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Abstract
Recently,Wang et al. (Quantum Inf Process, QINP-D-18-00478R1, 2019) commented
that a third party can obtain an authentication key from communicating parties by per-
forming an entanglement swapping attack on the controlled mutual quantum entity
authentication (CMQEA) protocol. In this response, we apply this attack to the
CMQEA protocol and analyze whether this claim is actually valid. From the analysis,
we provide a confirmation that this attack can be prevented using existing counter-
measures. In addition, we propose an improved protocol that is fundamentally robust
to entanglement swapping attack.
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1 Introduction

Controlled mutual quantum entity authentication (CMQEA) is a protocol in which
communicating parties Alice and Bob confirm each other’s identities under the
control of a third party, Charlie, in a quantum network composed of Greenberg-
er–Horne–Zeilinger (GHZ)-like states [1, 2]. However, an internal attack by an
untrusted Charlie was not considered when the CMQEA protocol was first proposed
in 2015 [3]. In 2018, Kang et al. proposed an entanglement-checking method and a
random number method to address this security loophole [1]. Recently, Wang et al.
proposed that an untrustedCharlie could obtain an authentication key through an entan-
glement swapping attack on the CMQEA [4]. We have identified errors in this claim.
In this study, wemodified their claim and re-applied the entanglement swapping attack
to the original CMQEA protocol. In addition, we confirmed that an eavesdropper Eve
has a probability of 1/2N to obtain the authentication keys in the N GHZ-like state
sequences with this attack. Finally, we summarize the countermeasures proposed in
previous papers to prevent such attacks. We confirm that these existing countermea-
sures can prevent this attack and explain the features of these countermeasures. In
addition, we propose an improved protocol that is fundamentally robust to entangle-
ment swapping attack.

2 Brief review of controlledmutual quantum entity authentication
protocol

Before describing the entanglement swapping attacks presented by Wang et al., we
briefly introduce the CMQEA protocol. In the CMQEA protocol [1, 2], through the
preparation and security-checking phases, Charlie shares the GHZ-like states

|ξ〉(2i−1)ABC ⊗ |ξ〉(2i)ABC � 1√
2

(∣∣�+〉
(2i−1)AB |0〉(2i−1)C +

∣∣�+〉
(2i−1)AB |1〉(2i−1)C

)

⊗ 1√
2

(∣∣�−〉
(2i)AB |0〉(2i)C − ∣∣�+〉

(2i)AB |1〉(2i)C
)

(1)

with Alice and Bob. The subscripts (2i − 1) and (2i) refer to the odd-numbered and
even-numbered qubits, respectively, in the qubit sequence. In addition, the subscripts
A, B, andC represent the owner of a particular qubit. Then, in the entity authentication
phase, Alice and Bob authenticate each other under the control of Charlie as follows:

E1 Charlie randomly selects one communication member, Alice or Bob, to apply
the Pauli operation σki ∈ {

σ00 � I , σ01 � σx , σ10 � iσy, σ11 � σz
}
, which cor-

responds to the pre-shared authentication key ki ∈ {00, 01, 10, 11}, for the qubit
(2i − 1)A or (2i)B in Eq. (1). If Charlie selects Alice, Alice applies the Pauli opera-
tor σki to the qubit (2i − 1)A. If Charlie selects Bob, Bob applies the Pauli operator
σki to the qubit (2i)B.
E2 Charlie executes the σz-basis measurement on the qubits {(2i − 1)C, (2i)C}
in Eq. (1), and his measurement outcomes are c2i−1c2i ∈ {00, 01, 10, 11}. After
Charlie’s measurement, the GHZ-like state of Eq. (1) collapses into

∣∣�−〉
(2i−1)AB
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∣∣�−〉
(2i)AB ,

∣∣�−〉
(2i−1)AB

∣∣�+
〉
(2i)AB ,

∣∣�−〉
(2i−1)AB

∣∣�−〉
(2i)AB , or

∣∣�−〉
(2i−1)AB∣∣�+

〉
(2i)AB with a 25% probability, and Alice and Bob share one of the pairs of

the entangled states.
E3 Alice and Bob perform Bell-basis measurements on the qubits,
{(2i − 1)A, (2i)A} and {(2i − 1)B, (2i)B}, respectively; this is called entangle-
ment swapping. Then, they exchange their measurement outcomes, a2i−1a2i and
b2i−1b2i (a j & b j ∈ {0, 1}, j � 2i − 1, or 2i).
E4 Charlie reveals the measurement outcomes of the classical bit c2i−1c2i acquired
in the E2 phase. Then, both Alice and Bob confirm whether their classical bits,
a2i−1a2i and b2i−1b2i , correctly correspond to the revealed classical bit, c2i−1c2i ,
as shown in Table 4 in Ref. [2].

3 Analysis of Wang et al.’s entanglement swapping attack

Wang et al. claimed that an untrusted third party could obtain an authentication key
that was pre-shared by Alice and Bob by performing entanglement swapping in the
CMQEA protocol [4]. In their paper, Wang et al. explained that, unlike the E2 and E3
phase of Sect. 2, a third party can learn what operator was applied by Alice or Bob
if they perform a Bell measurement on the (2i)C and (2i − 1)C qubits of GHZ-like
states. Here, the operator corresponds to the authentication key. Therefore, if Charlie
knows the specific operator σki ∈ {

σ00 � I , σ01 � σx , σ10 � iσy, σ11 � σz
}
, he can

naturally know what the authentication key ki ∈ {00, 01, 10, 11} is. For example, in
the P2 phase, with an untrusted Charlie and Eve, GHZ-like states

|ξ〉(2i−1)ABC ⊗ |ξ〉(2i)ABC � 1√
2

(∣∣�+〉
(2i−1)AB |0〉(2i−1)C +

∣∣�+〉
(2i−1)AB |1〉(2i−1)C

)

⊗ 1√
2

(∣∣�+〉
(2i)AB |0〉(2i)C +

∣∣�+〉
(2i)AB |1〉(2i)C

)
(2)

of Eq. (2) are prepared in Ref. [4]. Subsequently, Alice applied the operator σx , and
Charlie attempted the entanglement swapping attack as in Eq. (6) of Ref [3] as follows:

σx |ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC � 1

2
√
2

(∣∣�+〉
(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B

∣∣�+〉
(2i−1)(2i)C

+
∣∣�+〉

(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B

∣∣�+〉
(2i−1)(2i)C

− ∣∣�−〉
(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B

∣∣�−〉
(2i−1)(2i)C

+
∣∣�−〉

(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B

∣∣�−〉
(2i−1)(2i)C

− ∣∣�+〉
(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B

∣∣�+〉
(2i−1)(2i)C

+
∣∣�+〉

(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B

∣∣�+〉
(2i−1)(2i)C

− ∣∣�−〉
(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B

∣∣�−〉
(2i−1)(2i)C

+
∣∣�−〉

(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B

∣∣�−〉
(2i−1)(2i)C

)

(3)
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If the Bell measurement results of Alice, Bob, and Charlie are
∣∣�+

〉
(2i−1)(2i)A,∣∣�+

〉
(2i−1)(2i)B , and

∣∣�+
〉
(2i−1)(2i)C , respectively, the operation of Alice must be σx .

Consequently, Charlie can guess that the authentication key ki � 01.
As described above, according to Wang et al.’s argument, an untrusted Charlie can

obtain Alice and Bob’s authentication keys perfectly by performing an entanglement
swapping attack on the CMQEA protocol. However, there is a fallacy in their argu-
ment. The GHZ state of Eq. (2) that they use to describe the attack differs from the
GHZ state of Eq. (1) used by the original protocol. This difference causes the protocol
to ultimately fail, resulting in Charlie’s misconduct. In the original CMQEA proto-
col, as can be seen in Table 4 of Ref. [2], even though Alice’s measurement outcome
is 10, Bob’s measurement outcomes are randomly generated as 00, 01, 10, and 11.
Therefore, because the original protocol uses N GHZ-like state sequences for authen-
tication, Bob’s measurement outcomes must be uniformly distributed. However, in
the example of Wang et al., such as in Eq. (3), if Alice’s measurement outcome
a2i−1a2i is

∣∣�+
〉
(2i−1)(2i)A : 10, Bob’s measurement outcome b2i−1b2i is always∣∣�+

〉
(2i−1)(2i)B : 00 or

∣∣�+
〉
(2i−1)(2i)B : 10. In such a situation, when using N GHZ-

like state sequences, Bob’s measurement outcomes are not uniformly distributed, and
Charlie’s attack eventually becomes apparent. Therefore, we should verify the validity
of Charlie’s attempts at an entanglement swapping attack on the GHZ-like states of
Eq. (1). The GHZ-like states of Eq. (1) are rearranged as follows:

|ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC � 1

2

(∣∣�+〉
(2i−1)AB

∣∣�−〉
(2i)AB |0〉(2i−1)C |0〉(2i)C

− ∣∣�+〉
(2i−1)AB

∣∣�+〉
(2i)AB |0〉(2i−1)C |1〉(2i)C

+
∣∣�+〉

(2i−1)AB

∣∣�−〉
(2i)AB |1〉(2i−1)C |0〉(2i)C

+
∣∣�+〉

(2i−1)AB

∣∣�+〉
(2i)AB |0〉(2i−1)C |1〉(2i)C

)
(4)

In theE1 phase of Sect. 2, if Charlie selectsAlice and thenAlice applies Pauli operators
σki ∈ {

σ00 � I , σ01 � σx , σ10 � iσy, σ11 � σz
}
to the qubits (2i − 1)A of GHZ-like

states in Eq. (4), these states become

(5)

|ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC
� 1

2

[(|Rev + −〉(2i−1)(2i)AB + |Rev + +〉(2i−1)(2i)AB
) ∣∣�+〉

(2i−1)(2i)C

+
(|Rev + −〉(2i−1)(2i)AB − |Rev + +〉(2i−1)(2i)AB

) ∣∣�−〉
(2i−1)(2i)C

− (|ID + +〉(2i−1)(2i)AB − |ID + −〉(2i−1)(2i)AB
) ∣∣�+〉

(2i−1)(2i)C

− (|ID + +〉(2i−1)(2i)AB + |ID + −〉(2i−1)(2i)AB
) ∣∣�−〉

(2i−1)(2i)C

]
,

σx |ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC
� 1

2

[(|ID + −〉(2i−1)(2i)AB + |ID + +〉(2i−1)(2i)AB
)∣∣�+〉

(2i−1)(2i)C

+
(|ID + −〉(2i−1)(2i)AB − |ID + +〉(2i−1)(2i)AB

)∣∣�−〉
(2i−1)(2i)C
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− (|Rev + +〉(2i−1)(2i)AB − |Rev + −〉(2i−1)(2i)AB
)∣∣�+〉

(2i−1)(2i)C

− (|Rev + +〉(2i−1)(2i)AB + |Rev + −〉(2i−1)(2i)AB
)∣∣�−〉

(2i−1)(2i)C

]
, (6)

iσy |ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC
� 1

2

[(|ID + +〉(2i−1)(2i)AB + |ID + −〉(2i−1)(2i)AB
)∣∣�+〉

(2i−1)(2i)C

+
(|ID + +〉(2i−1)(2i)AB − |ID + −〉(2i−1)(2i)AB

)∣∣�−〉
(2i−1)(2i)C

− (|Rev + −〉(2i−1)(2i)AB − |Rev + +〉(2i−1)(2i)AB
)∣∣�+〉

(2i−1)(2i)C ,

− (|Rev + −〉(2i−1)(2i)AB + |Rev + +〉(2i−1)(2i)AB
)∣∣�−〉

(2i−1)(2i)C

]
, (7)

and

σz |ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC
� 1

2

[(|Rev + +〉(2i−1)(2i)AB + |Rev + −〉(2i−1)(2i)AB
)∣∣�+〉

(2i−1)(2i)C

+
(|Rev + +〉(2i−1)(2i)AB − |Rev + −〉(2i−1)(2i)AB

)∣∣�−〉
(2i−1)(2i)C

− (|ID + −〉(2i−1)(2i)AB − |ID + +〉(2i−1)(2i)AB
)∣∣�+〉

(2i−1)(2i)C

− (|ID + −〉(2i−1)(2i)AB + |ID + +〉(2i−1)(2i)AB
)∣∣�−〉

(2i−1)(2i)C

]
(8)

respectively. Here, |Rev + −〉(2i−1)(2i)AB � ∣∣�+
〉
(2i−1)AB

∣∣�−〉
(2i)AB ,

|ID + +〉(2i−1)(2i)AB � ∣∣�+
〉
(2i−1)AB

∣∣�+
〉
(2i)AB , |ID + −〉(2i−1)(2i)AB �∣∣�+

〉
(2i−1)AB

∣∣�−〉
(2i)AB , and |Rev + +〉(2i−1)(2i)AB � ∣∣�+

〉
(2i−1)AB

∣∣�+
〉
(2i)AB .

Note that Bell states
∣∣�+

〉
,
∣∣�−〉

,
∣∣�+

〉
, and

∣∣�−〉
are representative of two entangled

states and are unitarily transformed by local operations, as shown in Fig. 1. Therefore,
the symbols ID + +, ID + −, Rev + +, and Rev + − indicate the relationship between
the two states. For example, in Fig. 1, applying a local operator I ⊗ σx or σx ⊗ I to∣∣�+

〉
results in

∣∣�+
〉
:

∣∣�+〉 → ∣∣�+〉 � (I ⊗ σ x)
∣∣�+〉 � (I ⊗ σ x)

1√
2
(|00〉 + |11〉) � 1√

2
(|01〉 + |10〉)

(9)
∣∣�+〉 → ∣∣�+〉 � (σ x ⊗ I)

∣∣�+〉 � (σ x ⊗ I)
1√
2
(|00〉 + |11〉) � 1√

2
(|01〉 + |10〉)

(10)

We define Rev + + as the relationship between
∣∣�+

〉
and

∣∣�+
〉
where the bit flips

σx . Additionally, applying a local operator I ⊗ σz or σz ⊗ I to
∣∣�+

〉
results in

∣∣�−〉
:

∣∣�+〉 → ∣∣�−〉 � (I ⊗ σ z)
∣∣�+〉 � (I ⊗ σ z)

1√
2
(|00〉 + |11〉) � 1√

2
(|00〉 − |11〉)

(11)
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Fig. 1 Unitary transformation of
Bell states by local operations

∣∣�+〉 → ∣∣�−〉 � (σ z ⊗ I)
∣∣�+〉 � (σ z ⊗ I)

1√
2
(|00〉 + |11〉) � 1√

2
(|00〉 − |11〉)

(12)

We define ID +− as the relationship between
∣∣�+

〉
and

∣∣�−〉
where the phase flips

σz . Furthermore, applying a local operator I ⊗ iσy or iσy ⊗ I to
∣∣�+

〉
results in

∣∣�−〉
:

∣∣�+〉 → ∣∣�−〉 � (I ⊗ σ z)
∣∣�+〉 � (I ⊗ σ z)

1√
2
(|00〉 + |11〉) � 1√

2
(|00〉 − |11〉)

(13)
∣∣�+〉 → ∣∣�−〉 � (σ z ⊗ I)

∣∣�+〉 � (σ z ⊗ I)
1√
2
(|00〉 + |11〉) � 1√

2
(|00〉 − |11〉)

(14)

We define Rev + − as the relationship between
∣∣�+

〉
and

∣∣�−〉
where the bit and

phase flips iσy . Finally, if
∣∣�+

〉
and

∣∣�+
〉
are identical,we define ID++.These principles

have been applied to |ID + +〉, |ID + −〉, |Rev + +〉, and |Rev + −〉, and the details of
these are as follows.

|Rev + −〉 � ∣∣�+〉
(2i−1)AB

∣∣�−〉
(2i)AB

� 1

2

(
−∣∣�+〉

(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B +

∣∣�−〉
(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B

+
∣∣�+〉

(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B − ∣∣�−〉

(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B

)
,

(15)

|ID + +〉 � ∣∣�+〉
(2i−1)AB

∣∣�+〉
(2i)AB

� 1

2

(∣∣�+〉
(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B − ∣∣�−〉

(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B

+
∣∣�+〉

(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B − ∣∣�−〉

(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B

)
,

(16)

|ID + −〉 � ∣∣�+〉
(2i−1)AB

∣∣�−〉
(2i)AB
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� 1

2

(∣∣�+〉
(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B +

∣∣�−〉
(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B

− ∣∣�+〉
(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B − ∣∣�−〉

(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B

)
,

(17)

and

|Rev + +〉 � ∣∣�+〉
(2i−1)AB

∣∣�+〉
(2i)AB

� 1

2

(∣∣�+〉
(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B +

∣∣�−〉
(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B

+
∣∣�+〉

(2i−1)(2i)A

∣∣�+〉
(2i−1)(2i)B +

∣∣�−〉
(2i−1)(2i)A

∣∣�−〉
(2i−1)(2i)B

)
.

(18)

As can be seen from Eqs. (5) and (8), |ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC of Eq. (5) and σz
|ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC of Eq. (8) are identical except for the sign±of the rela-
tive phase. Therefore, Charlie cannot accurately estimate the operator I or σz applied
by Alice with Bell measurement outcomes of Alice and Bob for the GHZ-like state
of Eqs. (5) and (8). For example, suppose that the Bell measurement outcomes of
Alice and Bob are |Rev + −〉(2i−1)(2i)AB and the measurement outcomes of Char-
lie are

∣∣�+
〉
(2i−1)(2i)C . Because these measurements can occur in both |ξ 〉(2i−1)ABC ⊗

|ξ 〉(2i)ABC of Eq. (5) and σz |ξ 〉(2i−1)ABC ⊗|ξ 〉(2i)ABC of Eq. (8), Charlie cannot deter-
mine whether Alice used the I or σz operators. Similarly, as can be seen from Eqs. (6)
and (7), σx |ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC of Eq. (6) and iσy |ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC of
Eq. (7) are identical except for the sign ± of relative phase. Therefore, Charlie cannot
accurately guess the operatorσx or iσy applied byAlicewith theBellmeasurement out-
comes of Alice and Bob for theGHZ-like state of Eqs. (6) and (7). As another example,
suppose that theBellmeasurement outcomes ofAlice andBob are |ID + −〉(2i−1)(2i)AB

and themeasurement outcomes of Charlie are
∣∣�−〉

(2i−1)(2i)C . Because thesemeasure-
ments can occur in both σx |ξ 〉(2i−1)ABC ⊗|ξ 〉(2i)ABC of Eq. (6) and iσy |ξ 〉(2i−1)ABC ⊗
|ξ 〉(2i)ABC of Eq. (7), Charlie cannot determinewhether Alice used the σx or iσy opera-
tors. Consequently, Charlie can only estimate one of the two bits of the authentication
key ki ∈ {00, 01, 10, 11}. Therefore, because the CMQEA protocol [1, 2] uses N
GHZ-like state sequences ⊗N

i�1|ξ 〉(2i−1)ABC |ξ 〉(2i)ABC , the probability that Charlie
obtains an authentication key sequence K � (k1, k2, k3, . . . , kN ) through an entan-
glement swapping attack is 1/2N .

In addition to the probabilistic analysis thus far, the analysis in terms of information
theory is as follows. If IE is the amount of information Eve can obtain from Alice
and Bob’s measurement outcomes, then IE can be described as IE � H(ki ) − H
(ki |a2i−1a2i , b2i−1b2i ) [5]. Here, H(X) is the Shannon entropy of the random variable
X . H(ki ) � 2 because the key ki ∈ {00, 01, 10, 11} is two bits of information. And, if
(a2i−1a2i , b2i−1b2i ) � |Rev + ±〉, ki ∈ {00, 11}; if (a2i−1a2i , b2i−1b2i ) � |ID + ±〉,
ki ∈ {01, 10}. Therefore, H(ki |a2i−1a2i , b2i−1b2i ) � 1. As a result, IE � 1, which
means that 1 bit out of 2 bits is leaked.
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4 Countermeasures against entanglement swapping attack

In this section, we explain three countermeasures to prevent an entanglement swapping
attack: GHZ-like state sequences method, random number method, and honesty-
checking method. Here, GHZ-like state sequence and random number methods were
proposed to prevent outsider attacks in the original CMQEA protocol [2, 3] in 2015
and insider attacks by Gao in the improved CMQEA protocol [1] in 2018, respec-
tively. In this section, we confirm in that both methods can prevent the entanglement
swapping attack. The honesty-checking method has already been proposed by Wang
as a countermeasure against the entanglement swapping attack.

As described in Sect. 2, the probability of an untrusted Charlie guessing an authen-
tication key sequence through an entanglement swapping attack on the CMQEA
protocol using N GHZ-like state sequences is 1/2N . The first countermeasure is to
increase the number of N states used in the protocol so that the entanglement swap-
ping attack probability is very small. For example, if N is 7, the probability of a
successful attack is 0.78%. This means that an entanglement swapping attack is virtu-
ally impossible. However, this method is a passive countermeasure in which the 2-bit
authentication key used for each session is guessed to have a 50% probability.

The second countermeasure was proposed by Wang et al. in a comment paper
[4], and it is an honesty-checking method. In this method, Alice and Bob actively
verify Charlie’s honesty by randomly selecting from the sequence of GHZ-like states
before the E3 phase of Sect. 2. Here, the honesty-checking method is the same as the
entanglement correlation check method and is well described in Ref [1]. For example,
suppose Alice and Bob select (2 j − 1)th and (2 j)th GHZ-like states |ξ〉(2 j−1)ABC
and |ξ〉(2 j)ABC :

|ξ 〉(2 j−1)ABC � 1√
2

(∣∣�+〉
(2 j−1)AB|0〉(2 j−1)C +

∣∣�+〉
(2 j−1)AB|1〉(2 j−1)C

)

� 1√
2
(|x+〉|x+〉|x+〉 − |x−〉|x−〉|x−〉)(2 j−1)ABC (19)

|ξ 〉(2 j )ABC � 1√
2

(∣∣�−〉
(2 j )AB|0〉(2 j )C − ∣∣�+〉

(2 j )AB|1〉(2 j )C
)

� 1√
2
(| y+〉| y+〉| y+〉 − | y−〉| y−〉| y−〉)(2 j )ABC (20)

Here, |x+〉 and |x−〉 are the eigenstates of σx , and |y+〉 and |y−〉 are the eigenstates
of σy . Then, Alice and Bob inform Charlie of the location of the (2 j − 1)th state and
the measurement base σz or σx . They also inform Charlie of the location of the (2 j)th
state and the measurement base σz or σy . Charlie measures the (2 j − 1)th state of
Eq. (19) with the base σz or σx and the (2 j)th state of Eq. (20) with the base σz or
σy and announces each outcome with the basis to Alice and Bob. Alice and Bob then
measure each (2 j − 1)th and (2 j)th state on the samebasis asCharlie. The outcomes of
these measurements should be in accordance with Tables 1 and 2; otherwise, Charlie
is deemed to have committed fraud. Because Alice and Bob perform this method
before performing the Bell measurement of E3 phase in Sect. 2, this method can block
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Table 1 Measurement outcomes from the honesty-check of the (2 j − 1)th state in Eq. (19)

Measurement basis c2 j−1 a2 j−1 b2 j−1

σz 0 : |0〉(2 j−1)C 0 : |0〉(2 j−1)A 1 : |1〉(2 j−1)B

1 : |1〉(2 j−1)A 0 : |0〉(2 j−1)B

1 : |1〉(2 j−1)C 0 : |0〉(2 j−1)A 0 : |0〉(2 j−1)B

1 : |1〉(2 j−1)A 1 : |1〉(2 j−1)B

σx x+ : |x+〉(2 j−1)C x+ : |x+〉(2 j−1)A x+ : |x+〉(2 j−1)B

x− : |x−〉(2 j−1)C x− : |x−〉(2 j−1)A x− : |x−〉(2 j−1)B

Table 2 Measurement outcomes from the honesty-check of the (2 j)th state in Eq. (20)

Measurement basis c2 j a2 j b2 j

σz 0 : |0〉(2 j)C 0 : |0〉(2 j)A 0 : |0〉(2 j)B
1 : |1〉(2 j)A 1 : |1〉(2 j)B

1 : |1〉(2 j)C 0 : |0〉(2 j)A 1 : |1〉(2 j)B
1 : |1〉(2 j)A 0 : |0〉(2 j)B

σx y+ : |y+〉(2 j)C y+ : |y+〉(2 j)A y+ : |y+〉(2 j)B
y− : |y−〉(2 j)C y− : |y−〉(2 j)A y− : |y−〉(2 j)B

Charlie’s malicious behavior and is an active countermeasure. Hence, Alice and Bob’s
authentication keys are not exposed. The only disadvantage of this method is that it
requires some state consumption for honesty-checking.

As a final countermeasure, Alice and Bob can use a random number to defend
themselves against Eve’s attack. This method has already been proposed to prevent
Charlie’s internal attack in the CMQEA protocol [1], and Alice and Bob use it after
encrypting the authentication key with each random number. The proposed method
involves using a random number; the protocol that modifies the entity authentication
phase is described below [1].

E1′ (a)Alice and Bob prepare random numbers r(i)A and r(i)B , where r(i)A, r(i)B ∈
{00, 01, 10, 11}. Then, they encrypt their previously shared authentication key ki with
their own random numbers r(i)A and r(i)B :

k(i)A � ki ⊕ r (i)A (21)

k(i)B � ki ⊕ r (i)B (22)

Here, symbol ⊕ indicates exclusive or, XOR.
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E1′ (b) Charlie randomly selects only one from among Alice or Bob. If Charlie
selects Alice, Alice applies the Pauli operator σk(i)A corresponding to the encrypted
authentication key k(i)A � ki ⊕ r(i)A of Eq. (21) to the qubit A(2i−1):

σ k(i)A |ξ〉(2i−1)ABC ⊗ |ξ〉(2i)ABC

� 1√
2

[(
σ k(i)A ⊗ I

)∣∣�+〉
(2i−1)AB |0〉(2i−1)C +

(
σ k(i)A ⊗ I

)∣∣�+〉
(2i−1)AB |1〉(2i−1)C

]

⊗ 1√
2

(∣∣�−〉
(2i)AB |0〉(2i)C − ∣∣�+〉

(2i)AB |1〉(2i)C
)

(23)

If Charlie selects Bob, Bob applies the Pauli operator corresponding to the classical
bit k(i)B � ki ⊕ r(i)B of Eq. (22) to the qubit B(2i):

|ξ〉(2i−1)ABC ⊗ σ k(i)B |ξ〉(2i)ABC

� 1√
2

(∣∣�+〉
(2i−1)AB|0〉(2i−1)C +

∣∣�+〉
(2i−1)AB|1〉(2i−1)C

)

⊗ 1√
2

[(
I ⊗ σ k(i)B

)∣∣�−〉
(2i)AB|0〉(2i)C − (

I ⊗ σ k(i)B

)∣∣�+〉
(2i)AB|1〉(2i)C

]

(24)

Here, ki
(� k(i)A ⊕ r(i)A � k(i)B ⊕ r(i)B

)
is a authentication key pre-shared by

Alice and Bob in the preparation phase, ki ∈ {00, 01, 10, 11}.
E2′ Charlie executes the σz-basis measurement on the qubits

{
C(2i−1),C(2i)

}
in

Eq. (23) or Eq. (24). His measurement outcome is c2i−1c2i , where c2i−1c2i ∈
{00, 01, 10, 11}. After Charlie’s measurement, the GHZ-like states of Eq. (23) col-
lapse into

c2i−1c2i � 00 :
[
σk(i)A

∣∣�+〉
(2i−1)AB

]∣∣�−〉
(2i)AB ,

c2i−1c2i � 01 :
[
σ k(i)A

∣∣�+〉
(2i−1)AB

]∣∣�+〉
(2i)AB,

c2i−1c2i � 10 :
[
σk(i)A

∣∣�+〉
(2i−1)AB

]∣∣�−〉
(2i)AB,

or c2i−1c2i � 11 :
[
σk(i)A

∣∣�+〉
(2i−1)AB

]∣∣�+〉
(2i)AB (25)

and the GHZ-like states of Eq. (24) collapse into

c2i−1c2i � 00 :
∣∣�+〉

(2i−1)AB

[
σk(i)B

∣∣�−〉
(2i)AB

]
,

c2i−1c2i � 01 :
∣∣�+〉

(2i−1)AB

∣∣�+〉
(2i−1)AB

[
σk(i)B

∣∣�+〉
(2i)AB

]
,

c2i−1c2i � 10 :
∣∣�+〉

(2i−1)AB

[
σk(i)B

∣∣�−〉
(2i)AB

]
,

or c2i−1c2i � 11 :
∣∣�+〉

(2i−1)AB

[
σk(i)B

∣∣�+〉
(2i)AB

]
(26)
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with a 25% probability, and Alice and Bob share one of the pairs of the entangled
states. For the first example, when ki � 11 and r(i)A � 01, Alice applies the Pauli
operator iσy

(� σki⊕r(i)A � σ10
)
to the qubit A(2i−1) in GHZ-like state of Eq. (25):

c2i−1c2i � 00 :
[
iσy

∣∣�+〉
(2i−1)AB

]∣∣�−〉
(2i)AB � ∣∣�−〉

(2i−1)AB

∣∣�−〉
(2i)AB � |ID + +〉(2i−1)(2i)AB ,

c2i−1c2i � 01 :
[
iσy

∣∣�+〉
(2i−1)AB

]∣∣�+〉
(2i)AB � ∣∣�−〉

(2i−1)AB

∣∣�+〉
(2i)AB � |Rev + −〉(2i−1)(2i)AB ,

c2i−1c2i � 10 :
[
iσy

∣∣�+〉
(2i−1)AB

]∣∣�−〉
(2i)AB � ∣∣�−〉

(2i−1)AB

∣∣�−〉
(2i)AB � |Rev + +〉(2i−1)(2i)AB ,

or c2i−1c2i � 11 :
[
iσy

∣∣�+〉
(2i−1)AB

]∣∣�+〉
(2i)AB � ∣∣�−〉

(2i−1)AB

∣∣�+〉
(2i)AB � |ID + −〉(2i−1)(2i)AB .

(27)

For the second example, when ki � 11 and r(i)A � 10, Alice applies the Pauli
operator σx

(� σki⊕r(i)A � σ10
)
to the qubit A(2i−1) in GHZ-like state of Eq. (25):

c2i−1c2i � 00 :
[
σx

∣∣�+〉
(2i−1)AB

]∣∣�−〉
(2i)AB � ∣∣�+〉

(2i−1)AB

∣∣�−〉
(2i)AB � |ID + −〉(2i−1)(2i)AB ,

c2i−1c2i � 01 :
[
σx

∣∣�+〉
(2i−1)AB

]∣∣�+〉
(2i)AB � ∣∣�+〉

(2i−1)AB

∣∣�+〉
(2i)AB � |Rev + +〉(2i−1)(2i)AB ,

c2i−1c2i � 10 :
[
σx

∣∣�+〉
(2i−1)AB

]∣∣�−〉
(2i)AB � ∣∣�+〉

(2i−1)AB

∣∣�−〉
(2i)AB � |Rev + −〉(2i−1)(2i)AB ,

or c2i−1c2i � 11 :
[
σx

∣∣�+〉
(2i−1)AB

]∣∣�+〉
(2i)AB � ∣∣�+〉

(2i−1)AB

∣∣�+〉
(2i)AB � |ID + +〉(2i−1)(2i)AB .

(28)

For the third example, when ki � 11 and r(i)B � 10, Bob applies the Pauli operator
σx

(� σki⊕r(i)A � σ01
)
to the qubit B(2i−1) in GHZ-like state of Eq. (26):

c2i−1c2i � 00 :
∣∣�+〉

(2i−1)AB

[
σx

∣∣�−〉
(2i)AB

]
� ∣∣�+〉

(2i−1)AB

∣∣�−〉
(2i)AB � |ID + −〉(2i−1)(2i)AB ,

c2i−1c2i � 01 :
∣∣�+〉

(2i−1)AB

[
σx

∣∣�+〉
(2i)AB

]
� ∣∣�+〉

(2i−1)AB

∣∣�+〉
(2i)AB � |Rev + +〉(2i−1)(2i)AB ,

c2i−1c2i � 10 :
∣∣�+〉

(2i−1)AB

[
σx

∣∣�−〉
(2i)AB

]
� ∣∣�+〉

(2i−1)AB

∣∣�−〉
(2i)AB � |Rev + −〉(2i−1)(2i)AB ,

or c2i−1c2i � 11 :
∣∣�+〉

(2i−1)AB

[
σx

∣∣�+〉
(2i)AB

]
� ∣∣�+〉

(2i−1)AB

∣∣�+〉
(2i)AB � |ID + +〉(2i−1)(2i)AB .

(29)

E3′ Alice and Bob execute the Bell-basis measurements on the qubits{
A(2i−1), A(2i)

}
and

{
B(2i−1), B(2i)

}
of Eqs. (25) and (26), respectively. Then,

they exchange their measurement outcomes, a2i−1a2i and b2i−1b2i (a j & b j ∈
{0, 1}, j � 2i − 1 or 2i). From the first example of phase E2′, if Charlie’s mea-
surement outcomes c2i−1c2i � 01, the Bell states shared by Alice and Bob are∣∣�−〉

(2i−1)AB

∣∣�+
〉
(2i)AB � |Rev + −〉(2i−1)(2i)AB in Eq. (27). Therefore, the Bell-

state measurement outcomes (a2i−1a2i , b2i−1b2i ) of Alice and Bob are as follows:

(00, 11) :
∣∣�+〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B

(01, 10) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B

(10, 01) :
∣∣�+〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B

(11, 00) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B (30)

123



124 Page 12 of 15 M. Kang et al.

Then, they exchange their measurement outcomes (a2i−1a2i , b2i−1b2i ) in Eq. (30).
From the second example of phase E2′, if Charlie’ measurement outcomes
c2i−1c2i � 10, the Bell states shared by Alice and Bob are

∣∣�+
〉
(2i−1)AB∣∣�−〉

(2i)AB � |Rev + −〉(2i−1)(2i)AB in Eq. (28). Therefore, the Bell-state mea-
surement outcomes (a2i−1a2i , b2i−1b2i ) of Alice and Bob are the same as Eq. (30).
From the third example of phase E2′, if Charlie’smeasurement outcomes c2i−1c2i �
01, the Bell states shared by Alice and Bob are

∣∣�+
〉
(2i−1)AB

∣∣�+
〉
(2i)AB �

|Rev + +〉(2i−1)(2i)AB in Eq. (29). Therefore, the Bell-state measurement outcomes
(a2i−1a2i , b2i−1b2i ) of Alice and Bob are as follows:

(00, 10) :
∣∣�+〉

(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B

(01, 11) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B

(10, 00) :
∣∣�+〉

(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B

(11, 01) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B (31)

Then, they exchange their measurement outcomes (a2i−1a2i , b2i−1b2i ) in Eq. (31).
E4′ (a) Charlie reveals the measurement outcomes c2i−1c2i acquired in Phase E2′;
then, Alice or Bob announces rA or rB to Charlie, respectively.
E4′ (b) Alice and Bob confirm whether their classical bits, a2i−1a2i , b2i−1b2i ,
and c2i−1c2i , correspond to the encrypted authentication key k(i)A � ki ⊕ r(i)A
or k(i)B � ki ⊕ r(i)B , as presented in Table 4 in [2]. From the first example of
phase E3′, because the encrypted authentication key k(i)A � ki ⊕ r(i)A is 10 and
c2i−1c2i is 01, the Bell-state measurement outcomes (a2i−1a2i , b2i−1b2i ) of Alice
and Bob must be one of the results of Eq. (30). Note that ki � 11 and r(i)A � 01.
From the second example of E3′ phase, because the encrypted authentication key
k(i)A � ki ⊕ r(i)A is 01 and c2i−1c2i is 10, the Bell-state measurement outcomes
(a2i−1a2i , b2i−1b2i ) of Alice and Bob must also be one of the results of Eq. (30).
Note that ki � 11 and r(i)A � 01. From the third example of phase E3′, because
the encrypted authentication key k(i)B � ki ⊕ r(i)B is 01 and c2i−1c2i is 01, the
Bell-state measurement outcomes (a2i−1a2i , b2i−1b2i ) of Alice and Bob must be
one of the results of Eq. (31). Note that ki � 11 and r(i)B � 10.

Here, we analyze when the entanglement swapping attacks are applied to these
methods. As in the first example, if an authentication key ki � 11 and Alice’s random
number rA � 01, Alice applies the Pauli operator iσy

(� Uki⊕rA

)
, which corresponds

to an encrypted authentication key k(i)A � ki ⊕ r(i)A � 10, to the qubit (2i − 1)A
in GHZ-like states of Eq. (23), as follows:

iσy |ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC �1

2

(∣∣�−〉
(2i−1)AB

∣∣�−〉
(2i)AB |0〉(2i−1)C |0〉(2i)C

− ∣∣�−〉
(2i−1)AB

∣∣�+〉
(2i)AB |0〉(2i−1)C |1〉(2i)C

+
∣∣�−〉

(2i−1)AB

∣∣�−〉
(2i)AB |1〉(2i−1)C |0〉(2i)C
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+
∣∣�−〉

(2i−1)AB

∣∣�+〉
(2i)AB |0〉(2i−1)C |1〉(2i)C

)

(32)

The GHZ-like states of Eq. (32) are rearranged as follows:

iσy |ξ〉(2i−1)ABC ⊗ |ξ〉(2i)ABC
� 1

2

[(|ID + +〉(2i−1)(2i)A(2i−1)(2i)B + |ID + −〉(2i−1)(2i)A(2i−1)(2i)B
)∣∣�+〉

(2i−1)(2i)C

+
(|ID + +〉(2i−1)(2i)A(2i−1)(2i)B − |ID + −〉(2i−1)(2i)A(2i−1)(2i)B

)∣∣�−〉
(2i−1)(2i)C

− (|Rev + −〉(2i−1)(2i)A(2i−1)(2i)B − |Rev + +〉(2i−1)(2i)A(2i−1)(2i)B
)∣∣�+〉

(2i−1)(2i)C

− (|Rev + −〉(2i−1)(2i)A(2i−1)(2i)B + |Rev + +〉(2i−1)(2i)A(2i−1)(2i)B
)∣∣�−〉

(2i−1)(2i)C

]

(33)

After Alice and Bob’ Bell measurements on {(2i)(2i − 1)A and (2i)(2i − 1)B qubits
of the GHZ-like states of Eq. (33), Charlie performs a Bell measurement on the
(2i)C and (2i − 1)C qubits of Eq. (33) without following the E2′ phase. If Alice and
Bob’smeasurement outcomes (a2i−1a2i , b2i−1b2i ) are |Rev + −〉(2i−1)(2i)A(2i−1)(2i)B ,
Charlie’s measurement outcomes c2i−1c2i must be

∣∣�+
〉
(2i−1)(2i)C or

∣∣�−〉
(2i−1)(2i)C .

Then, they exchange their measurement outcomes (a2i−1a2i , b2i−1b2i ). Through
these measurement outcomes, Charlie cannot accurately guess that the Pauli oper-
ator applied by Alice is σx , which corresponds to the encrypted authentication key
k(i)A � ki ⊕ r(i)A � 01, or iσy , which corresponds to the encrypted authentication
key k(i)A � ki ⊕ r(i)A � 10. Note that, Eq. (33) is the same as Eq. (7). Furthermore,
as mentioned in Sect. 3, since Eq. (6) and Eq. (33) (� Eq. (7)) differ only in the relative
phase±, it is impossible to distinguish these two equations even if Charlie obtains the
measurement outcomes of Alice and Bob. Therefore, Charlie can only estimate the
encrypted key k(i)A ∈ {01, 10} with a 1/2 probability but cannot know the authen-
tication key ki � 11. To find out the authentication key ki , Charlie should perform
phase E4′ (a). Furthermore, in phase E4′ (a), Charlie acts as if it were σz-basis mea-
surements rather than Bell measurements as in phase E2′. To do this, as Eqs. (27) or
(28), Charlie must release the appropriate measurement outcomes. However, Charlie
does not know the proper measurement outcomes c2i−1c2i corresponding to Alice and
Bob’s measurement outcomes (a2i−1a2i , b2i−1b2i ) � |Rev + −〉(2i−1)(2i)A(2i−1)(2i)B .
The reason is that even if Charlie knows their outcomes, he still does not know the
encrypted authentication key k(i)A ∈ {01, 10} correctly. Therefore, Charlie cannot
guess if his measurement should be c2i−1c2i � 01 in Eq. (27) or c2i−1c2i � 10 in
Eq. (28). As a result, Charlie’s attack is revealed in the final verification phase, E4′
(b).

5 Entanglement swapping attack-resistance CMQEA protocol

In order to the CMQEA protocol to be fundamentally resistant to the entanglement
swapping attack described in the above chapter 3, Alice and Bob’s measurement
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outcomes should be the same even if this attack is performed. Therefore, we propose
to use GHZ-like states

|ξ〉(2i−1)ABC ⊗ |ξ〉(2i)ABC � 1√
2

(∣∣�+〉
(2i−1)AB |0〉(2i−1)C +

∣∣�−〉
(2i−1)AB |1〉(2i−1)C

)

⊗ 1√
2

(∣∣�+〉
(2i)AB |0〉(2i)C +

∣∣�−〉
(2i)AB |1〉(2i)C

)
(34)

as the initial state instead of GHZ-like states in Eq. (1). Note that, Alice and Bob
only use two Pauli operators σki ∈ {σ0 � I , σ1 � σz} for an entity authentication.
Here, ki ∈ {0, 1}. In this case, even if an untrusted third party executes the entan-
glement swapping attack, Alice and Bob’s measurement outcomes will always be
|Rev + +〉(2i−1)(2i)AB or |Rev + −〉(2i−1)(2i)AB:

|ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC
� 1

2

[(|Rev + +〉(2i−1)(2i)AB + |Rev + −〉(2i−1)(2i)AB
)∣∣�+〉

(2i−1)(2i)C

+
(|Rev + +〉(2i−1)(2i)AB − |Rev + −〉(2i−1)(2i)AB

)∣∣�−〉
(2i−1)(2i)C

+
(|Rev + +〉(2i−1)(2i)AB + |Rev + −〉(2i−1)(2i)AB

)∣∣�+〉
(2i−1)(2i)C

+
(|Rev + +〉(2i−1)(2i)AB − |Rev + −〉(2i−1)(2i)AB

)∣∣�−〉
(2i−1)(2i)C

]
(35)

As a result, nomatter whatmeasurement outcomes
∣∣�+

〉
(2i−1)(2i)C ,

∣∣�−〉
(2i−1)(2i)C ,∣∣�+

〉
(2i−1)(2i)C , and

∣∣�−〉
(2i−1)(2i)C are obtained by the third party, it is impossible to

estimate the secret key ki ∈ {0, 1}. If the security of the protocol is described in terms
of information theory, then there is no information Eve can obtain from Alice and
Bob’s measurements [5]. Therefore, no information leakage occurs in the proposed
protocol. For this to work well, Alice and Bob should pre-verify that the third party
has shared the GHZ-like states of Eq. (34).

6 Conclusions and Discussion

We described the security of the CMQEA protocol against an entanglement swapping
attack by an untrusted third party, Charlie. In particular, we analyzed the possibility
of leakage of authentication information when Charlie performs a Bell measure-
ment in the CMQEA protocol. Accordingly, we confirmed that the authentication key
sequences could be leaked by untrusted Charlie’s entanglement swapping attack with
a probability of 1/2N . In addition, we described three methods of using the sequence
of GHZ-like states, the honesty-checking method, and a random number method to
prevent such a threat.

To implement the original CMQEA protocol, GHZ states should be created and
Bell-state measurement (BSM) should be performed. Many experimental results for
generating GHZ states have been reported [6, 7]. However, when performing BSM
based on linear optics, there is a limit in which Bell states

∣∣�±〉
cannot be determined
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accurately [8, 9]. As a result, when implementing the CMQEA protocol based on
linear optics, there is an error that users cannot be verified with a 50% probability.
On the other hand, the CMQEA protocol can be implemented based on nonlinear
optics. In this case, the BSM can distinguish all four Bell states, but a decoherence
has a significant effect [10, 11]. On the other hand, the improved protocol in Sect. 5
is feasible because of quantum communication protocols that use authentication with
only two Bell states

∣∣�±〉
. Besides, the application of error correction and privacy

amplification to this protocol can improve security and practicality [12].
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