attacks. One solu-
tion is to develop precisemathematicalmodels of devices used in theQKDexperiments
and incorporate these models into new security proofs [16–18]. However, the com-
plex nature of devices makes this approach very challenging to realize in practice.
The other solution is to develop counter measures against known side-channel attacks
[19,20], but the QKD system still remains vulnerable to unanticipated attacks. Device
independent QKD (DI-QKD) [21,22] is another viable candidate against side-channel
attacks. The security of DI-QKD relies on the violations of Bell inequality. How-
ever, the requirement of a loophole-free Bell test, and an extremely low key rate at
long distances, makes this unfeasible with current technology [23,24]. Measurement-
device-independent QKD (MDI-QKD) [25,26] was introduced as a practical solution
to side-channel attacks on the measurement unit.

In an MDI-QKD protocol, Alice and Bob encode their respective classical key bits
into quantum states and send it to a potentially untrusted party, Charles. It is assumed
that the measurement unit is under complete control of Charles, who carries out the
measurement and announces the results. This is followed by sifting, error correction
and privacy amplification, as carried out in standard QKD protocols. The first MDI-
QKD scheme was designed for a polarization-based implementation of BB84 [25].
Various variants of the original polarization-based MDI protocol exist in the literature
[27–29]. MDI protocols employing time-bin [30,31] and phase-based encodings [32–
36] also exist in the literature—see [37] for a recent review. However, random phase
and polarization fluctuations are a major hindrance in long distance implementations
of polarization and phase-based MDI-QKD schemes.

Here, we propose a differential-phase-shifted MDI-QKD (DPS MDI-QKD)
scheme, as a potential candidate for alleviating random phase fluctuations. Random
polarization fluctuations that occur over milli-second timescales do not affect such
a differential phase-based protocol. In a differential phase-encoded QKD protocol,
the classical key is encoded in the phase difference between successive optical pulses
which are a few nano-seconds apart, thus making the protocol resilient to the effects of
environmental phase fluctuations. There are a fewvariants of differential-phase-shifted
keying proposed in the literature [38]. For example, the sender Alice could use a phase
modulator in combination with a random number generator to apply a phase of either
0 or π , randomly, on a sequence of successive pulses generated by a weak coherent
source (WCS) [39]. Alternately, the phase modulation may be done on a single photon
pulse converted into a superposition of three orthogonal states corresponding to three
different time-bins, via a delay line interferometer [40].

Here, we make use of the 3-pulse protocol, whose security is based on the fact that
the eavesdropper has to distinguish between a set of four non-orthogonal quantum
states. While the coherent-state DPS protocol is provably secure against individual
attacks [41], the single-photon based 3-pulse protocol is shown to be unconditionally
secure [42]. However, this security proof assumes infinitely long keys, whereas exper-
imental implementations are constrained by the finite computational power of Alice
and Bob, resulting in keys of finite length.

123



Differential phase encoded measurement-device… Page 3 of 37 67

Fig. 1 Schematic of 3-pulse differential-phase-shift QKD. WCS = Weak Coherent Source, PM = Phase
Modulator, D0, D1 = Single-photon Detectors

Effect of the finiteness of the key size on security parameters was first studied
in [43]. Subsequently, the security of BB84 [44] and decoy state protocols [45–47]
against collective attacks in the finite-key regime was established. Techniques used
for the finite-key analysis of conventional QKD have also been applied to MDI-QKD,
but for specific attacks [48]. More recently, a rigorous security proof of MDI-QKD
against general attacks for a finite key length was demonstrated [49].

In this paper, we present a MDI-QKD scheme which incorporates the advantages
of differential phase encoding. We show unconditional security of our protocol by
mapping it to an equivalent entanglement-based protocol. An upper bound for the
phase error rate of our scheme, in terms of the bit error rate, is then used to carry out the
asymptotic and finite-key analysis of our scheme. We demonstrate that our protocol
generates secure keys over reasonable distances, even under system imperfections.
We also propose a decoy-state variant of our protocol and use phase-post-selection
technique to show that our scheme offers reasonable security, thereby making it an
attractive choice for practical implementations that use aweak coherent source (WCS).

In Sect. 2, we briefly review the 3-pulseDPS-QKDprotocol and its security aspects.
We discuss ourDPS-MDI protocol in Sect. 3 and show that it maps to an entanglement-
based protocol. We obtain the secure key rate using an ideal single-photon source as
well as aWCS for the protocol. Finally,we present the finite-key analysis of our scheme
in Sect. 4. The details of the calculation of the secure key rates for our scheme, and the
mapping of our protocol to an equivalent entanglement-based protocol are presented
in “Appendix A and B”, respectively. We explicitly calculate the phase error rate for
our protocol in terms of the bit error rate in “Appendix C”, and finally, calculate the
parameters involved in the asymptotic key analysis in “Appendix D”.

2 Preliminaries

Starting with the original proposal to implement the B92 protocol [50], differential
phase or distributed-phase protocols have beenwell-studied in theQKD literature [38].
Such protocols are popular because they are relatively easy to implement (compared
to polarization-based protocols) and are robust against phase fluctuations.Most phase-
based schemes use weak coherent pulses for encoding the key. However, in this paper,
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we use the single-photon scheme proposed in [40]. We shall henceforth refer to this
scheme as the 3-pulse DPS-QKD protocol and provide a brief description below.

2.1 3-pulse differential-phase-shift keying

In a 3-pulse DPS-QKD protocol, the sender (Alice) throws a single photon into a
superposition of three time-bins, corresponding to the three distinct paths of a delay line
interferometer, and then uses a phase modulator to introduce a relative phase between
successive time-bins, as shown schematically in Fig. 1. Alice encodes her random key
bit {0, 1} as a random phase {0, π} between successive pulses. The receiver (Bob) thus
gets one of the four non-orthogonal quantum states given below, corresponding to the
four possible phase-differences, i.e.,

|ψ(±,±)〉 = 1√
3

( |100〉a ± |010〉a ± |001〉a ) . (1)

Here, |100〉a , |010〉a or |001〉a indicate that the photon travelled with equal proba-
bility via paths 1, 2 or 3, respectively, in Alice’s set-up.

Bob’s decoding setup comprises of a delay line interferometer (DLI) and two single-
photon detectors. The path lengths are chosen such that the longer arm of Bob’s DLI
introduces a time delay Δt which is exactly equal to the difference in time taken by
the photon to traverse two successive arms of Alice’s 3-path delay line. Thus, Bob
can detect the incoming photon in one of the four possible time-bins, which we label
as t1, t2, t3, t4, each separated from its previous bin by a time of Δt . Detections at
times t1 and t4 do not provide any phase information, whereas detections at times
t2 and t3 provide information about the relative phases θ12 and θ23 respectively (see
Fig. 1). Specifically, Bob decodes the key bit associated with a given time-slot as a 0,
or 1, if detector D0, or D1, clicks. By publicly announcing his detection times, Bob
performs key-reconciliation with Alice and it is easy to see that the sifted key rate for
this 3-pulse protocol is 1/2.

An alternate form of phase-encoded QKD is the pulse-train DPS-QKD [39], which
is a variant of the originalB92protocol [50]. In the pulse-train protocol,Alice generates
a train of coherent pulses and applies a phase of 0 orπ to the pulses randomly, to encode
the key bits 0 or 1, respectively. These phase modulated pulse trains are sent to Bob,
who passes the incoming pulses through a DLI. Depending upon the phase difference
between two successive pulses, constructive or destructive interference happens. An
MDI-QKD protocol based on the coherent-state pulse-train DPS protocol was also
proposed in [33].

We refer to [51] for a detailed analysis of the secure key rate for the 3-pulse DPS
protocol, assuming individual attacks. A simple comparison with the pulse-train DPS
protocol [52] shows that the 3-pulse variant offers better security against individual
attacks, in the following sense: an eavesdropper introduces a higher error rate and also
has a lower learning rate in the 3-pulse protocol [51].

Finally, we note that the 3-pulse DPS-QKD protocol can be extended to an n-pulse
protocol by increasing the number of possible paths that the single photon can take
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at the sender’s set-up. In fact, the single-photon DPS protocol using n such paths has
been shown to be unconditionally secure against general attacks for any n ≥ 3 [42].
Experimental realization ofn pathDPSprotocolwould involve generating a photon in a
superposition of n paths/time-bins using passive beam splitters (or beam combiners).
As we increase the number of paths/time-bins, the insertion loss of passive beam
splitters reduces the sifted key rate by a factor of n. Scaling of n in an experimental
realization thus reduces the sifted key rate, in fact, the n = 3 protocol is shown to
achieve the optimal secure key rate per pulse [42,53]. Note that n = 3 is the smallest
n that allows Alice and Bob to encode the key information in a non-orthogonal set of
states using only two phase values, 0 and π .

3 DPS-MDI-QKD

Wenowdescribe ourMDI-QKDprotocol based on the 3-pulse phase encoding scheme,
using an ideal single-photon source. Apart from the fact that this scheme offers bet-
ter security against individual attacks, compared to other DPS protocols, there are
other practical considerations that motivate our use of the 3-path superposition in our
protocol.

1. When Alice and Bob both use an ideal-single-photon source to implement a
pulse-train protocol using two phase values (0 and π ) for encoding key bits, the
phase-independent nature of Hong—Ou-Mandel interference [54] makes the key
extraction difficult.

2. Using only two phase values (0 and π ) makes the states in a two-pulse protocol
orthogonal, making them perfectly distinguishable [42].

Hence, we need at least 3-paths in the superposition to implement an MDI protocol
using only a pair of phases (0, π ) for the encoding. An MDI protocol based on a
two-path superposition, and four phase values (0, π

2 , π, 3π
2 ) was proposed in [34].

This scheme yields a phase-encoded version of BB84, with a sifted key rate of 1/2,
but it needs four different voltage levels for driving the phase modulator in order to
encode the key information. Now, increasing the number of voltage levels in a high-
speed phase modulator driver circuit leads to an increase in amplitude fluctuations,
consequently increasing the quantum bit error rate [55]. Our proposed DPS MDI
protocol reduces the complexity of the key encoding process by using only two phase
values (0, π ), with a sifted key rate of 4/9, explained in Sect. 3.1 below.

A simple schematic is shown in Fig. 2. As before, Alice and Bob generate single-
photon pulses that pass through their respective DLIs, each creating the superposition
state described in Eq. (1). Alice and Bob then encode the random key bits {0, 1} by
assigning a relative phase difference of {0, π} between two successive pulses, and send
their encoded signal states to the measurement unit (Charles). Charles’ measurement
set-up comprises of a beamsplitter and two single-photon detectors, labeled Dc and
Dd as indicated in Fig. 2. For every photon detected by his setup, he notes which
detector clicked (Dc or Dd or both), and the corresponding time-bin (t1, t2 or t3) at
which the click was observed. Based on this information, which is made public by
Charles, Alice and Bob extract a sifted key.
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Fig. 2 Schematic of differential phase encoded MDI-QKD. Here, PM = Phase Modulator, Dc, Dd =
Single-photon detectors

3.1 Sifting and reconciliation

We may use the form of the encoded 3-pulse state in Eq. (1) to represent the input to
the Charles’ measurement module as,

|ψ(φa1, φa2 , φb1 , φb2)〉in = 1√
3

(
|100〉a + eiφa1 |010〉a + eiφa2 |001〉a

)

⊗ 1√
3

(
|100〉b + eiφb1 |010〉b + eiφb2 |001〉b

)
. (2)

As before, 1 and 0 indicate the presence or absence of a photon in a particular path. Sim-
ilarly, |100〉a is the 3-pulse superposition state corresponding to the photon traversing
path 1a in Alice’s set-up, |010〉b is a 3-pulse state corresponding to photon travers-
ing path 2b in Bob’s set-up, and likewise for other terms in Eq. (2). For the sake of
brevity, we represent tensor products of the form |100〉a ⊗ |100〉b as |100, 100〉ab in
the rest of the paper. In DPS-MDI, Alice and Bob encode classical information as
phase differences between first and second time-bins, and second and third time-bins.
In our analysis, we assume the phase of the first time-bin as the reference phase, and
apply a suitable phase (0 or π relative to the reference phase) on the second and third
time-bins to encode the key information.

Corresponding to every pair of photons generated by the sources, there are three
distinct time-bins (t1, t2, t3) at which Charles’ detectors click, corresponding to paths
1a, 2a, 3a and 1b, 2b, 3b in Alice’s and Bob’s set-up respectively. We first rewrite
Charles’ input state by grouping pairs of pulses that arrive in the same time-bin:

|ψ〉in = 1

3

[
|100, 100〉ab + eiφa1 |010, 100〉ab + eiφa2 |001, 100〉ab

+eiφb1 |100, 010〉ab + eiφb2 |100, 001〉ab + ei(φa1+φb1 ) |010, 010〉ab
+ei(φa1+φb2 ) |010, 001〉ab + ei(φa2+φb1 ) |001, 010〉ab
+ ei(φa2+φb2 ) |001, 001〉ab

]
. (3)

Note that the pairs of photons that traverse through identical paths in Alice’s and
Bob’s interferometer (such as (1a, 1b) or (2a, 2b) or (3a, 3b)) do not contribute to the
sifted key. Such a pair of photons would bunch together due to Hong–Ou–Mandel
interference [54] and come out at the same port of the beamsplitter.
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Table 1 Key reconciliation scheme for the proposed protocol

Measurement outcome of Charles Action of Alice and Bob Requirement
of bit flip

Shared EPR pair

Det c clicks at both t1 and t2 Extract key using Δφ1 No 1√
2
[|00〉A1B1 − |11〉A1B1 ]

Det d clicks at both t1 and t2 Extract key using Δφ1 No 1√
2
[|00〉A1B1 − |11〉A1B1 ]

Det c clicks at both t1 and t3 Extract key using Δφ2 No 1√
2
[|00〉A2B2 − |11〉A2B2 ]

Det d clicks at both t1 and t3 Extract key using Δφ2 No 1√
2
[|00〉A2B2 − |11〉A2B2 ]

Det c clicks at t1 and det d at t2 Extract key using Δφ1 Yes 1√
2
[|01〉A1B1 − |10〉A1B1 ]

Det c clicks at t2 and det d at t1 Extract key using Δφ1 Yes 1√
2
[|01〉A1B1 − |10〉A1B1 ]

Det c clicks at t1 and det d at t3 Extract key using Δφ2 Yes 1√
2
[|01〉A2B2 − |10〉A2B2 ]

Det c clicks at t3 and det d at t1 Extract key using Δφ2 Yes 1√
2
[|01〉A2B2 − |10〉A2B2 ]

Det c clicks at both t2 and t3 Discard the bits – –

Det d clicks at both t2 and t3 Discard the bits – –

Det c clicks at t2 and det d at t3 Discard the bits – –

Det c clicks at t3 and det d at t2 Discard the bits – –

We write 1√
2
[|0〉A1 |0〉B1 − |1〉A1 |1〉B1 ] as 1√

2
[|00〉A1B1 − |11〉A1B1 ], and similarly for other terms

Using a beamsplitter transformation, we can write down the final two-photon state
after the action of Charles’ beamsplitter. We refer to “Appendix A” for the details
of the calculation, with the form of the final state after Charles’ measurement given
in Eq. (28). We observe that depending on the values of the relative phases Δφ1 =
φa1 −φb1 and Δφ2 = φa2 −φb2 , and the path traversed by Alice’s and Bob’s photons,
Charles may have the same or different detectors click at two different time-bins.

Finally, Alice and Bob perform key reconciliation once Charles announces his
measurement outcomes. Based on which detector (Dc or Dd ) clicks and the time-bins
(t1, t2 and t3) corresponding to the clicks for each pair of signal states, Alice and Bob
can generate the sifted key using either Δφ1 or Δφ2 as listed in Table 1.

It follows immediately that the the sifted key rate of our protocol is,

Rsift = 2

3
× 2

3
= 4

9
. (4)

We discard the clicks that occur when photons from Alice and Bob fall on the beam
splitter in the same time-bin. The terms |100, 100〉ab, |010, 010〉ab and |001, 001〉ab
in Eq. (3) correspond to such a scenario. Photons arriving at the same time-bin causes
Hong–Ou–Mandel interferencewhich leads to twophotons fallingon the samedetector
in the same time-bin, thereby making key extraction difficult. Comparing Eqs. (3)
and (24), we see that one-third of the incoming photons have to be discarded due to
Hong–Ou–Mandel interference. This leads to the first factor of 2

3 . Next, we observe
from the key reconciliation table that two-thirds of Charles’ measurements contribute
to the rawkey, thus leading to a sifted key rate of 4

9 .Wenote that theMDIprotocol based
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on3-pulse encoding offers a lower key rate compared to the one based on coherent-state
pulse-train encoding [33]. However, the use of single-photon sources in our protocol
allows us to carry out a finite key analysis using the framework presented in [56].
Our protocol is also immune against eavesdropping attacks which target multi-photon
pulses.

3.2 An equivalent entanglement-based protocol

To analyze the security of DPS-MDI, we first map it to a protocol that involves shared
entangled pairs between Alice and Bob. Such a mapping of a phase-encoded protocol
to an entanglement-based protocol has been shown earlier [42]. Following a similar
approach, we now show there exists an equivalent, entanglement-based protocol to
our proposed DPS-MDI-QKD protocol. The equivalent description of DPS-MDI, in
terms of entangled states, allows us to demonstrate the unconditional security of our
protocol and also perform the key rate analyses.

We first represent Alice’s single-photon pulse in a linear superposition of three
orthogonal states,

|ψ〉a = 1√
3

3∑
k=1

a†k |0〉 . (5)

Here, a†k denotes the creation operator for the photon in the kth time-bin. Alice uses
a quantum random number generator to generate a random 2-bit integer j , written
in binary notation as ( j1 j2)2. She encodes this random integer in the single-photon
pulse, such that the encoded state is written as,

|ψ j1 j2〉a = 1√
3

(
a†1 |0〉 + (−1) j1a†2 |0〉 + (−1) j2a†3 |0〉

)
. (6)

Alice prepares and stores 2 qubits corresponding to each encoded block in her quantum
memory. She prepares | j1〉 in |0〉 (|1〉) state when she applies a phase of 0 (π ) to her
second time-bin. Similarly, she prepares | j2〉 in |0〉 (|1〉) state when she applies a phase
of 0 (π ) to her third time-bin. In this way, she entangles her two qubits to the encoded
single-photon state as

|ψ〉Alice = 1

2

∑
j1, j2∈{0,1}

| j1 j2〉A1A2
⊗ |ψ j1 j2〉a . (7)

Bob also carries out a similar encoding procedure to get his own register of qubits
entangled with his encoding blocks. Along the lines of Eqs. (6) and (7), Bob’s state is
written as,

|ψ〉Bob = 1

2

∑

j̃1, j̃2∈{0,1}
| j̃1 j̃2〉B1B2 ⊗ |ψ j̃1 j̃2

〉
b
, (8)

where j̃1 or j̃1 are the random integers used by Bob to encode his single-photon pulse.
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Alice andBob send their encoded states across toCharles.Hefirst applies a quantum
non-demolition (QND) measurement to find the number of photons in a given state
and throws away the ones which have more than one photon in the same time-bin. He
sends the rest through his beamsplitter. He then publicly announces the time-bin (say
k = 1, 2, or 3), as well as the detector (Dc or Dd ), at which the photon was detected.
As explained in Table 1, based upon Charles’ measurement outcome, Alice and Bob
use either Δφ1 or Δφ2 to extract the key.

When their shared key is established using Δφi , Alice and Bob retain their corre-
sponding ancilla qubits (Ai and Bi , respectively) and discard the other ancilla qubit. As
shown in “AppendixB”, for those time slotswhen they do not need to carry-out a bit flip
operation, they share a perfectly correlated entangled state 1√

2
[|00〉Ai Bi − |11〉Ai Bi ].

On the other hand, corresponding to those time slots when they execute a bit-flip to
extract the shared key, they share the anti-correlatedBell state 1√

2
[|01〉Ai Bi −|10〉Ai Bi ].

Thus, Charles measurement and filtering effectively implements a Bell state measure-
ment, thereby entangling Alice’s and Bob’s ancilla qubits. A detailed discussion of
the joint state after Charles’ measurement and key-reconciliation can be found in
“Appendix B”.

3.3 Asymptotic secure key rate

Alice and Bob perform classical post-processing on the sifted key to extract the final
secure key from it. The first step of this post-processing is to estimate the error rate
in the sifted key, which involves Alice and Bob exposing a fraction of their sifted
key bits to calculate the error rate. They abort the protocol and start again from the
beginning (i.e., signal transmission to Charles) if their calculated error rate exceeds
a pre-defined threshold. They define this threshold error rate by taking into account
the error introduced in the key, both due to the system imperfections as well as any
potential eavesdropping.

When the estimated error rate lies below the threshold error rate, they carry out the
second step of post-processing, i.e., error correction. Alice and Bob apply a suitable
error correction scheme on their sifted key to correct all the erroneous bits. The error
estimation and correction happens over a classical channel, and we must assume that
Eve is privy to all the information exchanged between Alice and Bob. Therefore,
the final step of post-processing is privacy amplification, which aims to reduce Eve’s
knowledge about the key well below an acceptable level. This is done by discarding a
fraction of the error-free key. Alice and Bob typically use a hash function to carry out
privacy amplification.

Using the sifted key rate obtained in Eq. (4) and following the analysis in [3,25],
we obtain the following asymptotic secure key rate for our MDI-DPS protocol,

R ≥ Y11[1 − f h(eb) − h(ep)]. (9)

Here, Y11 is the probability of a successful Bell state measurement (BSM) when Alice
and Bob transmit single photons. As per our mapping of DPS-MDI to an equivalent
entangled-based protocol, a successful BSM corresponds to the cases tabulated in
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Fig. 3 Key rates for ideal, single-photon based protocols

Table 1 where Charles’ measurement outcomes contribute to the sifted key. eb is the
quantum bit-error rate (QBER), ep is the phase error rate, f represents the inefficiency
of the error correction scheme employed by Alice and Bob, and h(x) is the binary
entropy function.

We bound the phase error rate of our protocol in terms of the bit error rate in
“Appendix C” as,

ep ≤ eb, (10)

and use this bound for all of the simulation results. We also explicitly calculate the
parameters given in Eq. (9) for our protocol in “Appendix D”. We have taken phase
misalignment, dark counts and different channel losses for the two channels into
consideration while obtaining these parameters.
We compare the asymptotic key rate of DPS-MDI with two other protocols - phase-
encoded MDI protocol [34] and DPS QKD [42]. From Fig. 3, we observe that DPS-
MDI offers a secure channel length which is nearly twice of the channel length of
DPS QKD—a trademark of MDI protocols when compared with non-MDI protocols.
We also see that our DPS-MDI protocol offers performance comparable to an existing
phase-encoded MDI protocol in terms of secure channel length and key rate. The
slightly higher key rate in [34] is attributed to its higher sifted key rate of 1

2 compared
to DPS-MDI’s rate of 4

9 .
We have obtained the non-MDI DPS QKD plot in Fig. 3 by using the key rate

equation derived in [42]. We would like to point out the difference in the secure
channel length for n=3 DPS QKD obtained in [42] and our simulation. The difference
arises because we have used 3× 10−6 as the dark count probability in our simulation,
which is 1000 times higher than the dark count probability used in [42]. Also, [42]
assumes an ideal error correction step in their classical post-processing, while our
simulations assume a non-ideal error correction step. We capture the inefficiency of
error correction in our protocol using the parameter f (Eq. 9).
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In experimental implementations, weak coherent sources (WCS) are typically used
to generate pulses withmean photon number (μ) of less than one so that the probability
of generation of multi-photon pulses is significantly less than that of single-photon
pulses. However, aWCS could still generatemulti-photon pulses, and leak information
to Eve. Hence, we use the decoy-state method to establish the security of our DPS-
MDI protocol. The original decoy-state based QKD protocols have been proposed
for BB84 schemes and secure key rates obtained in [57,58]. Decoy state analysis for
MDI-BB84 was done in [25]. In our case, we follow the approach in [25] along with
the improved phase-post-selection technique employed in [34] to obtain the key rate
as,

R ≥ Q11[1 − h(ep)] + Q
′
0μb

− Iec. (11)

Here, Iec is the cost of error correction written as

Iec = Qμaμb f h(Eμaμb ), (12)

where Qμaμb (Eμaμb ) is the overall gain (QBER) when Alice and Bob use a WCS
with mean photon numbers μa and μb, respectively. Q11(ep) is the gain (phase error
rate) when both the sources generate single-photon states, and Q

′
0μb

= e−μa Q0μb is
the probability that there is no photon from Alice’s side and a successful BSM occurs.
We refer to “Appendix D” for formal definitions and a detailed evaluation of these
parameters.

Our decoy-state analysis assumes a fully phase-randomized coherent source. The
intrinsic QBER shoots up due to phase randomization of the coherent source. The
overall phase of [0, 2π) can be sliced into N distinct slices as,

[
mπ

N
,
(m + 1)π

N

)
∪
[
(m + N )π

N
,
(m + N + 1)π

N

)
, (13)

where m ranges from 0 to N − 1. Instead of carrying out phase randomization over
the entire interval [0, 2π), Alice and Bob randomly select one slice out of N , and then
randomize the phase. Hence, an additional step of revealing the selected slice gets
added in the decoy state version of our protocol. Alice and Bob keep the bits when
both of them have selected the same phase slice. Figure 4 shows that dividing the
interval [0, 2π) into slices reduces the intrinsic QBER from 34% to around 1% for
N = 16.

However, this phase-post-selection technique also changes the cost of error correc-
tion mentioned in Eq. (12) to

Iec =
∑
m

Qm
μaμb

f h(Em
μaμb

). (14)

From our numerical simulations, we observe that the key rate becomes negative upon
using Eq. (14) in conjugation with Eq. (11). Hence, we assume that the gain and
error rate of the single-photon states are evenly distributed over all the slices, thereby
modifying the decoy MDI key rate equation to
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Fig. 4 QBER comparison when phase randomization is a carried out over entire range (b) carried out in
one of the N slices. We have used Eq. (94) for numerically evaluating the QBER

Fig. 5 Key rate comparison for decoy-state MDI schemes

R ≥ 1

N
Q11[1 − h(ep)] + Q

′
0μb

− Qm f h(Em)|m=0. (15)

We refer to “Appendix D” for a detailed analysis of the effect of this phase-post-
selection technique on the overall gain and QBER. We compare the key rate of our
decoy-state DPS-MDI with [34] (see Fig. 5), where we used the parameters from [25]
for our simulations. The quantum efficiency of the detectors was taken to be 14.5%
with a misalignment error of 1.5%. N and f are taken to be 16 and 1.16 respectively.
We assume a dark count rate of 3 × 10−6 for the detector and an attenuation of 0.2
dB/km in the fiber channel.

3.4 Practical implementation

As described above, Alice and Bob can share a secure key using the setup shown in
Fig. 2. However, a practical implementation of the proposed scheme requires certain
modifications to the set-up (see Fig. 6).
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Fig. 6 Schematic of a practical 3-pulse DPS-MDI-QKD implementation. Alice and Bob use a phase mod-
ulators (PM) and a delay line interferometer each. Charlie’s set-up comprises a beamsplitter, four detectors
and two acousto-optic deflectors (AODs)

1. Key generation requires detection of two time-synchronized photons by a single
detector. In practice, this would be constrained by the finite dead-time of a single-
photon detector. Hence, an acousto-optic deflector (AOD) is used to route the
photon in each time-bin to different single-photon detectors. This results in a
slight modification to the key-reconciliation step, namely, Charles now announces
which pair of detectors clicked in each time-bin.

2. Alice and Bob need a common phase reference, since they use independent laser
sources for generating their single-photon pulses. The optical phase-locked loop
(OPLL) technique [59,60], commonly used in coherent detections, can be used to
phase lock the sources used by Alice and Bob. The OPLL has a simple setup and
requires only off-the-shelf components [61].

4 Finite key analysis of DPS-MDI-QKD

Finiteness of the key size constitutes a major chink in the security proofs of practical
QKD protocols. Most of the theoretical proofs provide a bound on the secure key rate
by assuming the key size as infinite. However, practical implementations cannot run
forever. This gap in theory and practice is bridged by providing security bounds for a
finite number of signal exchanges between Alice and Bob.

A perfect key is a uniformly distributed bit string, having no dependence on an
adversary’s knowledge. Practical keys deviate from this ideal scenario, and this devia-
tion is captured by a parameter ε, interpreted as themaximum probability of a practical
key differing from a completely random bit string. Following [62,63], we say that a
key K is ε-secure with respect to an eavesdropper E if,

1

2
‖ ρK E − τK ⊗ ρE ‖1 ≤ ε. (16)

Here, ρK E is the joint state of the ‘key system’ K and the adversary E , ρE is the
state held by the adversary, and τK is the completely mixed state on K .

In the asymptotic case, for any QKD protocol where Alice and Bob share entangled
pairs, the secure key rate (R) can be bounded under the assumption of collective attacks
as [1,3,64],

R = H(X | E) − H(X | Y ), . (17)
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Here, X and Y represent Alice and Bob’s key systems, respectively, E represents
the eavesdropper, and H(. | .) is the conditional von Neumann entropy. Intuitively,
Eq. (17) follows from the fact that the secure key rate is equal to Eve’s uncertainty about
the raw key X minus Bob’s uncertainty. For our DPS-MDI protocol, the conditional
entropy H(X | E) can be expressed as [65],

H(X̃ | Ẽ) = 1 − h(eb) − h(ep), (18)

where eb is the bit error rate, and ep denotes the phase error rate.
We follow the finite-key analysis presented in [56,65], involving a generalization of

von Neumann entropy, called the smooth entropy. The objective of this smoothening
of the regular entropic functions is to take into account the fluctuations arising from
the finite signal size. As in the asymptotic case, Alice and Bob are assumed to share
entangled pairs, which holds for our proposed scheme, as outlined in Sect. 3.2 above.
The generalized form of Eq. (17) in the finite-key regime can be expressed as [56],

r = Hξ (X | E) − (leakEC + Δ)/n, (19)

where Hξ (X | E) is the conditional smooth-min entropy, leakEC is the number of bits
needed to be shared over a classical channel for error correction and

Δ = 2 log2
1

[2(ε − ε̄ − εEC)] + 7
√
n log2(2/(ε̄ − ε̄′)). (20)

Here, εEC is the error probability, defined as the probability that Bob ends up with a
wrong bit string after the error correction stage. ε̄ and ε̄′ are the smoothening param-
eters as mentioned in Lemma 2 of [56].

We calculate Hξ (X | E) for our protocol using the asymptotic value of H(X |
E) and bound the phase error rate in terms of the bit error rate. We have shown in
“Appendix C” that the phase error rate of our protocol is bounded by the bit error rate
as,

ep ≤ eb. (21)

In the finite-key regime Eq. (18) translates to,

Hξ (X | E) = 1 − h(ẽb) − h(ẽp). (22)

Finally, the bit error rate in the finite-key regime is expressed as ẽb = eb+ξ (n, d =
9), where n is the number of raw key bits. Similarly, the phase error rate is given as
ẽp = ep+ξ (m, d = 9), wherem is the number of bits used in parameter estimation and
d is the number of possible POVM outcomes. d = 9 for our protocol as there are eight
scenarios at the detection unit (see Table 1) which contribute to the key generation. The
ninth POVM corresponds to the case when BSM fails. ξ is a non-negative parameter,
(Lemma 3 of [56]) given by,

ξ =
√
2 ln(1/ε̄′) + d ln(m + 1)

m
. (23)
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Fig. 7 Key rate r as a function of the number of exchanged quantum signals for different values of eb

Using Eqs. (20), (22), and (23) we estimate the sifted key rate described in Eq. (19).
The performance of a practical error correcting code as analyzed in [56] gives
leakEC/n = 1.2h(eb), where, eb is the quantum bit error rate. This helps in estimating
the second term of Eq. (19). (N , ε, leakEC, εEC) are protocol dependent parame-
ters, whereas n,m, ε̄ and ε̄′ are selected so as to maximize the key rate per signal,
r = (n/N )r ′ under the constraints n + m ≤ N and ε − εEC > ε̄ > ε̄′ ≥ 0.

Figure 7 shows the variation in key rate with the number of exchanged signals for
our DPS-MDI protocol. We have used ε = 10−5 and εEC = 10−10 to generate the
plots for different values of eb. As expected, the key rate per signal (r ) approaches the
sifted key rate of 4

9 in the asymptotic limit. This is a reflection of the fact that only 4
9

of the raw key bits can be used for key generation and the rest is used for parameter
estimation.

5 Conclusions

In this paper, we have presented a 3-path superposition based DPS-MDI-QKD proto-
col. We have shown the necessity and advantages of having the 3-path superposition.
The proposed protocol has been mapped to an entanglement-based protocol, thereby
establishing its unconditional security. We have carried out a security analysis of our
scheme in the asymptotic regime assuming system imperfections.

We have shown that our protocol generates secure keys even when the ideal single-
photon source is replaced with a weak coherent source (WCS). The security of
the WCS-based scheme is established using decoy states and a suitable phase-post-
selection technique. Finally, we have determined an upper-bound for the phase error
rate of our protocol in terms of the bit error rate. This allows us to carry out the key
analysis of the protocol in both asymptotic as well as finite-key regimes. We have
further simulated the variation in key rate with the number of exchanged signals of
our protocol.
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Fig. 8 a and b are input ports, and c and d are the output ports of the beamsplitter

An interesting direction for future work is the finite-key analysis of the 3-path DPS-
MDI using a weak coherent source. Such a coherent-state DPS-MDI protocol will also
be free from the issues arising due to the probabilistic nature of photon generation
in single-photon sources. Another interesting problem that can be addressed in the
future works is the tightening of the bound used in obtaining the secure key rates of
our protocol.
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A Analysis of DPS-MDI-QKD protocol

We start with the form of the input to Charles’ beamsplitter given in Eq. (3):

|ψ〉in = 1

3

[
|100, 100〉ab + eiφa1 |010, 100〉ab

+eiφa2 |001, 100〉ab + eiφb1 |100, 010〉ab
+eiφb2 |100, 001〉ab + ei(φa1+φb1 ) |010, 010〉ab + ei(φa1+φb2 ) |010, 001〉ab
+ei(φa2+φb1 ) |001, 010〉ab + ei(φa2+φb2 ) |001, 001〉ab

]
.

We leave out the states that correspond to photons traversing identical paths in
Alice’s and Bob’s set-up, since they do not contribute to the sifted key, and consider
the (normalized) state,

|ψ〉in = 1√
6

[
eiφa1 |010, 100〉ab + eiφa2 |001, 100〉ab
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+eiφb1 |100, 010〉ab + eiφb2 |100, 001〉ab
+ei(φa1+φb2 ) |010, 001〉ab + ei(φa2+φb1 ) |001, 010〉ab

]
. (24)

Writing φa1 − φb1 = Δφ1 and φa2 − φb2 = Δφ2 as the phase differences between
corresponding pulses fromAlice and Bob, the input to Charles’ beamsplitter is written
as,

|ψ̃〉in = 1√
6
ei(φb1+φb2 )

[
eiΔφ1 |010, 001〉ab

+eiΔφ2 |001, 010〉ab + e−iφb1
(

|100, 001〉
+eiΔφ2 |001, 100〉

)
+ e−iφb2

(
|100, 010〉 + eiΔφ1 |010, 100〉ab

) ]
.(25)

Figure 8 shows a typical 50 : 50 beamsplitter. The action of the beamsplitter with
input ports a, b and output ports c, d, when there is a photon incident on only one of
the two ports is given by,

|1, 0〉ab −→ 1√
2

(|1, 0〉cd + |0, 1〉cd
)
,

|0, 1〉ab −→ 1√
2

(|1, 0〉cd − |0, 1〉cd
)
. (26)

Using Eq. 26, we find that the beamsplitter transforms the terms present in the joint
input state of Alice and Bob (Eq. 25) as shown below:

|010, 001〉ab −→ 1

2

(
|011, 000〉cd − |010, 001〉cd + |001, 010〉cd − |000, 011〉cd

)
,

|001, 010〉ab −→ 1

2

(
|011, 000〉cd + |010, 001〉cd − |001, 010〉cd − |000, 011〉cd

)
,

|100, 001〉ab −→ 1

2

(
|101, 000〉cd − |100, 001〉cd + |001, 100〉cd − |000, 101〉cd

)
,

|001, 100〉ab −→ 1

2

(
|101, 000〉cd + |100, 001〉cd − |001, 100〉cd − |000, 101〉cd

)
,

|100, 010〉ab −→ 1

2

(
|110, 000〉cd − |100, 010〉cd + |010, 100〉cd − |000, 110〉cd

)
,

|010, 100〉ab −→ 1

2

(
|110, 000〉cd + |100, 010〉cd − |010, 100〉cd − |000, 110〉cd

)
,

|100, 100〉ab −→ 1√
2

(
|200, 000〉cd − |000, 200〉cd

)
,

|010, 010〉ab −→ 1√
2

(
|020, 000〉cd − |000, 020〉cd

)
,

|001, 001〉ab −→ 1√
2

(
|002, 000〉cd − |000, 002〉cd

)
. (27)
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Using Eq. (25) and Eq. (27), we get

|ψ〉out = 1

2
√
6
ei(φb1+φb2 )

[
eiΔφ1

(
|011, 000〉cd − |010, 001〉cd

+ |001, 010〉cd − |000, 011〉cd
)

+eiΔφ2
(

|011, 000〉cd + |010, 001〉cd − |001, 010〉cd − |000, 011〉cd
)

+e−iφb1
{(

|101, 000〉cd − |100, 001〉cd + |001, 100〉cd − |000, 101〉cd
)

+eiΔφ2
(

|101, 000〉cd + |100, 001〉cd − |001, 100〉cd − |000, 101〉cd
)}

+e−iφb2
{(

|110, 000〉cd − |100, 010〉cd + |010, 100〉cd − |000, 110〉cd
)

+eiΔφ1
(

|110, 000〉cd + |100, 010〉cd − |010, 100〉cd − |000, 110〉cd
)}]

.

(28)

The output after the beamsplitter depends upon the random phase applied by Alice
and Bob to their respective time-bins. We write down the four different final states
realized, corresponding to the four possible values of (Δφ1,Δφ2). To help understand
the key-reconciliation step, we have rewritten the final state by grouping together the
states at each output port (c or d), corresponding to the three different time-bins (t1,
t2 or t3).

Case 1: When Δφ1 = Δφ2 = 0, the two-photon state after the beamsplitter is,

|ψ〉out = 1√
6
ei(φb1+φb2 )

[(
|011, 000〉cd − |000, 011〉cd

)
+ e−iφb1

(
|101, 000〉cd

− |000, 101〉cd
)

+ e−iφb2
(

|110, 000〉cd − |000, 110〉cd
)]

. (29)

Case 2: When Δφ1 = Δφ2 = π , the output state of the beamsplitter is,

|ψ〉out = 1√
6
ei(φb1+φb2 )

[(
|011, 000〉cd − |000, 011〉cd + e−iφb1

(
|001, 100〉cd

− |100, 001〉cd
)

+ e−iφb2
(

|010, 100〉d − |100, 010〉d
)]

. (30)

Case 3: When Δφ1 = 0 and Δφ2 = π , the output state is,

|ψ〉out = 1√
6
ei(φb1+φb2 )

[(
|001, 010〉cd − |010, 001〉cd

)
+ e−iφb1

(
|001, 100〉cd

− |100, 001〉cd
)

+ e−iφb2
(

|110, 000〉cd − |000, 110〉cd
)]

. (31)
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Case 4: When Δφ1 = π and Δφ2 = 0, the output state is,

|ψ〉out = 1√
6
ei(φb1+φb2 )

[(
|010, 001〉cd − |001, 010〉cd

)
+ e−iφb1

(
|101, 000〉cd

− |000, 101〉cd
)

+ e−iφb2
(

|010, 100〉cd − |100, 010〉cd
)]

. (32)

We now formulate the key reconciliation scheme (see Table 1) based on Eqs. (29)-
(32), while noting that detector Dc detects the photons from port c of the beamsplitter
and correspondingly detector Dd clicks when photons exits from port d.

Consider the two examples when Alice and Bob use Δφ1 to extract the key.

1. When Charles announces the clicking of Dc in time-bins t1 and t2, this would
indicate that Δφ1 and Δφ2 have taken values corresponding to Case 1 or Case 3
above, corresponding to Δφ1 = 0 and Δφ2 = 0 or π . Alice and Bob therefore use
only Δφ1 to extract the key.

2. When Charles announces the clicking of Dc at t1 and Dd at t2, Alice and Bob
again use Δφ1 to extract the key. However, they also need a bit flip operation to
get the same key bits. Note that in this example also, Δφ1 = 0 and Δφ2 = 0 or π .

A similar reasoning can be used to complete the key reconciliation scheme as described
in Table 1.

B DPS-MDI as an entanglement-based protocol

We start with Eqs. (7) and (8), to write the joint state of Alice andBob after their encod-
ing procedure. Recall that A and B indicate Alice and Bob’s signal states, whereas Ai

and Bi indicate the i th pair of ancilla qubit in respective (ideal) quantum memories.
The joint state thus reads as,

|ψ〉Alice ⊗ |ψ〉Bob = 1

4

∑
j1, j2∈{0,1}

(| j1〉A1
| j2〉A2

) ⊗ |ψ j1 j2〉a

⊗
∑

j̃1, j̃2∈{0,1}
(| j̃1〉B1 | j̃2〉B2) ⊗ |ψ j̃1, j̃2

〉
b
,

= 1

4

∑

j1, j2, j̃1, j̃2∈{0,1}
| j1〉A1

| j̃1〉B1 | j2〉A2
| j̃2〉B2

⊗|Ψ
( j1 j2 j̃1 j̃2)

〉ab. (33)

The state |Ψ j1 j2 j̃1 j̃2
〉ab, which eventually becomes the input to Charles’ beamsplitter,

has the following form:

|Ψ j1 j2 j̃1 j̃2

〉
ab = |ψ j1 j2〉a ⊗ |ψ j̃1 j̃2

〉
b

=
(
a†1b

†
1 +

2∑
i=1

(−1)( ji+ j̃i )a†i+1b
†
i+1 + (−1) j̃1a†1b

†
2 + (−1) j̃2a†1b

†
3
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+(−1) j1a†2b
†
1 + (−1) j1+ j̃2a†2b

†
3 + (−1) j2a†3b

†
1

+(−1)( j2+ j̃1)a†3b
†
2

)
|0, 0〉ab. (34)

Here, |0, 0〉ab = |0〉a ⊗ |0〉b, and denotes the vaccum at the input ports of the beam-
splitter. a†i and b†i are the creation operators corresponding to a photon traversing
through the i th arm in Alice and Bob’s delay lines respectively. As indicated above,
there is no entanglement yet between Alice and Bob’s states; rather, each encoded
state is entangled with their respective quantum memories.

To obtain the output state after measurement and key reconciliation, we first do a
post-selection and discard input states which have photons arriving at the same time-
bin from both Alice and Bob. As described in Sect. 3, such photons do not contribute
to the final key, due to Hong–Ou–Mandel interference. Hence, we drop terms of the
form a†i b

†
i in Eq. (34). When the photons arrive at different times, as represented by

terms of the form a†i b
†
j for i �= j , they transform as,

a† → 1√
2
(c† + d†) ; b† → 1√

2
(c† − d†).

We may thus write down the final state after the action of the beamsplitter and
post-selection as,

|Φ j1 j2 j̃1 j̃2

〉
cd = 1

2

[
(−1) j̃1(c†1 + d†1 )(c

†
2 − d†2 ) + (−1) j̃2(c†1 + d†1 )(c

†
3 − d†3 )

+(−1) j1(c†2 + d†2 )

×(c†1 − d†1 ) + (−1)( j1+ j̃2)(c†2 + d†2 )(c
†
3 − d†3 )

+(−1) j2(c†3 + d†3 )(c
†
1 − d†1 )

+(−1)( j2+ j̃1)(c†3 + d†3 )(c
†
2 − d†2 )

]
|0, 0〉cd . (35)

The complete state, including the registers A1, A2 and B1, B2, is of the form,

|χ〉A1B1A2B2cd = 1

4

∑

j1, j2, j̃1, j̃2∈{0,1}
| j1〉A1

| j̃1〉B1 | j2〉A2
| j̃2〉B2 ⊗ |Φ

( j1 j2 j̃1 j̃2)
〉cd . (36)

As discussed in Sect. 3.2 , Alice and Bob extract information about their relative
phases Δφ1 = φa1 − φb1 and Δφ2 = φa2 − φb2 based on Charles’ measurement
outcomes, and hence obtain the shared key. Expressing all the phases in terms of
the binary variables ( j1, j2) and ( j̃1, j̃2), which characterize Alice and Bob’s qubit
registers respectively, we have,

φa1 = j1π, φa2 = j2π, φb1 = j̃1π, φb2 = j̃2π.
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Thus the relative phases are given by,

Δφ1 = ( j1 − j̃1)π, Δφ2 = ( j2 − j̃2)π.

It is now easy to show that the joint state of Alice and Bob’s registers collapses to an
entangled state after Charles’ measurement and the reconciliation process described
in Table 1. In particular, when Alice and Bob use the phases φai , φbi to generate their
secret key bits without a bit flip operation, they end up with the perfectly correlated
Bell state 1√

2
[|00〉Ai Bi − |11〉Ai Bi ]. In those cases where they need to perform a bit

flip operation, they end up sharing the anti-correlated entangled state 1√
2
[|10〉Ai Bi −

|01〉Ai Bi ].
For example, when Charles announces that the detector c has clicked in both t1 and

t2 bins, Eq. (36) collapses to the post-measurement state,

|χ(1)〉out = 1

2
√
2

[
|0000〉A1B1A2B2 − |0001〉A1B1A2B2

+ |0010〉A1B1A2B2 − |0011〉A1B1A2B2

− |1100〉A1B1A2B2 + |1101〉A1B1A2B2

− |1110〉A1B1A2B2 + |1111〉A1B1A2B2

]

⊗ |110, 000〉cd , (37)

where we have represented | j1〉A1
| j̃1〉B1 | j2〉A2

| j̃2〉B2 as | j1 j̃1 j2 j̃2〉A1B1A2B2 . We see
that in Eq. (37), the first ancilla registers (A1 and B1) of both Alice and Bob always
have same bit value. Hence, Alice and Bob share the perfectly correlated Bell state,
as shown explicitly below,

|χ(1)〉out = 1

2
√
2

[
|00〉A1B1 − |11〉A1B1

]

⊗
[
|00〉A2B2 − |01〉A2B2 + |10〉A2B2 − |11〉A2B2

]

⊗ |110, 000〉cd . (38)

When Charles announces that the detector c clicked at t1 and d at t2, the state
presented in Eq. (36) collapses to,

|χ(2)〉out = 1

2
√
2

[
− |0100〉A1B1A2B2

+ |0101〉A1B1A2B2 − |0110〉A1B1A2B2 + |0111〉A1B1A2B2

− |1000〉A1B1A2B2 − |1001〉A1B1A2B2

+ |1010〉A1B1A2B2 − |1011〉A1B1A2B2

]

⊗ |100, 010〉cd . (39)
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As seen from Eq. (39), the first ancilla registers (A1 and B1) of Alice and Bob are now
always opposite in the bit value. This implies they share an anti-correlated entangled
state. Hence, they require a bit flip operation after Charles announcement so as to
ensure that both of them end up with similar key bits. We can extend similar lines
of reasoning to the other entries of Table 1 to show that Alice and Bob indeed share
maximally entangled states.

C Bounding of phase error rate in terms of bit error rate

In “Appendix B”, we show that Charles measurement entangles Alice’s and Bob’s
ancilla qubits. However, the EPR pairs shared by Alice and Bob become corrupt due
to channel noise and eavesdropping. Alice and Bob extract a small number of perfect
EPR pairs from the corrupted EPR pairs using a suitable entanglement distillation
protocol based on Calderbank–Shor–Steane (CSS) codes, provided the channel is
not too noisy [3]. Alice and Bob determine the bit and the phase error rates. They
continue with the entanglement distillation protocol if the error rates are nominal,
else they abort the protocol. The bit error rates can be easily estimated by sharing
a certain fraction of the raw key generated during the experiment. However, phase
errors cannot be determined experimentally, and hence, need to be estimated indirectly
using experimentally observed quantities. We upper bound the phase error rate for our
scheme in terms of the bit error rate in this section.

We begin with |ψ〉(l)out, which is the state after Charles announces his measurement

result for the lth time slot, and is related to the joint input state of Alice and Bob |ψ〉(l)in
as,

|ψ〉(l)out = F (l)M (l)E (l) |ψ〉(l)in . (40)

Here, M (l) is the beamsplitter operator acting on the lth time slot, F (l) is the filtering
operator and E (l) is a 3× 3“noise” matrix representing the effects of noise and Eve’s
most general attack in lth time slot. We assume that the noise and Eve affect the link
connecting Alice to Charles and Bob to Charles independently. Hence, we decompose
the overall noise matrix E (l) as E (l)

a ⊗ E (l)
b . Both E (l)

a and E (l)
b are 3×3 matrices with

matrix elements (a)i j and (b)i j , respectively. |ai j |2 gives the probability of time-bin i
getting affected given that the noise/Eve acts on time-bin j . We would like to clarify
the terms “time-bin” and “time-slot” used here. We use the time-slot label to mark
every single-photon state (in the ideal scenario) or weak coherent pulse (in a typical
experiment) generated by the source, whether Alice or Bob. Each pulse labeled by a
time-slot is eventually measured at one of three time-bins (i/ j = 1, 2, 3) by Charlie,
depending on which path the photon traversed in the DLI at the source. The form of
these matrices depends upon the type of noise in the channel. The matrix structure is
dependent upon the eavesdropper’s attack too. Hereafter, in the interest of brevity, we
drop the superscript (l).

For example, we can study a channel noise (or an attack) which flips the key bits.
The key is encoded in the phase difference of the corresponding time-bins of Alice
and Bob in our protocol. Hence, Eve would need to flip the phase of Alice’s time-bins
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or Bob’s time-bins. So different noise matrices that can lead to such an attack are

⎛
⎝
1 0 0
0 −1 0
0 0 −1

⎞
⎠

a

⊗
⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠

b

or

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠

a

⊗
⎛
⎝
1 0 0
0 −1 0
0 0 −1

⎞
⎠

b

(41)

Another example is of an attack where Eve just monitors the presence of a photon in
the second time-bin of Alice’s signal. We can write Alice’s state as

|ψ〉in = 1√
3

(
|100〉a + eiφa1 |011〉a + eiφa2 |001〉a

)
(42)

When Eve discovers no photon in the second time-bin, the state shown in Eq. (42)
collapses to

|ψ〉final = 1√
2

(
|100〉a + eiφa2 |001〉a

)
(43)

One such noise matrix that achieves this attack is

Ea =
⎛
⎜⎝

1√
6

1√
6

1√
6

0 0 0
1√
6

1√
6

1√
6

⎞
⎟⎠ (44)

From the above examples, we conclude that the elements of these noise matrices
can be predicted only when we know the nature of Eve’s attack and the noise in the
channel. Hence, by assuming a general form for these matrices, we can find the bit
and phase error rates in our protocol for any general eavesdropping strategy.

Alice and Bob measure their EPR pairs in the Z (X ) basis, which acts as a stabilizer
for the bit (phase) error. Thus, the probability of obtaining a bit error in the lth time-slot
is,

eb = 1− 1

2

(〈ψ |Icd ⊗ ZA1B1 ⊗ IA2B2 |ψout〉+〈ψout|Icd ⊗ IA1B1 ⊗ ZA2B2 |ψout〉
)
. (45)

Similarly, the probability of obtaining a phase error in the lth time-slot can be expressed
as,

ep = 1−1

2

(〈ψout|Icd⊗XA1B1⊗IA2B2 |ψout〉+〈ψout|Icd⊗IA1B1⊗XA2B2 |ψout〉
)
. (46)

Using Eq. (40), we rewrite the bit error rate as,

eb = 1 − 1

2

(〈ψin|E†M†F†
1 F1ME ⊗ ZA1B1 ⊗ IA2B2 |ψin〉

+〈ψin|E†M†F†
2 F2ME ⊗ IA1B1 ⊗ ZA2B2 |ψin〉

)
. (47)
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Here, F1 and F2 are thefiltering operators corresponding to the instanceswhereCharles
measurement and its public announcement effectively results in entangling the first
and second ancilla qubits of Alice and Bob, respectively.

C.1 DecomposingM(l)†F(l)†1 F(l)1 M(l)

|100〉, |010〉 and |001〉 form an orthonormal basis for Alice’s and Bob’s system, where
e.g. |100〉 represents a photon in the first time-bin. Using Eq. (27), for each time slot
(l), we write,

M = 1

2

[( |100〉c 〈100|a + |100〉d 〈100|a
)⊗ ( |100〉c 〈100|b − |100〉d 〈100|b

)

+( |100〉c 〈100|a + |100〉d 〈100|a
)⊗ ( |010〉c 〈010|b − |010〉d 〈010|b

)

+( |100〉c 〈100|a + |100〉d 〈100|a
)⊗ ( |001〉c 〈001|b − |001〉d 〈001|b

)

+( |010〉c 〈010|a + |010〉d 〈010|a
)⊗ ( |100〉c 〈100|b − |100〉d 〈100|b

)

+( |010〉c 〈010|a + |010〉d 〈010|a
)⊗ ( |010〉c 〈010|b − |010〉d 〈010|b

)

+( |010〉c 〈010|a + |010〉d 〈010|a
)⊗ ( |001〉c 〈001|b − |001〉d 〈001|b

)

+( |001〉c 〈001|a + |001〉d 〈001|a
)⊗ ( |100〉c 〈100|b − |100〉d 〈100|b

)

+( |001〉c 〈001|a + |001〉d 〈001|a
)⊗ ( |010〉c 〈010|b − |010〉d 〈010|b

)

+( |001〉c 〈001|a + |001〉d 〈001|a
)⊗ ( |001〉c 〈001|b − |001〉d 〈001|b

)]
.

(48)

F1 acts as identity for the measurement results which contribute towards the key.
Hence, it can be expressed as,

F1 = |110〉c 〈110|c ⊗ |000〉d 〈000|d + |000〉c 〈000|c ⊗ |110〉d 〈110|d
|100〉c 〈100|c ⊗ |010〉d 〈010|d + |010〉c 〈010|c ⊗ |100〉d 〈100|d . (49)

Using Eq. (48) and Eq. (49), we get

M†F†
1 F1M = |100〉a 〈100|a ⊗|010〉b 〈010|b +|010〉a 〈010|a ⊗|100〉b 〈100|b . (50)

We express Eq. (50) in the basis of A ⊗ B. In a concise notation, we use |aibi 〉 to
denote the basis of the system A⊗ B, where e.g. |a1b1〉 equals |100〉a ⊗|100〉b. Using
a completeness relation, we can write Eq. (50) as,

M†F†
1 F1M = |a1b2〉 〈a1b2| + |a2b1〉 〈a2b1| . (51)

By defining a suitable F2, we can write

M†F†
2 F2M = |a1b3〉 〈a1b3| + |a3b1〉 〈a3b1| . (52)
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C.2 Bit error rate (BER)

First, we evaluate one component of the bit error rate - 〈ψin|E† |a1b2〉 〈a1b2| E ⊗
ZA1B1⊗IA2B2 |ψin〉.Weassume thatEve acts independently on the channels connecting
Alice toCharles andBob toCharles. Hence,we canwrite E = Ea⊗Eb. UsingEq. (33)
and Eq. (34), we express 〈ψin|E† |a1b2〉 〈a1b2| E ⊗ ZA1B1 ⊗ IA2B2 |ψin〉 as,

|1111〉∑
| j〉=|0000〉

(
〈a1b1| + (−1) j1+ j̃1 〈a2b2| + (−1) j2+ j̃2 〈a3b3|

+(−1) j̃1 〈a1b2| + (−1) j̃2 〈a1b3|
+(−1) j1 〈a2b1| + (−1) j1+ j̃2 〈a2b3| + (−1) j2 〈a3b1| + (−1) j2+ j̃1 〈a3b2|

)

⊗ 〈 j1 j̃1 j2 j̃2| E†
a ⊗ E†

b |a1b2〉 〈a1b2| Ea ⊗ Eb ⊗ ZA1B1 ⊗ IA2B2

(
|a1b1〉

+(−1) j1+ j̃1 |a2b2〉 + (−1) j2+ j̃2 |a3b3〉 + (−1) j̃1 |a1b2〉 + (−1) j̃2 |a1b3〉
+(−1) j1 |a2b1〉 + (−1) j1+ j̃2 |a2b3〉 + (−1) j2 |a3b1〉 + (−1) j2+ j̃1 |a3b2〉

)

⊗ | j1 j̃1 j2 j̃2〉 , (53)

where, | j〉 = | j1 j̃1 j2 j̃2〉 is the state of the joint quantum memory of Alice and Bob.
We define the (ai j )th matrix elements of Ea as 〈ai | Ea |a j 〉 and the (bi j )th element of
Eb as 〈bi | Ea |b j 〉. Hence, we write Eq. (53) as,

|1111〉∑
| j〉=|0000〉

(−1)( j1+ j̃1)
[(

a∗
11b

∗
21 + (−1) j1+ j̃1a∗

12b
∗
22 + (−1) j2+ j̃2a∗

13b
∗
23

+(−1) j̃1a∗
11b

∗
22

+(−1) j̃2a∗
11b

∗
23 + (−1) j1a∗

12b
∗
21 + (−1) j1+ j̃2a∗

12b
∗
23 + (−1) j2a∗

13b
∗
21

+(−1) j2+ j̃1a∗
13b

∗
22

)
×
(
a11b21 + (−1) j1+ j̃1a12b22 + (−1) j2+ j̃2a13b23

+(−1) j̃1a11b22 + (−1) j̃2a11b23 + (−1) j1a12b21 + (−1) j1+ j̃2a12b23

+(−1) j2a13b21 + (−1) j2+ j̃1a13b22
)]

. (54)

Eq. (54) can be factorised as,

|1111〉∑
| j〉=|0000〉

(−1) j1+ j̃1
(
a∗
11 + (−1) j1a∗

12 + (−1) j2a∗
13

)(
b∗
21 + (−1) j̃1b∗

22 + (−1) j̃2b∗
23

)

×
(
a11 + (−1) j1a12 + (−1) j2a13

)(
b21 + (−1) j̃1b22 + (−1) j̃2b23

)
, (55)
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which further simplifies to,

16
(
|a12|2 + |a11|2 − |a12 − a11|2

)(
|b22|2 + |b21|2 − |b22 − b21|2

)
. (56)

Now, we evaluate the remaining terms of Eq. (47) and obtain the total BER in each
time slot as,

eb = 1 − 16

2 × 144

[(
|a12|2 + |a11|2 − |a12 − a11|2

)(
|b22|2 + |b21|2 − |b22 − b21|2

)

+
(
|a21|2 + |a22|2 − |a21 − a22|2

)(
|b12|2 + |b11|2 − |b12 − b11|2

)

+
(
|a13|2 + |a11|2 − |a13 − a11|2

)(
|b33|2 + |b31|2 − |b33 − b31|2

)

+
(
|a33|2 + |a31|2 − |a33 − a31|2

)(
|b13|2 + |b11|2 − |b13 − b11|2

)]
. (57)

C.3 Phase error rate

We begin by calculating one component of the phase error rate in the lth time slot,
〈ψin|E† |a1b2〉 〈a1b2| E ⊗ XA1B1 ⊗ IA2B2 |ψin〉 in this section. Similar to Eq.(55), we
can factorize the phase error rate as,

(a∗
11 − (−1) j1a∗

12 + (−1) j2a∗
13)(b

∗
21 − (−1) j̃1b∗

22 + (−1) j̃2b∗
23)

×(a11 + (−1) j1a12 + (−1) j2a13
)(
b21 + (−1) j̃1b22 + (−1) j̃2b23

)
. (58)

We use the fact that X flips the qubit | j〉, write (−1) j+1 as −(−1) j , and get the
expanded value of Eq. (58) as,

16
(
|a11|2 − |a12|2 + |a13|2

)(
|b21|2 − |b22|2 + |b23|2

)
. (59)

We can also write Eq. (58) as,

[
(a∗

11 + (−1) j1a∗
12 + (−1) j2a∗

13)(b
∗
21 + (−1) j̃1b∗

22 + (−1) j̃2b∗
23) − 2((−1) j1a∗

12b
∗
21

+(−1) j1+ j̃2a∗
12b

∗
23 + (−1) j̃1a∗

11b
∗
22 + (−1) j̃1+ j2a∗

13b
∗
22)
](
a11 + (−1) j1a12

+(−1) j2a13
)(
b21 + (−1) j̃1b22 + (−1) j̃2b23

)
. (60)

The above equation, when summed over all the possible values of | j〉 = | j1 j̃1 j2 j̃2〉
gives

〈ψin|E† |a1b2〉 〈a1b2| E ⊗ ZA1B1 ⊗ IA2B2 |ψin〉 − 2 × 16

2 × 144

[|a12|2
(|b21|2 + |b23|2

)

+|b22|2
(|a11|2 + |a13|2

)]
. (61)
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Calculating the remaining three terms (cf. Eqs. (46), (51) and (52)) along the lines of
Eq. (58) and Eq. (59), we get the total phase error rate as,

1 − 16

2 × 144

[(
|a11|2 − |a12|2 + |a13|2

)(
|b21|2 − |b22|2 + |b23|2

)

+
(
|a21|2 − |a22|2 + |a23|2

)

×
(
|b11|2 − |b12|2 + |b13|2

)(
|a11|2 + |a12|2 − |a13|2

)(
|b31|2 + |b32|2 − |b33|2

)

+
(
|a31|2 + |a32|2 − |a33|2

)(
|b11|2 + |b12|2 − |b13|2

)]
. (62)

Along the lines of Eq. (61), we can express the phase error rate in terms of bit error
rate as,

ep = eb − 2 × 16

2 × 144

[{|a12|2
(|b21|2 + |b23|2

)+ |b22|2
(|a11|2 + |a13|2

)}

+{|a22|2
(
|b11|2

+|b13|2
)+ |b12|2

(|a21|2 + |a23|2
)}+ {|a13|2

(|b31|2 + |b32|2
)

+|b33|2
(|a11|2 + |a12|2

)}+ {|a33|2
(|b11|2 + |b12|2

)

+|b13|2
(|a31|2 + |a32|2

)}]
. (63)

From Eq. (63) , we can bound the phase error in each time slot as,

e(l)
p ≤ e(l)

b ,∀ l. (64)

D Asymptotic key analysis of DPS-MDI

D.1 DPS-MDI key rate with single-photon states

We calculate the asymptotic key rate of the single-photon source based DPS-MDI,
while taking into account the effects of channel loss, background counts, and mis-
alignment errors. We model Alice’s and Bob’s lossy channels as beamsplitters with
transmissivity ηa and ηb, respectively. After passing through the lossy channels, the
joint input state of Alice and Bob (Eq. (2)) appears as a mixed state to Charles, before
he carries out the beamsplitter measurement :

ρin = ηaηb

9
|ψ11〉 〈ψ11| + ηa(1 − ηb)

3
|ψ10〉 〈ψ10| + (1 − ηa)ηb

3
|ψ01〉 〈ψ01|

+(1 − ηa)(1 − ηb) |ψ00〉 〈ψ00| , (65)
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where,

|ψ11〉 =
(

|100〉a + eiφa1 |010〉a + eiφa2 |001〉a
)

⊗
(

|100〉b + eiφb1 |010〉b + eiφb2 |001〉b
)

,

|ψ10〉 =
(

|100〉a + eiφa1 |010〉a + eiφa2 |001〉a
)

⊗ |000〉b ,

|ψ01〉 = |000〉a ⊗
(

|100〉b + eiφb1 |010〉b + eiφb2 |001〉b
)

,

and |ψ00〉 = |000〉a ⊗ |000〉b . (66)

Here, |ψ11〉 corresponds to the scenario when photons from both Alice and Bob reach
the measurement unit. |ψ10〉 (|ψ01〉) is the joint input state of Alice and Bob when
Bob’s (Alice’s) photon gets lost in the channel, and onlyAlice’s (Bob’s) photon reaches
Charles. |ψ00〉 represents the case when both Alice as well as Bob’s photons get lost
in the channel.

As per Eq. (27), the beamsplitter transforms |ψ11〉 into

|ψ11〉out = 1

2
ei(φb1+φb2 )

[
eiΔφ1

(
|011, 000〉cd − |010, 001〉cd

+ |001, 010〉cd − |000, 011〉cd
)

+eiΔφ2
(

|011, 000〉cd + |010, 001〉cd − |001, 010〉cd − |000, 011〉cd
)

+e−iφb1
{(

|101, 000〉cd − |100, 001〉cd + |001, 100〉cd − |000, 101〉cd
)

+eiΔφ2
(

|101, 000〉cd + |100, 001〉cd − |001, 100〉cd − |000, 101〉cd
)}

+e−iφb2
{(

|110, 000〉cd − |100, 010〉cd + |010, 100〉cd − |000, 110〉cd
)

+eiΔφ1
(

|110, 000〉cd + |100, 010〉cd − |010, 100〉cd − |000, 110〉cd
)}]

+ 1√
2
ei(φb1+φb2 )

[(
e−i(φb1+φb2 ) |200, 000〉cd − |000, 200〉

)
+ ei(φa1−φb2 )

×
(

|020, 000〉cd − |000, 020〉cd
)

+ ei(φa2−φb1 )
(

|002, 000〉 − |000, 002〉
)]

(67)

Similarly, the action of beamspitter on |ψ10〉, |ψ01〉 and |ψ00〉 are

|ψ10〉out = 1√
2

[
|100, 000〉cd + |000, 100〉cd

+eφa1
( |010, 000〉cd + |000, 010〉cd

)

+eφa2
( |001, 000〉cd + |000, 001〉cd

)]
, (68)
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|ψ10〉out = 1√
2

[
|100, 000〉cd − |000, 100〉cd

+eφa1
( |010, 000〉cd − |000, 010〉cd

)

+eφa2
( |001, 000〉cd − |000, 001〉cd

)]
, (69)

and |ψ00〉out = |000, 000〉cd . (70)

Table 1 shows the instances corresponding to the successful measurement events.
These outcomes correspond to successful BSMs as we have mapped the DPS-MDI
to an equivalent entanglement-based protocol. The yield (Y11) for our protocol is
defined as the probability of a successful measurement provided both Alice and Bob
send single-photon states. Using Eqs. (65)–(70), we determine the probability of a
successful measurement for all the cases shown in Table 1 as,

Y c(t1,t2)
11 = (1− pdark)

4
[ηaηb

18
+ pdark

(ηa + ηb

3
− 5ηaηb

9

)
+ p2dark(1− ηa)(1− ηb)

]
,

(71)
where, pdark is the dark count probability, and Y c(t1,t2)

11 represents the probability that
detector c clicks in time-bins 1 and 2, given that bothAlice andBob send single-photon
states.We use this notation to express the probability of a successful BSM for the other
cases tabulated in Table 1.

Y c(t1,t2)
11 = Y c(t1,t3)

11 = Yd(t1,t2)
11 = Yd(t1,t3)

11 = Y c(t1),d(t2)
11 = Y c(t2),d(t1)

11 = Y c(t1),d(t3)
11

= Y c(t3),d(t1)
11 . (72)

Hence, the yield (Y11) is expressed as follows:

Y11 = Y c(t1,t2)
11 + Y c(t1,t3)

11 + Yd(t1,t2)
11 + Yd(t1,t3)

11 + Y c(t1),d(t2)
11 + Y c(t2),d(t1)

11

+Y c(t1),d(t3)
11 + Y c(t3),d(t1)

11

= 8(1 − pdark)
4
[ηaηb

18
+ pdark

(ηa + ηb

3
− 5ηaηb

9

)
+ p2dark(1 − ηa)(1 − ηb)

]
.

(73)

There are different scenarios that lead to errors in theDPS-MDI protocol. For example,
an error occurs when the detector c clicks in time-bins 1 and 2, but Δφ1 = π . In
general, an error arises when clicks corresponding to a successful partial BSM occur
due to background noise, but Δφi (i=1, 2) is flipped (see Table 1). Dark counts of the
single-photon detectors primarily contribute to this background noise. Thus, the error
rate due to background noise is given by

e
′
bY11 = 8(1 − pdark)

4
[
pdark

(ηa + ηb

3
− 5ηaηb

9

)
+ p2dark(1 − ηa)(1 − ηb)

]
. (74)

We assume that the phase misalignment error is same for both Δφ1 and Δφ2, and
denote this deviation of Δφ1 and Δφ2 by Δφ . Phase misalignment error arises due to
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the non-ideal nature of optical phase-locked loop and phase modulators used in the
setup. Hence, considering phase misalignment errors, the total error rate is given by,

ebY11 = 8(1− pdark)
4
[edηaηb

18
+ pdark

(ηa + ηb

3
− 5ηaηb

9

)
+ p2dark(1−ηa)(1−ηb)

]
,

(75)
where ed is the variance of Δφ .

D.2 DPS-MDI with decoy states

Here, we calculate the parameters defined in Eq. (11). We assume an infinite number
of decoy states to get an accurate estimate of these parameters. Phase randomization
is integral to decoy-state analysis. A coherent state is seen as a mixture of Fock states
upon phase randomization. This prevents Eve from getting information from multi-
photon pulses coming from WCS. Hence, Alice and Bob prepare phase randomized
weak coherent states with intensities μa and μb, respectively, of the form,

|eiθa√μa〉(a) ⊗ |eiθb√μb〉(b) . (76)

Here, θa and θb (∈ [0, 2π ]) are the overall randomized phases. Alice and Bob pass
their coherent states through their respective delay lines. The construction of the delay
line is such that a photon has an equal probability of traversing through each path of
the delay line. This implies that when a coherent state |√μ〉with mean photon number

μ passes through a 3-path delay line, each path has a coherent state |
√

μa
3 〉 with mean

photon number μ
3 traversing through it. Hence, the joint state after the coherent state

passing through the delay line and the phase modulator is given as,

(∣∣∣∣eiθa
√

μa

3

〉

a1

∣∣∣∣ei(φa1+θa)

√
μa

3

〉

a2

∣∣∣∣ei(φa2+θa)

√
μa

3

〉

a3

)

⊗
(∣∣∣∣eiθb

√
μb

3

〉

b1

∣∣∣∣ei(φb1+θb)

√
μb

3

〉

b2

∣∣∣∣ei(φb2+θb)

√
μb

3

〉

b3

)
. (77)

Here, |μ〉a1 represents a coherent state traversing through path 1 of Alice’s delay line
(see Fig. 2). We model the lossy channels as beamsplitters and express the joint state
arriving at Chales’s beamsplitter as,

(∣∣∣∣eiθa
√

ηaμa

3

〉

a1

∣∣∣∣ei(φa1+θa)

√
ηaμa

3

〉

a2

∣∣∣∣ei(φa2+θa)

√
ηaμa

3

〉

a3

)

⊗
(∣∣∣∣eiθb

√
ηbμb

3

〉

b1

∣∣∣∣ei(φb1+θb)

√
ηbμb

3

〉

b2

∣∣∣∣ei(φb2+θb)

√
ηbμb

3

〉

b3

)
. (78)

123



Differential phase encoded measurement-device… Page 31 of 37 67

Coherent states can also be expressed as,

|√μ〉 = D(
√

μ) |0〉 , (79)

where D(
√

μ) is the displacement operator, and is given as,

D(
√

μ) = e(
√

μa†−√
μ∗a). (80)

Here, a and a† are annihilation and creation operators, respectively. The beamsplitter
transforms a† at the input mode as per Eq. (27). The output state of beamsplitter, when
the input is Eq. (78) is,

∣∣∣∣eiθa
√

ηaμa

6
+ eiθb

√
ηbμb

6

〉

c1
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6
− eiθb
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6

〉
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√
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6
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√
ηbμb

6

〉
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6

−ei(φb1+θb)
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6
+ ei(φb2+θb)

√
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6

〉

c3
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√
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6

−ei(φb2+θb)

√
ηbμb

6

〉

d3

. (81)

Here, |√μ〉c1 denotes a coherent state of mean photon number μ hitting the detector
c in time-bin t1.

Hence, the probability of a detector clicking in a time-bin is given by,

pc1 = 1 − (1 − pdark)exp

(
−
∣∣∣eiθa

√
ηaμa

6
+ eiθb

√
ηbμb

6

∣∣∣
2
)

,
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6
− eiθb
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6
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2
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6
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,
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6
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)

. (82)
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We simplify Eq. (82) by defining following relations:

μ′ = ηaμa + ηbμb,

Δθ = θa − θb,

x = √
ηaμaηbμb/3,

y = (1 − pdark)e
−μ‘/6. (83)

Here,μ′ is the average number of photons reaching the measurement unit.Δθ denotes
the phase difference between the overall random phase applied by Alice and Bob.
Using Eq. (83), we simplify Eq. (82) as

pc1 = 1 − ye−x cosΔθ ,

pc2 = 1 − ye−x cos(Δθ+Δφ1),

pc3 = 1 − ye−x cos(Δθ+Δφ2),

pd1 = 1 − yex cosΔθ ,

pd2 = 1 − yex cos(Δθ+Δφ1),

pd3 = 1 − yex cos(Δθ+Δφ2).

(84)

Qμaμb is the overall gain when Alice and Bob, respectively, use an average photon
number of μa and μb, and a successful measurement occurs. We can express Qμaμb

for our protocol as,

pc1 pc2
(
1 − pc3

)(
1 − pd1

)(
1 − pd2

)(
1 − pd3

)∣∣∣∣
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(
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)
pc3
(
1 − pd1

)(
1 − pd2

)(
1 − pd3

)∣∣∣∣
Δφ2=0, Δφ1=0 or π

+
(
1 − pc1

)(
1 − pc2

)(
1 − pc3

)
pd1 pd2

(
1 − pd3

)∣∣∣∣
Δφ1=0, Δφ2=0 or π

+
(
1 − pc1

)(
1 − pc2

)(
1 − pc3

)
pd1
(
1 − pd2

)
pd3

∣∣∣∣
Δφ2=0, Δφ1=0 or π

+ pc1
(
1 − pc2

)(
1 − pc3

)(
1 − pd1

)
pd2
(
1 − pd3

)∣∣∣∣
Δφ1=π, Δφ2=0 or π

+
(
1 − pc1

)
pc2
(
1 − pc3

)
pd1
(
1 − pd2

)(
1 − pd3

)∣∣∣∣
Δφ1=π, Δφ2=0 or π

+ pc1
(
1 − pc2

)(
1 − pc3

)(
1 − pd1

)(
1 − pd2

)
pd3
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Δφ2=π, Δφ1=0 or π
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(
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)(
1 − pc2
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pc3 pd1

(
1 − pd2

)(
1 − pd3
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Δφ2=π, Δφ1=0 or π

. (85)

We substitute Eq. (83) in Eq. (85), and obtain the overall gain for a given realization
of θa , θb as,

Qμaμb = 4y4[e2x cosΔθ + e−2x cosΔθ − 2yex cosΔθ − 2ye−x cosΔθ + 2y2]. (86)
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We should average the overall gain obtained in Eq. (86) over the random phases θa
and θb. Integrating over Δθ for Eq. (86) gives the overall gain as,

Qμaμb = 8y4[I0(2x) − 2y I0(x) + y2]. (87)

Here, I0(x) is the modified Bessel function of the first kind. Next, we evaluate the gain
of the single-photon states (Q11) for our protocol. Q11 is the probability of a successful
BSM, given that both Alice and Bob use weak coherent states with intensities μa and
μb, respectively, and send single-photon pulses. We use the Poisson distribution of
photon numbers in a coherent state to obtain Q11 as,

Q11 = μaμbe
−μa−μbY11, (88)

where Y11 is obtained through Eq. (73).
The error rate in the sifted key is quantified by the overall QBER (Eμaμb ). Error

occurs in our protocol when correct set of detectors click in the right time-bins (see
Table 1) due to dark counts even when Alice and Bob have applied wrong Δφi (i=1,
2). For example, clicking of detectors c and d when Δφ1 = π leads to error. Hence,
the overall QBER can be expressed as,

pc1 pc2
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1 − pc3
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1 − pd2
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1 − pd3

)∣∣∣∣
Δφ1=π, Δφ2=0 or π

+ pc1
(
1 − pc2

)
pc3
(
1 − pd1
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(
1 − pc1

)(
1 − pc2
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1 − pd3
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Δφ1=0, Δφ2=0 or π

+ pc1
(
1 − pc2

)(
1 − pc3

)(
1 − pd1

)(
1 − pd2

)
pd3

∣∣∣∣
Δφ2=0, Δφ1=0 or π
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(
1 − pc1

)(
1 − pc2

)
pc3 pd1

(
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)(
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Δφ2=0, Δφ1=0 or π

. (89)

Substituting Eq. (83) in Eq. (89),

E
′
μaμb

Qμaμb = 8y4[1 − yex cosΔθ − ye−x cosΔθ + y2]. (90)
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Averaging over Δθ in Eq. 90, we get

E
′
μaμb

Qμaμb = 8y4[1 − 2y I0(x) + y2]. (91)

D.3 Phase randomization with post selection

As evident from Fig. 4, phase randomization leads to a high intrinsic QBER. To reduce
the QBER, Alice and Bob divide the overall phase into different splices as per Eq. (13).
They announce the segment that they used for phase randomization while sifting. This
improved data processing [66] reduces the cost of error correction (cf. Eq. (12)).

Iec =
N−1∑
m=0

Qm f H(Em) (92)

We assume that Alice picks up one slice out of N slices randomly and Bob always
select the first phase slice. Hence, for estimation the overall gain Eq. (86) needs to be
averaged over Δθ from mπ

N to (m+1)π
N , i.e.,

Qm = N

π

π/N∫

0

dθb
1

π

(m+1)π/N∫

mπ/N

dθa × 4y4
[
e2x cosΔθ + e−2x cosΔθ

−2yex cosΔθ − 2ye−x cosΔθ + 2y2
]
. (93)

Similarly, we can write the QBER as

E
′m
μaμb

Qm
μaμb

= N

π

π/N∫

0

dθb
1

π

(m+1)π/N∫

mπ/N

dθa × 8y4[1− yex cosΔθ − ye−x cosΔθ + y2].

(94)
Finally, we perform a numerical integration to evaluate the QBER.
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