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Abstract
A novel quantum algorithm for solving advection–diffusion equation by the lattice
Boltzmann method is proposed. The presented quantum algorithm is composed of
two major segments. In the first segment, equilibrium distribution function, presented
in the form of a non-unitary diagonal matrix, is quantum circuit implemented by
using a standard-form encoding approach. For the second segment, the quantum walk
procedure as a method for implementing the propagation step is applied. The con-
structed algorithm is presented as a series of single- and two-qubit gates, as well as
multiple-input controlled-NOT gates. In order to demonstrate the validity of the pro-
posed quantum algorithm, the unsteady one-dimensional (1D) and two-dimensional
(2D) advection–diffusion equations are solved by using the IBM’s quantum computing
software development framework Qiskit, while the analytic solution and the classic
code are used for verification. Finally, the complexity analysis and directions for future
work are discussed.

Keywords Quantum computing · Lattice Boltzmann method · Advection–diffusion
equation

1 Introduction

Quantum computing has drawn a lot of attention in the last few years. Twenty years
following the foundations of quantum computing have been established by discovery
of Grover search algorithm [1], phase (eigenvalue) estimation algorithm [2], quantum
Fourier transformation [3] and Shor’s algorithm for integer factorization [4], entirely
new researcher areas that can benefit from quantum computation emerged thanks to
the quantum computing simulators and processors introduced by companies like IBM,
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Rigetti andMicrosoft. Available through the cloud services, these quantum processors
stimulated researchers and computational enthusiast of various fields of interest to
work on developing new quantum procedures and techniques which can be applied
on quantum devices. New quantum algorithms were discovered, yielding potential
quantum speed-up and applications in various fields of science such as linear algebra
[5–9], quantum chemistry [10], optimization [11,12] or machine learning [13–15].
However, the currently available quantum devices are error-prone mostly due to the
noise produced by the fact that the physical and natural systems do not exist in isolation
(Noisy Intermediate-Scale Quantum devices—NISQ). As a consequence, the concept
of variational quantum computing (VQC), where the evaluation of the cost function is
delegated to a quantum computer while the optimization of variational parameters is
performed on a conventional classical computer, attracted considerable interest.While
the VQC is proven to be most suitable for machine learning [16–19] and chemistry
[10,20], significant research has been done in the area of linear algebra [21,22] and
optimization [23–25] as well.

From engineering perspective, complex processes involving time-space dynamics
are described mainly by the differential equations (DE). Generally, solving differen-
tial equations by classical computers is a hard problem, in particular when the size
of the configuration space is large (fluid dynamics). A possible way to overcome the
above difficulty is to utilize quantum computing. In case of inhomogeneous linear
differential equations, Berry [26] and Childs et al. [27] first formed a system of linear
equations by discretizing the differential equation using the finite difference method
(FDM), which then are solved by applying the quantum algorithm to the linear sys-
tems of equations. Examples of this approach for the Vlasov equation are presented by
Costa et al. [28], while in case of Poisson equation Cao et al. [29] andWang et al. [30]
applied HHL [5] algorithm for solving system of linear equations. Another approach,
where the Taylor expansion of the analytical solution of the linear differential equa-
tions (LDE) is described by the quantum states and the corresponding operators, is
firstly proposed by the Berry et al. [31], while application on 4-dimensional LDE with
a 4×4 non-unitary matrix is done by Xin et al. [32]. On the other hand, since most of
the differential equations used for describing the physical phenomena are essentially
nonlinear (Navier–Stokes equations), first attempt to solve systems of nonlinear differ-
ential equations, whose nonlinear terms are polynomials, was investigated by Leyton
and Osborne [33]. However, since quantum mechanics is represented by linear oper-
ators where the time evolution of the quantum state vector is described by the linear
differential equation, the presented algorithm turns out to be too ambitious, i.e., it is
possible to obtain an algorithm that is far more efficient than the proposed one. This
highlights very important fact where the linearity of the quantum state propagation is
a perquisite for developing the quantumly efficient algorithm.

Quantum algorithm for solving the advection–diffusion equation is presented in
this work. Since the ADE is actually partial differential equation used to describe
transport phenomena in time-space domain, the solution of this kind of equation is, in
general obtained by using some of the traditional methods from the numerical analysis
(FDM). However, in this paper, the lattice Boltzmann method (LBM) as a numerical
technique for an indirect solutionofflowequations through amicroscopic approach to a
macroscopic phenomenon [34–37] is utilized. The main reason for using this implicit
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numerical procedure over previously mentioned FDM lies primarily in its simple
mathematical structure, where it consists of simple arithmetic calculations of only one
single variable, themicroscopic distribution function. It is suitable for flows in complex
geometry such as flows through porous media for the straightforward implementation
of the boundary conditions providing an opportunity for easy simulation of complex
flows. The first attempt to solve the processes of fluid dynamics by quantum computing
was made by Yepez [38], Berman et al. [39] and Micci and Yepez [40], and mainly
involves lattice-gas models and type II quantum computers. Type II machines consist
of a number of small type I quantum computers (‘pure’ quantum computers called
nodes) with as few as two qubits in each, connected by classical communications
channels carrying bits instead of qubits [41]. However, it is known that lattice-gas
model suffers from various problems, like non-isotropic advection, violation of Galilei
invariance, and noise due to the usage of Boolean variables. Hence, most recent work
on solving the collisionless Boltzmann equation is performed byN.Todorova and Steijl
[42], where the quantum circuit implementations for the advection step as a quantum
walk process are presented. The most recent attempt to derive quantum algorithm for
one-dimensional Navier–Stokes equations by applying quantum amplitude estimation
algorithm (QAEA) for solving ordinary differential equations (ODEs) is done by
Gaitan [43]. However, it is not clear from the paper how this approach can be further
extended to the two- and three-dimensional space and at what cost.

In this work, a quantum algorithm for transport phenomena (ADE) utilizing the
complete lattice Boltzmann equation is presented. The non-unitary collision operator
is solved by using the standard-form encoding approach [44], while the quantum walk
is used for the propagation step. The quantum circuit for the collision and propagation
operator is constructed frommultiple controlled-NOT gates, as well as single qubit X
and Rz gates, and two-qubit SW AP gate. The constructed algorithm is implemented
on IBM’s open-source quantum computing software development framework Qiskit
[45] and it is tested for the case of unsteady one-dimensional and two-dimensional heat
transport. Themain contribution of the presentwork is a quantum algorithm simulating
the transport phenomena, solving the full lattice Boltzmann equation, i.e., both the
collision and propagation step. Besides the re-normalization of the post-selected state
vector preformed at the end of each time step, the entire computationwithin a particular
time step is performed solely on the quantum processor. Furthermore, to be suitable
for different mesh sizes, the scalability of the presented algorithm is also elaborated.
To the best of the author’s knowledge, the presented quantum algorithm is the very
first algorithm related to fluid dynamics that solves the full lattice Boltzmann equation,
which is also tested on the actual platform for quantum computation.

2 Mathematical formulation

2.1 The advection and diffusion equation

The advection–diffusion process is a process where both advection and diffusion take
place simultaneously, and both phenomena are governed by the advection–diffusion
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equation,

∂φ

∂t
+ ∂ (uiφ)

∂xi
= ∂

∂xi

(
D

∂φ

∂xi

)
, (1)

where φ is the depended variable (mass, momentum, energy, species, etc.), t is time,
xi is a Cartesian coordinate, ui is the fluid velocity in the i-direction and D is the
diffusion coefficient. The above equation is valid for general advection and diffusion
phenomena, including both steady and unsteady situations.

2.2 The lattice Boltzmannmethod

The single relaxation time lattice Boltzmann equation [46] is formulated as

fα(x + eα�t, t + �t) = (1 − ω) fα(x, t) + ω f eqα , (2)

where fα is the particle distribution function along the α link, f eqα is the local equi-
librium distribution function, eα is the particle velocity vector, x is the space vector
defined by Cartesian coordinates, t is time, �t is the time step and ω=�t /τ , where
τ is the single relaxation time. Depending on the spatial dimensions being used, x is
the space vector defined by Cartesian coordinates, i.e., x = (x) for one-dimensional
space and x = (x, y) in two-dimensional space.

In this paper, two spatial lattice models for advection–diffusion equation have been
considered. First, a 1D model with the D1Q2 configuration (in DnQm classification
Dn stands for n dimensions, while Qm stands for m speeds) is used (Fig. 1). This
arrangement uses just two velocity vectors, e1 = −e2 = �x/�t for distribution
functions f1 and f2, respectively, streaming along the links in opposite directions.
Equality between two velocity vectors is imposed by the symmetry of the LBM.
Furthermore, the crucial part of the lattice Boltzmann method is the local equilibrium
distribution function [37], which is for advection–diffusion equation defined as

f eqα (x, t) = wαφ (x, t)
(
1 + eα · −→u

c2s

)
, (3)

where −→u is the advection velocity vector, cs is the speed of sound and wα is the
weighting factor in the direction α. In case of a one-dimensional D1Q2 scheme, the
weighting factors are w1,2 = 0.5, while for the speed of sound cs = 1 is used.

For the two-dimensional problem, the D2Q5 scheme with rest particle is utilized
(Fig. 2). This model consists of four velocity vectors and a rest particle, defined as

eα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0, 0), α = 0

(±ex , 0) , α = 1, 2

(
0,±ey

)
, α = 3, 4

(4)
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Fig. 1 D1Q2 lattice configuration

Fig. 2 D2Q5 lattice
configuration

where ex = ey = �x(y)/�t . Furthermore, the equilibrium distribution function is
solved by using Eq. (3), while the corresponding weight coefficients and the speed of
sound are set tow0 = 2/6,w1,2,3,4 = 1/6 and cs = 1/

√
3, respectively. The advection

velocity vector for 2D case is −→u = ui + v j , where i and j are unit vectors along x
and y direction. It should be noted that following the work of Zhou [47] parameter ω

is set to 1.0 in both cases.
The solution procedure for the LBM, in general, consists of two major steps, colli-

sion and streaming. In the collision step, relaxation to local equilibrium is performed
only

f̂α(x, t) = (1 − ω) fα(x, t) + ω f eqα , (5)

while in the streaming step propagation of the relaxed distribution functions fα along
the links α is conducted as

fα(x + eα�t, t + �t) = f̂α(x, t). (6)

The macroscopic variable φ (x, t) at the end of each time step is calculated as the
zero-order discrete moment of the particle distribution function fα as

φ (x, t) =
∑
α

fα (x, t) . (7)

The recovery of the advection–diffusion equation Eq. (1) by applying the Chapman–
Enskog expansion procedure can be found in [37].
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3 The quantum algorithm

3.1 The D1Q2model

The entire procedure of establishing the quantum algorithm for D1Q2 lattice Boltz-
mann model can be divided into four major steps: encoding, collision, propagation
and macroscopic variable calculation. In the encoding segment, transformation of the
initial variable φ (x, 0) into a quantum state vector is performed by employing the
normalization procedure and the encoding state protocol, while in the collision and
propagation steps corresponding operations based on Eqs. (5) and (6) are utilized. In
the last step, addition according to Eq. (7) is conducted, where the output state is used
as the input quantum state for the new time step.

In the encoding step, two quantum registers, q and ancilla a are installed. In the
first register, q, having the log2(2M) qubits, the initial distribution of variable φ(x, 0)
in form of vector φ = [φ1,0, . . . , φ1,M−1, φ2,0, . . . , φ2,M−1]T , where the first index
denotes the link α and the second index marks the location number of the lattice site,
is encoded into the quantum state as

|ψ0〉 = |0〉a
2M−1∑
i=0

φα,i/‖φ‖|i〉q . (8)

The |i〉 is the 2M-dimensional computational basis state,while the‖φ‖ is theEuclidean
norm.To achieve this initial state,where the |000...〉 state is adapted to be, conditionally
speaking, a desired arbitrary state, the reverse iterative procedure proposed by Shende
et al. [48] is used as part of the built-in functions of theQiskit [45] quantum framework.
It should be noted that this initialization of the desired state is performed only once,
at the beginning of the simulation.

The collision step is responsible for the relaxation of the distribution function to
the local equilibrium (Eq. (5)). To simplify the collision step without destroying the
very core of the lattice Boltzmann method, according to Zhou [47], parameter ω is
set to 1.0. As a result, the left side of Eq. (5) now depends only on feq , hence, the
collision step is reduced to derivation of the feq alone. To perform this step, point-wise
multiplication of the vector φ and corresponding block-diagonal matrix A with two
M × M main-diagonal blocks is required according to Eq. (3). However, since this
block-diagonal matrix is a non-unitary, implementation of the corresponding operator
is performed by applying the linear combination of unitaries approach [44]. Hence,
controlled operations in form

(H† ⊗ Iq)(|0〉〈0|a ⊗ C1 + |1〉〈1|a ⊗ C2)(H ⊗ Iq), (9)

is applied, where C1 and C2 are the unitary diagonal operators defined as C1 =
A + i

√
I − A2 and C2 = A − i

√
I − A2, while A = 1/2(C1 + C2) represents

the non-unitary block-diagonal operator, whose entries, ai,i , are calculated according
to Eq. (3), excluding the depended variable φ(x, t). Since there is just one qubit in
ancilla register required to achieve control operation, superposition is accomplished
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|0〉⊗n
q

c
n

e
C1 C2 R L

|0〉a H H H

collision propagation macros|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

Fig. 3 Quantum circuit for solving the 1D advection–diffusion equation by using the D1Q2 lattice Boltz-
mann model. For the typesetting quantum circuit diagrams, a Quantikz package [49] is used

C1 =

Uλ1
1 X Uλ1

1 X Uλ2
1 X Uλ2

1 X

Fig. 4 Quantum circuit for implementing the operator C1 in case of the D1Q2 LBM

by applying the Hadamard operator Ĥ |0〉a . It should be noted also that by increasing
the number of computational points, i.e., the number of qubits in q register, the two
block-diagonal matrix structure of the collision operator does not change, leaving
unaffected the ancillary register in terms of the used qubits. Following the collision
step, the initial quantum state ψ0 has evolved into:

|ψ1〉 = |0〉a
2M−1∑
i=0

ai,iφα,i/‖φ‖|i〉q + |1⊥
φ 〉

aq
, (10)

where |1⊥
φ 〉

aq
denotes some orthogonal state of lesser interest. The quantum circuit

responsible for achieving the state described by Eq. (10) is given in Fig. 3, while the

details of the operator C1 are shown in Fig. 4. The U1 =
(
1 0
0 eiλ

)
gate in Fig. 4

represents the standard Qiskit phase shift gate, which correspond to Rz rotation up
to global phase e−iλ/2, while the parameters λ1 and λ2 corresponds to the first and
second block of the diagonal operator C1, respectively. From the scalability point of
view, increasing the number of qubits do not affect operators C1 and C2 in terms of
required gates, i.e., the qubits are simply added with no additional modifications of
the current gate structure and depth whatsoever.

In the propagation step, quantum walk [50,51] as a procedure for the propagation
of the distribution functions along the corresponding links is utilized. In general, this
procedure implies shifting the distribution function f1 along the link α = 1 with speed
e1 = 1, and function f2 along the link α = 2 with speed e2 = −1. To achieve this,
corresponding operations in form of matrices for the right and the left shift, Pr and
Pl , respectively, are introduced. These operations are implemented into the circuit in
form of operators R and L (Fig. 3), where the corresponding sub-circuits are shown
in Figs. 5 and 6. It should be noted that the propagation step is implemented as a
controlled operation of the quantum walk procedure on the first qubit in register q as
|0〉〈0| ⊗ Rw + |1〉〈1| ⊗ Lw, where Rw and Lw represents the quantum walk in right
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R =

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

q0

q1

q2

qn−2

qn−1

qn

Fig. 5 Quantum circuit for implementing the operator R

and left direction, respectively. Following the propagation step, the quantum state of
the entire system is

|ψ2〉 = |0〉a LR
(
2M−1∑
i=0

ai,iφα,i/‖φ‖|i〉q
)

+ |1⊥
φ 〉

aq
, (11)

where again |1⊥
φ 〉

aq
represents some state of lesser interest.

In the last step, the calculation of the macroscopic variables by Eq. (7), i.e., the
point-wise addition of the two quantum states, is performed. Since state ψ2 (Eq. (11))
indicates that both distribution functions are located in the subsystem controlled by the
|0〉a , for the procedure of addition it is required first to perform the SWAPgate between
ancilla register a and the last qubit qn in the q register (Fig. 3). This operation actually
switches between the states of the register q controlled by the |0〉a and |1〉a in the
ancilla register, positioning, therefore, the sub-state of the second distribution function,
controlled by |0〉a , to the state controlled by |1〉a . The last step includes application
of the Hadamard gate in the ancilla register, followed by the re-normalization of the
post-selected |0〉a state by the factor 2‖φ‖/√2. As a result, the spatial distribution of
the variable φ for the next time level t +1 is obtained, and the entire procedure is then
repeated to achieve desired time level. In order to retrieve this post-selected state on
real devices, the state tomography is required.

Pr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 1
1

. . .
. . .

. . .
...

0
. . .

. . . 0 0
...

. . . 1 0 0
0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Pl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0

. . .
. . .

. . .
...

0
. . .

. . . 1 0
...

. . . 0 0 1
1 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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L =

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

q0

q1

q2

qn−2

qn−1

qn

Fig. 6 Quantum circuit for implementing the operator L

3.2 The D2Q5model

In case of the two-dimensional D2Q5 lattice Boltzmann model, 5 distribution
functions have been utilized, where, in comparison with the 1D case, two dis-
tribution functions along y axis and a rest particle have been added (Fig. 2).
Hence, variable φ(x, 0) in this case is represented in vector form as φ =
[(φ0,i, j , . . . , φ0,M−1,M−1), . . . , (φ4,i, j , . . . , φ4,M−1,M−1)]T , where i, j = 0, . . . ,
M − 1. The corresponding quantum state following the encoding step is

|ψ0〉 = |0〉a
8M2−1∑
k=0

φα,k/‖φ‖|k〉q . (12)

The number of required qubits in the q register is determined as log2(5(M × M))+1,
where an additional qubit is introduced for the purpose of the collision step only.
Again, the encoding step is performed by the previously mentioned procedure [48].

In the collision step, the same procedure is applied as in the case of the D1Q2
model (Fig. 3). In contrast to the one-dimensional case, operators C1 and C2 now
have eight-block diagonal form, therefore modifying the corresponding quantum sub-
circuit which is shown in Fig. 7. Following the collision step, the initial quantum state
ψ0 evolves into

|ψ1〉 = |0〉a
8M2−1∑
k=0

ak,kφα,k/‖φ‖|k〉q + |1⊥
φ 〉

aq
. (13)

It should be noted that the ak,k are the entries of the eight-block diagonal operator,
where each block corresponds to one of the quantum sub-states representing the distri-
bution functions. Since we have only 5 distribution functions (Fig. 2), the remaining 3
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C1 =

λ1 λ2 λ3 λ4 λ5

,

λ1 = Uλ1
1 X Uλ1

1 X

Fig. 7 Quantum circuit for implementing the operator C1 in case of the D2Q5 LBM

are not taken into account, having their values a set to 1.0. In the circuit terminology,
these states are introduced with the identity operator.

For the propagation step, there are now four distribution functions that need to be
shifted in four different directions with the velocity vectors defined by Eq. (4), and
one distribution function assigned to the rest particle which is excluded from this
process. To implement this step into the quantum circuit, two operators R (Fig. 5) and
L (Fig. 6) from the 1D case are utilized, where some additional modification in terms
of controlled operations are introduced to account the 2D case. The resulting quantum
circuit is shown in Fig. 8. It can be seen in Fig. 8 that the whole propagation process
refers to the |0〉a state, meaning that the quantum states encoding the valid distribution
functions are concentrated in the sub-state when the ancilla is in |0〉, while the state
|1⊥

φ 〉 is of lesser interest and do not contains any relevant information. However,

this |1⊥
φ 〉 will be used for the procedure of addition as a state that will receive the

switched sub-state from the orthogonal counterpart, forming, therefore, the required
state configuration for the addition to be performed.

To calculate the macroscopic variables based on Eq. 7, point-wise addition between
quantum sub-states corresponding to the particular distribution function needs to be
performed. This can be done by switching the quantum sub-states which need to be
added between the states |0〉a and |1〉a by applying the SWAP gate, and then reordering
them if it is necessary to obtain the right state configuration for the addition protocol.
Finally, the post-selection of the state |0〉a |00ψ〉q followed by normalization with the

factor 2‖φ‖/√2 gives as a result the desired solution of the variableφ(x, y) for the next
time level t + 1. The corresponding quantum circuit for determining the macroscopic
variables of the D2Q5 lattice Boltzmann model is given in Fig. 8.

3.3 Complexity

The complexity of the proposed algorithm can be analyzed through four major steps,
encoding, collision, propagation and macros calculation. The main question is: how
does the resolution of the computational domain relate to the depth of quantum
algorithm? For the encoding step, according to Shende et al. [48], 2n − 1 state
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log2 M R L

log2 M R L

qn−2

qn−1

qn

a H H H

propagation macros

Fig. 8 Quantum circuit for the propagation step and calculation of the macroscopic variables in case of
D2Q5 LBM

preparation steps and 1 diagonal operator are used, where the final CNOT count is
2 × 4n − (2n + 3) × 2n + 2n. For the collision step, it can be seen that both for the
1D and 2D cases, change in number of qubits to achieve a higher resolution of the
computational model doesn’t affect the size of ancillary register, while in the q register
the number of multi-qubit gate operations scales with the number of qubits n asO(1).
The reason for this lies in dependency between the multi-qubit gate operations and
the total number of distribution function α being used, which, consequently imposes
relation O(α), while the number of controls per gate scales as O(	α/2
).

For the propagation step, the number of multi-qubit gate operations scales with the
number of qubits for each link α asO(log2 D), where for the D1Q2 model D = 2M ,
while for the D2Q5 case D = 5M2. The propagation for each link is implemented by
applying one of the operators R or L , where the entry of control operations per gate,
excluding the ancilla register and the qubit qn introduced for the collision purposes
only, scales as O(log2 α).

The last segment is used for the calculation of the macroscopic variables by per-
forming the point-wise addition of the distribution function encoded as the sub-states
of the quantum state ψ . This part of the algorithm is composed of blocks each having
one Hadamard, SWAP andmulti-control gate, which primarily depends on the number
of links α asO(α −1). However, increasing the number of qubits for particular model
does not affect the circuit in terms of quantum gates, i.e., the macros block scales
with the number of qubits n as O(1). Finally, the complexity of the whole algorithm,
excluding the encoding step, can be defined as O(log2(αD)).

4 Validation and numerical simulation

To demonstrate the proposed quantum algorithm for solving the unsteady 1D and 2D
advection–diffusion equation by using the LBM as a numerical procedure, transport of
conservative tracer, having the concentration C in a schematic channel is considered.
For both the 1D and 2D cases, a periodic boundary condition on closed boundaries is
imposed, while for the initial concentration, C(x, 0), some arbitrary Gauss like dis-
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tribution is specified. The unsteady simulation is then performed by using Qiskit [45]
platform, where the ‘statevector simulator’ backend as a part of the high-performance
simulator framework Aer is used.

4.1 Themotion of 1D Gaussian Hill—D1Q2model

The movements of 1D Gaussian hills in a uniform flow are simulated. In the com-
putations, 64 lattice cells are used with �x = 1.0, �t = 1.0, u = 0.2, ω = 1 and
D = 0.5, all in lattice units. Equilibrium function is calculated according to Eq. (3)
as f eq1 (x, t) = 0.6φ (x, t) and f eq2 (x, t) = 0.4φ (x, t), which is further used for the
calculation of the operators C1 and C2. For this purpose, 7 qubits in the q register, and
one qubit in ancillary register are utilized. The initial concentration is 0.1 everywhere,
except for the point at x = 12 with a unit point source of C = 0.2. The results shown
in Fig. 9 demonstrate good agreements with the analytical solutions.

C1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ei

λ1︷ ︸︸ ︷
log(0.6 + 0.8i) 0 · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
.
.
.

.

.

.
. . . ei log(0.6+0.8i) 0 0

.

.

.

.

.

.
. . . 0 ei

λ2︷ ︸︸ ︷
log(0.4 + 0.916515i) · · · 0

0
. . .

. . .
. . .

. . . 0
0 · · · 0 0 0 ei log(0.4+0.916515i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ei

λ1︷ ︸︸ ︷
log(0.6 − 0.8i) 0 · · · · · · · · · 0

0
. . .

. . .
. . .

. . .
.
.
.

.

.

.
. . . ei log(0.6−0.8i) 0 0

.

.

.

.

.

.
. . . 0 ei

λ2︷ ︸︸ ︷
log(0.4 − 0.916515i) · · · 0

0
. . .

. . .
. . .

. . . 0
0 · · · 0 0 0 ei log(0.4−0.916515i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4.2 Movements of 2D Gaussian Hill - D2Q5model

For the 2D case, the evolution of the Gaussian hill in a square domain with a 16× 16
lattice configuration is considered. The following parameters set has been adopted:
�x = 1.0, �t = 1.0, u = 0.2, v = 0.15, ω = 1 and D = 0.1667̇, all in lattice units.
The numerical simulation is conducted using an instantaneous drop of pollution at
pointC(x = 4, y = 4) = 0.3, while the concentration of 0.1 is imposed along the rest
of the domain. A periodic boundary condition is assigned to all four boundaries. For
this purpose, 11 qubits in the q register and one qubit in ancillary register are utilized.
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Fig. 9 Comparison of the numerical results (◦) to the analytical solution (−) for the 1D ADE simulated
with the D1Q2 LBM
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Fig. 10 Comparison of the numerical results obtained by the quantum algorithm, the classical FORTRAN
code, and the analytical solution of the 2D ADE simulated with the D2Q5 LBM
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To validate the proposed algorithm, comparison with analytical solution and results
obtained by the ‘classical’ FORTRAN [52] code for the D2Q5 model [37] is shown in
Fig. 10. Overlapping of the results of the FORTRAN code solution and the proposed
quantum algorithm solution is demonstrated, while some discrepancies can be seen
compared to the analytic solution. However, these deviations are not produced by the
quantum algorithm solely, which is demonstrated previously, but by the low resolution
of the computational mesh as one of the major issues when numerical methods for
solving differential equations are used.Of course, to increase the accuracy of themodel
finer mesh with higher resolution and, hence, a greater number of qubits is required.

5 Conclusion

In this paper, a novel quantum algorithm for solving the advection–diffusion equa-
tion by using the full lattice Boltzmann method as a numerical scheme is proposed
and validated. For this purpose, the unsteady form of the one-dimensional and two-
dimensional ADE discretized with the D1Q2 and D2Q5 lattice Boltzmann model,
respectively, is utilized. Due to the basic nature of the LBM, the proposed quantum
algorithm consists of three major segments, collision, propagation, and calculation
of the macroscopic variables, for which a corresponding circuit configuration using
the gate based quantum computing platform Qiskit has been developed and tested.
The evolution of the 1D and 2D Gaussian Hill is used for validation of the algo-
rithm, while the analytic solution and the ‘classic’ FORTRAN code are exploited for
the comparison. The obtained results show excellent agreement with the compared
values. Furthermore, the complexity analysis shows that for the particular model col-
lision the macros segment of the algorithm is not affected by the change in the size of
the computational domain. Developing quantum algorithms for other, more complex
physical processes related to fluid dynamics using the lattice Boltzmann method is the
major goal of the forthcoming work, where nonlinearity in the equilibrium function
is one of the main obstacles that need to be overcome.
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