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Abstract
An efficient method is proposed to improve two-qubit entanglement under the action
of noise channel in noninertial frames by using partial-collapse measurement. We
focus on the influence of partial-collapse measurement on entanglement for different
noise channels in noninertial frames. It is shown that entanglement can be enhanced
greatly for phase-flip, phase-damping, depolarizing and amplitude-damping channels.
We obtain the optimal concurrence for the four noise channels, respectively.Moreover,
’entanglement sudden death’ can be avoided for amplitude-damping environment. Our
work provides a novel method to improve quantum entanglement under both noise
environment and Unruh effect and exhibits the ability of partial-collapse measurement
as an important technique in relativistic quantum information.

Keywords Quantum entanglement · Partial-collapse measurement · Noninertial
frames · Noise channels

1 Introduction

The study of entanglement in the relativistic framework is important not only from
quantum information perspective but also to understand deeply the black hole ther-
modynamics [1,2] and the black hole information paradox [3,4]. In a realistic regime,
quantum systems are unavoidably subjected to the exotic environments. Decoherence
appears when a system interacts with its exotic environment in an irreversible way.
Both dissipative environment and Unruh effect triggered by particle’s acceleration can
give rise to decoherence. Many authors [5–11] have investigated entanglement in the
relativistic framework, in particular on how the Unruh effect will change the degree
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of entanglement. The classical work is Alsing’ research in 2006 [12]. They analyzed
the entanglement between two modes of a free Dirac field as seen by two relatively
accelerated parties. After that, some interesting works have been carried out, e.g., the
recent study along with this topic related to GHZ, W, W-class states and others done
by Qiang and his co-authors [13–16]. Particularly, they found that the entanglement of
the Greenberger–Horne–Zeilinger-like state is degraded by the Unruh effect, but this
entangled system always remains entangled to a degree and can be used in quantum
teleportation between parties in relatively uniform acceleration [13]. However, Khan
et.al [10] investigated the effects of decoherence on the entanglement generated by
Unruh effect in noninertial frames under the action of noise channel. The entanglement
sudden death can happen irrespective of the acceleration of the noninertial frame for
phase-flip and phase-damping channels. So, it is important to discover some methods
to protect entanglement in noninertial frames. Because if we want to realize a distant
quantum teleportation by quantum satellite [17] or others [18,19], the earth can no
longer be seen as an inertial system.

Partial-collapse measurement which is also known as weak measurement (note
the difference with weak value) is a generalization of von Neumann measurement.
In 1988, partial-collapse measurement was introduced by Aharonov, Albert and
Vaidman (AAV) [20]. Partial-collapse measurement is very useful and can help under-
stand many counterintuitive quantum phenomena, for example, Hardy’s paradoxes
[21–23]. Recently, partial-collapse measurement has been applied as a practically
implementable method for protecting entanglement and quantum fidelity of quan-
tum states undergoing decoherence through the amplitude-damping channel [24–30].
In Ref. [27], by using partial-collapse measurement and measurement reversal,
Kim et al. experimentally demonstrated a scheme for protecting entanglement from
amplitude-damping decoherence. Moreover, Some previous works have verified that
partial-collapse measurement and measurement reversal can recover a quantum state
suffering from noises [24,25,31–33]. However, these investigations are mainly limited
to the studies of entanglement protection in inertial frames. Recently, it is shown that
the Unruh effect can be completely eliminated by the technique of partial-collapse
measurement [34]. However, the impact of noise environment was not considered.
Ye et al. [35] have shown that the local nonunitary operation can enhance multipar-
tite entanglement when the systems suffer from amplitude-damping noise and one
subsystem is under noninertial frames.

Motivated by recent studies of Unruh-effect decoherence on quantum entangle-
ment and the application of partial-collapse measurement, we study the influence of
partial-collapse measurement on two-qubit entanglement for different noise channels
in noninertial frames. The rest of this paper is organized as follows. In Sect. 2, the
theoretical framework for this paper is given. We show how two-qubit entanglement
could be enhanced under the action of phase-flip, phase-damping, depolarizing and
amplitude-damping channels by using partial-collapse measurement in Sects. 3, 4, 5
and 6, respectively. Both analytical and numerical results are given. We offer our
conclusions in Sect. 7.
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2 Theoretical framework

For a single qubit with computational basis |0〉 and |1〉, partial-collapse measurement
and measurement reversal can be written, respectively, as a nonunitary quantum oper-
ation [36]

M =
[
1 0
0 m

]
Mr =

[
n 0
0 1

]
(1)

where the measurement strengths m, n ∈ [0,∞). M is the projective measurement
when m = 0. And when m ∈ (0, 1), M is a measurement partially collapsing the
quantum system to the ground state. When m ∈ (1,∞), M partially collapses the
quantum system to the excited state. Usually, a partial-collapse measurement can be
parameterized as M = diag{1,√1 − p}, and the measurement reversal operator is
written as Mr = diag{√1 − pr , 1}. In our article, for convenience and generality,
we use M = diag{1,m} and Mr = diag{n, 1} with m, n ∈ [0,∞). Equation (1)
will not be modified in noninertial frames because the devices we used to perform
a weak measurement have an acceleration same with Rob (noninertial observers). It
means that Rob and the devices are relatively static. And the devices come to thermal
equilibrium with Rob. So, the operations we perform in noninertial frames are same
with in inertial frames.

We consider two observers, Alice and Rob, that share a maximally entangled initial
state of two qubits at a point in flat Minkowski spacetime. Then, Rob moves with
a uniform acceleration and Alice stays stationary. Let the two modes of Minkowski
spacetime that correspond to Alice and Rob are, respectively, given by |n〉A and |n〉B .
Moreover, we assume that the observers are equipped with detectors that are sensitive
only to their respective modes and share the following maximally entangled initial
state

|ψ1〉A,R = 1√
2
(|00〉A,R + |11〉A,R) (2)

Rob performs a partial-collapse measurement of Eq. (1) on his own particle. Accord-
ing to the formula |ψ2〉 = (I⊗M)|ψ1〉√

〈ψ1|(I⊗M†)(I⊗M)|ψ1〉
, if partial-collapse measurement is

successfully carried out, the state of Eq. (2) becomes to

|ψ2〉 = 1√
N1

[
1√
2
|00〉A,R + 1√

2
m|11〉A,R

]
(3)

where N1 = 1
2m

2 + 1
2 is the normalization factor.

Then, Rob moves with a uniform acceleration and Alice stays stationary. From
the accelerated Rob’s frame, the Minkowski vacuum state is found to be a two-mode
squeezed state [12]

|0〉M = cos(r)|0〉I |0〉I I + sin(r)|1〉I |1〉I I (4)
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where cos(r) = (e−2πωc/a + 1)−1/2. Note that the acceleration parameter r is in the
range 0 ≤ r ≤ π/4 corresponding to 0 ≤ a ≤ ∞ in this case. The constantω, c and a,
in the exponential stand, respectively, for Dirac particle’s frequency, light’s speed in
vacuum and Rob’s acceleration. In Eq. (4), the subscripts I and I I of the kets represent
the Rindler modes in region I and I I , respectively, in the Rindler spacetime diagram.
The excited state in Minkowski spacetime is related to Rindler modes as follows: [12]

|1〉M = |1〉I |0〉I I (5)

So, the state of Rob should be expanded as Eqs. (4) and (5). Thus, the state of Eq.
(3) changes to

|ψ3〉 = 1√
N1

[
1√
2
(cos(r)|0〉A|0〉I |0〉I I + sin(r)|0〉A|1〉I |1〉I I )

+ 1√
2
m|1〉A|1〉I |0〉I I

]
(6)

Since Rob is causally disconnected from region I I , we must trace over the mode
I I , which results in a mixed state between Alice and Rob

ρA,I = 1

N1

⎡
⎢⎢⎢⎢⎣

1
2 cos(r)

2 0 0 1
2m cos(r)

0 1
2 sin(r)

2 0 0

0 0 0 0
1
2m cos(r) 0 0 1

2m
2

⎤
⎥⎥⎥⎥⎦ (7)

We consider that only theRob’s qubit is coupled to a noisy environment. The density
matrix of the system in the Kraus operators representation becomes

ρ f =
∑
i

(I ⊗ Ei )ρA,I (I ⊗ E†
i ) (8)

where ρA,I is the density matrix of the system given by Eq. (7), I is the single-
qubit identity matrix, and Ei are single-qubit Kraus operators of the channel under
consideration.

In order to remove or weaken the Unruh effect and noise decoherence, a partial-
collapse measurement reversal is performed by Rob in the region I . After successful
performance of partial measurement reversal, we obtain

ρF = (I ⊗ Mr )ρ f (I ⊗ M†
r )

Tr [(I ⊗ Mr )ρ f (I ⊗ M†
r )] (9)

The degree of entanglement in the two-qubit mixed state can be quantified conve-
niently by concurrence C, which is given as [37,38]

C = max{0,√λ1 − √
λ2 − √

λ3 − √
λ4} (10)
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where λ1, . . . , λ4 are the eigenvalues of the non-Hermitian matrix ρ̃ = ρ(σy ⊗
σy)ρ

∗(σy⊗σy) .ρ is the densitymatrixwhich represents the quantum state. Thematrix
elements are taken with respect to the standard eigenbasis |1〉1 ⊗ |1〉2, |1〉1 ⊗ |0〉2,
|0〉1 ⊗ |1〉2, |0〉1 ⊗ |0〉2. The concurrence varies from C = 0 for unentangled qubits
to C = 1 for the maximally entangled qubits.

3 Improving entanglement for phase-flip channel

Single-qubit Kraus operators for phase-flip (PF) channel are

E0 = √
1 − p

[
1 0
0 1

]
E1 = √

p

[
1 0
0 −1

]
(11)

where p is the decoherence parameter.
According to Eq. (9), after successful performance of partial measurement reversal,

we obtain the final density matrix

ρF = 1

A1

⎛
⎜⎜⎜⎜⎝

n2 cos(r)2 0 0 −m n cos(r) (2 p − 1)

0 sin(r)2 0 0

0 0 0 0

−m n cos(r) (2 p − 1) 0 0 m2

⎞
⎟⎟⎟⎟⎠
(12)

where A1 = m2 + n2 cos(r)2 − cos(r)2 + 1.
The eigenvalues of the non-Hermitian matrix ρ̃F are the following:

λ1 =
m2 n2 cos(r)2

(
4 p2 − 8 p + 4

)
m4 + 2m2 n2 cos(r)2 + 2m2 sin(r)2 + n4 cos(r)4 + 2 n2 cos(r)2 sin(r)2 + sin(r)4

λ2 = 4m2 n2 p2 cos(r)2

m4 + 2m2 n2 cos(r)2 + 2m2 sin(r)2 + n4 cos(r)4 + 2 n2 cos(r)2 sin(r)2 + sin(r)4

λ3 = 0

λ4 = 0 (13)

To gain the optimal concurrence, we let

∂CPF

∂n
= 0 (14)
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Fig. 1 The concurrence C under the action of phase-flip channel is plotted against decoherence parameter
p for m = 0.1, 0.5, 1, 2, 8 (from below to above). a r = π/5; b r = π/10

From the above equation, we get n =
√

m2+sin(r)2

cos(r) . Substituting it into Eq. (10), the
optimal concurrence becomes

C =
(√

4m4 p2 − 8m4 p + 4m4 + 4m2 p2 sin(r)2 − 8m2 p sin(r)2 + 4m2 sin(r)2

−2

√
1

cos(r)2

√
cos(r)2

√
m2 + sin(r)2

√
m2

√
p2

)

√
1

4m4 + 8m2 sin(r)2 + 4 sin(r)4

= m(1 − 2p)√
m2 + sin(r)2

(15)

In Fig. 1, we plot the dependence of entanglement for the phase-flip channel on the
parameter p and the measurement strength m with r = π/5 and r = π/10. From
below to above, the lines correspond to m = 0.1,m = 0.5,m = 1,m = 2,m = 8.
It is shown that entanglement can be improved greatly with by using partial-collapse
measurement both for r = π/5 and r = π/10. The bigger the measurement strength
m is, the bigger the concurrence is. Especially, from Eq. (15), we obtain limm→∞ C =
limm→∞ m(1−2p)√

m2+sin(r)2
= 1 − 2p. In other words, whatever the value of acceleration

parameter r , the entanglement approaches the same maximum value Cmax = 1 − 2p
whenm >> sin(r). This result is the same as that in Ref. [10] whenRob’s acceleration
a = 0, i.e., the acceleration parameter r = 0, whichmeans that the Unruh effect can be
completely eliminated by the technique of partial-collapsemeasurement. However, the
’entanglement sudden death’ cannot be avoided at the point p = 0.5. This is because
that from Eq. (15), we get C = 0 when p = 0.5.
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4 Improving entanglement for phase-damping channel

Single-qubit Kraus operators for phase-damping (PD) channel are

E0 =
[
1 0
0

√
1 − p

]
E1 =

[
0 0
0

√
p

]
(16)

where p is the decoherence parameter.
According to Eq. (9), we obtain the final density matrix

ρF = 1

A2

⎛
⎜⎜⎝

n2 cos(r)2 0 0 m n cos(r)
√
1 − p

0 sin(r)2 0 0
0 0 0 0

m n cos(r)
√
1 − p 0 0 m2

⎞
⎟⎟⎠ (17)

where A2 = m2 + n2 cos(r)2 − cos(r)2 + 1.
The eigenvalues of the non-Hermitian matrix ρ̃F are the following:

λ1 = m2 n2 cos(r)2
(
2

√
1 − p − p + 2

)
m4 + 2m2 n2 cos(r)2 + 2m2 sin(r)2 + n4 cos(r)4 + 2 n2 cos(r)2 sin(r)2 + sin(r)4

λ2 = − m2 n2 cos(r)2
(
p + 2

√
1 − p − 2

)
m4 + 2m2 n2 cos(r)2 + 2m2 sin(r)2 + n4 cos(r)4 + 2 n2 cos(r)2 sin(r)2 + sin(r)4

λ3 = 0

λ4 = 0 (18)

To gain the optimal concurrence, we let

∂CPD

∂n
= 0 (19)

From the above equation, we get n =
√

m2+sin(r)2

cos(r) . Substituting it into Eq. (10), the
maximum concurrence becomes

C = −
(√

2m2 sin(r)2 − m4 p − 2m4
√
1 − p + 2m4 − m2 p sin(r)2 − 2m2 sin(r)2

√
1 − p

−
√
2m2 sin(r)2 − m4 p + 2m4

√
1 − p + 2m4 − m2 p sin(r)2 + 2m2 sin(r)2

√
1 − p

)

√
1

4m4 + 8m2 sin(r)2 + 4 sin(r)4

= m
√
1 − p√

m2 + sin(r)2
(20)

In Fig. 2,we plot the dependence of entanglement for the phase-damping channel on
the parameter p and the measurement strengthm with r = π/5. From below to above,
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Fig. 2 The concurrence C under the action of phase-damping channel is plotted against decoherence
parameter p for r = π/5, m = 0.1, 0.5, 1, 2, 8 (from below to above)

the lines correspond to m = 0.1,m = 0.5,m = 1,m = 2,m = 8. As in the case
of phase-flip channel, the results show that entanglement can be enhanced greatly
with partial-collapse measurement. The bigger the measurement strength m is, the
bigger the concurrence is. Moreover, we find that, whatever the value of acceleration
parameter r , the entanglement approaches the same maximum value Cmax = √

1 − p
when m >> sin(r). This is because that from Eq. (20), we obtain limm→∞ C =
limm→∞ m

√
1−p√

m2+sin(r)2
= √

1 − p. However, the ’entanglement sudden death’ cannot

be avoided at the point p = 1. The result can be explained from Eq. (20). From the
equation, we get C = 0 when p = 1.

5 Improving entanglement for depolarizing channel

Single-qubit Kraus operators for depolarizing (DP) channel are

E0 = √
1 − p

[
1 0
0 1

]
E1 =

√
p

3

[
0 1
1 0

]
E2 =

√
p

3

[
0 −i
i 0

]

E3 =
√

p

3

[
1 0
0 −1

]
(21)

where p is the decoherence parameter.
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According to Eq. (9), we obtain the final density matrix

ρF = 1

A3⎛
⎜⎜⎜⎜⎝

n2 cos(r)2 0 0 m n cos(r) (4 p−3)
2 p−3

0 sin(r)2 − 2m n p cos(r)
2 p−3 0

0 − 2m n p cos(r)
2 p−3 0 0

m n cos(r) (4 p−3)
2 p−3 0 0

m2 (2 p−3)
(
3m2+3

) (
m2−n2 sin(r)2+n2+sin(r)2

)
3 (m2+1)

(
2 p sin(r)2−3 sin(r)2+2m2 p−3m2+3 n2

(
sin(r)2−1

)−2 n2 p
(
sin(r)2−1

))

⎞
⎟⎟⎟⎟⎠

(22)

where A3 = sin(r)2 + m2 − n2
(
sin(r)2 − 1

)
.

The eigenvalues of the non-Hermitian matrix ρ̃F are the following:

λ1 = m2 n2 cos(r)2
(
2

√
1 − p − p + 2

)
m4 n4 cos(r)4 + 2m4 n2 cos(r)2 sin(r)2 + m4 sin(r)4 + 2m2 n2 cos(r)2 + 2m2 sin(r)2 + 1

λ2 = − m2 n2 cos(r)2
(
p + 2

√
1 − p − 2

)
m4 n4 cos(r)4 + 2m4 n2 cos(r)2 sin(r)2 + m4 sin(r)4 + 2m2 n2 cos(r)2 + 2m2 sin(r)2 + 1

λ3 = 0

λ4 = 0 (23)

To gain the optimal concurrence, we let

∂CDP

∂n
= 0 (24)

From the above equation, we get n =
√

m2+sin(r)2

cos(r) . Substituting it into Eq. (10), the
maximum concurrence becomes

C = 2

√
16m2 p2 − 24m2 p + 9m2

16m2 p2 − 48m2 p + 36m2 + 16 p2 sin(r)2 − 48 p sin(r)2 + 36 sin(r)2

=
∣∣∣∣4p − 3

3 − 2p

∣∣∣∣ m√
m2 + sin(r)2

(25)

In Fig. 3, we plot the dependence of entanglement for the depolarizing channel
on the parameter p and the measurement strength m with r = π/5. From below
to above, the lines correspond to m = 0.1,m = 0.5,m = 1,m = 2,m = 8. As
in the case of phase-flip and phase-damping channels, the results show that entan-
glement can be improved significantly by using partial-collapse measurement. The
bigger the measurement strength m is, the bigger the entanglement is. Moreover, we
find that, whatever the value of r , the entanglement approaches the same maximum
value Cmax = | 4p−3

3−2p | when m >> sin(r). This is because that from Eq. (25), we

obtain limm→∞ C = limm→∞ | 4p−3
3−2p | m√

m2+sin(r)2
= | 4p−3

3−2p |. However, the ’entan-

glement sudden death’ cannot be avoided at the point p = 0.75. This result can be
explained from Eq. (25). From the equation, we get C = 0 when p = 0.75.
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Fig. 3 The concurrenceC under the action of depolarizing channel is plotted against decoherence parameter
p for r = π/5, m = 0.1, 0.5, 1, 2, 8 (from below to above)

6 Improving entanglement for amplitude-damping channel

Single-qubit Kraus operators for amplitude-damping (AD) channel are as follows:

E0 =
[
1 0
0

√
1 − p

]
E1 =

[
0

√
p

0 0

]
(26)

where p is the decoherence parameter.
According to Eq. (9), we obtain the final density matrix

ρF = 1

A4

⎛
⎜⎜⎝
n2

(
cos(r)2 − p

(
cos(r)2 − 1

))
0 0 m n cos(r)

√
1 − p

0 −sin(r)2 (p − 1) 0 0
0 0 m2 n2 p 0

m n cos(r)
√
1 − p 0 0 −m2 (p − 1)

⎞
⎟⎟⎠

(27)

where A4 = sin(r)2 − p sin(r)2 − m2 p + m2 − n2
(
sin(r)2 − 1

) + m2 n2 p +
n2 p sin(r)2.

The eigenvalues of the non-Hermitian matrix ρ̃F are the following:
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Fig. 4 The concurrence C under the action of amplitude-damping channel is plotted against decoherence
parameter p for r = π/5, m = 0.05, 0.1, 0.3, 0.5, 1 (from below to above)

λ1 = m2 n2 cos(r)2
(
2

√
1 − p − p + 2

)
m4 n4 cos(r)4 + 2m4 n2 cos(r)2 sin(r)2 + m4 sin(r)4 + 2m2 n2 cos(r)2 + 2m2 sin(r)2 + 1

λ2 = − m2 n2 cos(r)2
(
p + 2

√
1 − p − 2

)
m4 n4 cos(r)4 + 2m4 n2 cos(r)2 sin(r)2 + m4 sin(r)4 + 2m2 n2 cos(r)2 + 2m2 sin(r)2 + 1

λ3 = 0

λ4 = 0 (28)

To gain the optimal concurrence, we let

∂CAD

∂n
= 0 (29)

From above equation, we get n =
√

−(
m2+sin(r)2

)
(p−1)

(
p m2+cos(r)2+p sin(r)2

)
p m2+cos(r)2+p sin(r)2

. Substi-

tuting it into Eq. (10), the maximum concurrence becomes

C = 1

1 + m2

[√
1

p m4 + m2 cos(r)2 + p m2 sin(r)2 2 + cos(r)2 sin(r)2 + p sin(r)4√
m6 cos(r)2 + 2m4 cos(r)2 + m2 cos(r)2 −√

p m6 sin(r)2 + p m4 sin(r)2 2 + p m2 sin(r)2

p m4 + m2 cos(r)2 + p m2 sin(r)2 2 + cos(r)2 sin(r)2 + p sin(r)4

]
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= m(cos(r) − sin(r)
√
p)√

(m2 + sin(r)2)(pm2 + p sin(r)2 + cos(r)2)
(30)

In Fig. 4, we plot the dependence of entanglement for the amplitude-damping
channel on the parameter p and themeasurement strengthmwith r = π/5. Frombelow
to above, the lines correspond to m = 0.05,m = 0.1,m = 0.3,m = 0.5,m = 1. As
in the case of the previous three noise channels, the results show that the bigger the
measurement strength m, the higher the degree of entanglement. Especially, we are
able to enhance entanglement greatly and to avoid ’entanglement sudden death’ with
partial-collapse measurement for amplitude-damping channel. This result is different
from the previous three noise channels. From Eq. (30), we get C > 0 when cos(r) >

sin(r)
√
p (i.e., tan(r) < 1√

p ). Note that the acceleration parameter r is in the range
0 ≤ r ≤ π/4; thus, with the exception of r = π/4, ’entanglement sudden death’ can
be avoided for 0 ≤ r < π/4.

7 Conclusion

An efficient method is proposed to improve two-qubit entanglement under the action
of noise channel in noninertial frames by using partial-collapse measurement in this
paper. We focus on the influence of partial-collapse measurement on entanglement for
different noise channels in noninertial frames. It is shown that entanglement can be
enhanced greatly for phase-flip, phase-damping, depolarizing and amplitude-damping
channels. We obtain the optimal concurrence for the four noise channels, respectively.
Moreover, ’entanglement sudden death’ can be avoided for amplitude-damping envi-
ronment. Our work provides a novel method to improve quantum entanglement under
both noise environment and Unruh effect and exhibits the ability of partial-collapse
measurement as an important technique in relativistic quantum information.

The above discussion can be generalized to the situations thatAlice is also uniformly
accelerated and both qubits of the two observers interact with noisy environment. Fur-
thermore, it can be extended to the most general situation that two observers undergo
relative nonuniform accelerations. And, we believe that partial-collapse measurement
scheme can be used to improve entanglement under some more general channels in
noninertial frames. These topics will be investigated in our future researches.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant
No.11374096), the Natural Science Foundation of Hunan Province of China (Grant No. 2016JJ2044) and
the Major Program for the Research Foundation of Education Bureau of Hunan Province of China (Grant
No. 16A057).

References

1. Bombelli, L., Koul, R., Lee, K.J., Sorkin, R.: Quantum source of entropy for black holes. Phys. Rev.
D 34, 373 (1986)

2. Callan, C., Wilzcek, F.: On geometric entropy. Phys. Lett. B 333, 55 (1994)
3. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)
4. Terashima, H.: Entanglement entropy of the black hole horizon. Phys. Rev. D 61, 104016 (2000)

123



Effect of partial-collapse measurement on quantum… Page 13 of 14 106

5. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames.
Phys. Rev. Lett. 95, 120404 (2005)

6. Adesso,G., Fuentes-Schuller, I., Ericsson,M.:Continuous-variable entanglement sharing in noninertial
frames. Phys. Rev. A 76, 062112 (2007)

7. Martín-Martínez, E., León, J.: Quantum correlations through event horizons: fermionic versus bosonic
entanglement. Phys. Rev. A 81, 032320 (2010)

8. Ostapchuk, D.C.M., Mann, R.B.: Generating entangled fermions by accelerated measurements on the
vacuum. Phys. Rev. A 79, 042333 (2009)

9. Wang, J., Pan, Q., Jing, J.: Projective measurements and generation of entangled Dirac particles in
Schwarzschild spacetime. Ann. Phys. 325, 1190 (2010)

10. Khan, S., Khan, M.K.: Open quantum systems in noninertial frames. J. Phys. A: Math. Theor. 44,
45305 (2011)

11. Zhou, J., Shi, R.H., Guo, Y.: Squeezed-state quantum key distribution with a Rindler observer. Quant.
Inf. Process. 17(3), 47 (2018)

12. Alsing, P.M., Fuentes-Schuller, I.,Mann, R.B., Tessier, T.E.: Entanglement ofDirac fields in noninertial
frames. Phys. Rev. A 74, 032326 (2006)

13. Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of
Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018)

14. Dong, Q., Torres-Arenas, A.J., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of a new
type pseudo-pure state in accelerated frames. Front. Phys. 14(2), 21603 (2019)

15. Qiang, W.C., Dong, Q., Mercado Sanchez, M.A., Sun, G.H., Dong, S.H.: Entanglement property of
the Werner state in accelerated frames. Quant. Inf. Process. 18, 314 (2019)

16. Torres-Arenasa, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-
state in noninertial frames. Phys. Lett. B. 789, 93–C105 (2019)

17. Rideout, D., et al.: Fundamental quantum optics experiments conceivable with satellites-reaching
relativistic distances and velocities. Class. Quant. Gravit. 29, 224011 (2012)

18. Friis, N., Lee, A.R., Truong, K., Sabin, C., Solano, E., Johansson, G., Fuentes, I.: Relativistic quantum
teleportation with superconducting circuits. Phys. Rev. Lett. 110, 113602 (2013)

19. Ahmadzadegan, A., Martín-Martínez, E., Mann, R.B.: Cavities in curved spacetimes: the response of
particle detectors. Phys. Rev. D 89, 024013 (2014)

20. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin
of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

21. Aharonov, Y., Botero, A., Pospescu, S., Reznik, B., Tollaksen, J.: Revisiting Hardy’s paradox: counter-
factual statements, real measurements, entanglement and weak values. Phys. Lett. A 301, 130 (2002)

22. Lundeen, J.S., Steinberg, A.M.: Experimental joint weak measurement on a photon pair as a probe of
Hardy’s paradox. Phys. Rev. Lett. 102, 020404 (2009)

23. Yokota, K., Yamamoto, T., Koashi, M., Imoto, N.: Direct observation of Hardy’s paradox by joint weak
measurement with an entangled photon pair. New J. Phys. 11, 033011 (2009)

24. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys.
Rev. Lett. 97, 166805 (2006)

25. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic
qubit. Opt. Express 17, 11978 (2009)

26. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression
via quantum measurement reversal. Opt. Express 19, 16309 (2011)

27. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak
measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

28. Man, Z.X., Xia, Y.J., An, N.B.: Enhancing entanglement of two qubits undergoing independent deco-
herences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)

29. Liao, X.P., Ding, X.Z., Fang, M.F.: Improving the payoffs of cooperators in three-player cooperative
game using weak measurements. Quant. Process 14, 4395 (2015)

30. Liao, X.P., Fang, M.F., Fang, J.S., Zhu, Q.Q.: Preserving entanglement and the fidelity of three-qubit
quantum states undergoing decoherence using weak measurement. Chin. Phys. B 23, 020304 (2014)

31. Xu, J.S., Sun, K., Li, C.F., Xu, X.Y., Guo, G.C., Andersson, E., Lo Franco, R., Compagno, G.: Experi-
mental recovery of quantumcorrelations in absence of system-environment back-action.Nat. Commun.
4, 2851 (2013)

32. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys.
J. D 67, 204 (2013)

123



106 Page 14 of 14 X.-P. Liao et al.

33. Cheong, Y.W., Lee, S.W.: Balance between information gain and reversibility in weak measurement.
Phys. Rev. Lett. 109, 150402 (2012)

34. Xiao, X., Xie, Y.M., Yao, Y., Li, Y.L.,Wang, J.C.: Retrieving the lost fermionic entanglement by partial
measurement in noninertial frames. 12 Feb (2017). arXiv:1702.03508v1 [quant-ph]

35. Sun, W.Y., Wang, D., Yang, J., Ye, L.: Enhancement of multipartite entanglement in an open system
under non-inertial frames. Quant. Inf. Process. 16, 90 (2017)

36. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite
temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)

37. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett 80,
2245 (1998)

38. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett 78, 5022 (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1702.03508v1

	Effect of partial-collapse measurement on quantum entanglement in noninertial frames
	Abstract
	1 Introduction
	2 Theoretical framework
	3 Improving entanglement for phase-flip channel
	4 Improving entanglement for phase-damping channel
	5 Improving entanglement for depolarizing channel
	6 Improving entanglement for amplitude-damping channel
	7 Conclusion
	Acknowledgements
	References




