
Quantum Information Processing (2021) 20:91
https://doi.org/10.1007/s11128-020-02976-z

Mermin polynomials for non-locality and entanglement
detection in Grover’s algorithm and Quantum Fourier
Transform

Henri de Boutray1,2 · Hamza Jaffali1,2 · Frédéric Holweck1,3 ·
Alain Giorgetti1,2 · Pierre-Alain Masson1,2

Received: 16 January 2020 / Accepted: 18 December 2020 / Published online: 5 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
The non-locality and thus the presence of entanglement of a quantum system can
be detected using Mermin polynomials. This gives us a means to study non-locality
evolution during the execution of quantum algorithms. We first consider Grover’s
quantum search algorithm, noticing that states during the execution of the algorithm
reach a maximum for an entanglement measure when close to a predetermined state,
which allows us to search for a single optimal Mermin operator and use it to evaluate
non-locality through the whole execution of Grover’s algorithm. Then the Quantum
Fourier Transform is also studied with Mermin polynomials. A different optimal Mer-
min operator is searched for at each execution step, since in this case nothing hints
us at finding a predetermined state maximally violating the Mermin inequality. The
results for the Quantum Fourier Transform are compared to results from a previous
study of entanglement with Cayley hyperdeterminant. All our computations can be
repeated thanks to a structured and documented open-source code that we provide.

Keywords Mermin polynomials · MABK violation · Quantum programs ·
entanglement · Non-locality · Grover’s quantum search algorithm · Quantum Fourier
Transform

B Henri de Boutray
henri.de_boutray@univ-fcomte.fr

1 Univ. Bourgogne Franche-Comté (UBFC), Besançon, France

2 Institut FEMTO-ST (UMR 6174 - CNRS/UBFC/UFC/ENSMM/UTBM), Besançon, France

3 Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB, UMR 6303 - CNRS/UB/UTBM), Dijon,
France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-020-02976-z&domain=pdf
http://orcid.org/0000-0002-2571-0506

91 Page 2 of 29 H. de Boutray et al.

1 Introduction

Quantum entanglement has been identified as a key ingredient in the speed-up of
quantum algorithms [18], when compared to their classical counterparts. Our work is
in line with previous work on a deeper understanding of the role of entanglement in
this speed-up [6,7,10,19].

We focus on Grover’s algorithm [11] and the Quantum Fourier Transform (QFT)
[25, Chap. II-Sec. 5] which plays a key role in Shor’s algorithm [29]. We choose these
two examples because they both provide quantum speed-up (quadratic for Grover’s
algorithm and exponential for the QFT) and are well understood and described in
the literature [25]. Previous work tackled entanglement in Grover’s algorithm and the
QFT from two perspectives: quantitatively, with the Geometric Measure of Entangle-
ment (GME) [4,28,33], separately for Grover’s algorithm [27] and the QFT [30], and
qualitatively, by observing the different entanglement SLOCC classes traversed by an
execution, for both algorithms [17].

Instead of directly measuring entanglement we use Mermin polynomials [1,2,22]
to demonstrate the non-locality (breaking of an upper bound holding for all classical
states) of some states generated by these algorithms. Knowing that a state exhibits
non-local properties allows us to conclude that the state is entangled. In this respect
one uses Mermin polynomials as entanglement witnesses as suggested in [12,31].
Batle et al. [5] previously investigated non-local properties during Grover’s algorithm
using Mermin polynomials. However they concluded to the absence of non-locality.
In the present work we setup the Mermin polynomials in such a way that we exhibit,
on the contrary, violation of the classical inequalities in Grover’s algorithm. Moreover
our evaluation techniques are more efficient, allowing us to reach 12 qubits. We also
exhibit non-locality during the QFT in the context of Shor’s algorithm.

An initial motivation of this study is the verification of quantum programs. Turn-
ing a quantum algorithm into an implementation for a quantum computer with scarce
resources often requires highly non-trivial optimizations, whichmay introduce bugs in
the resulting programs. Checking state properties is a way to gain more confidence in
these implementations. In the present paperwe investigate non-locality as a property of
entangled quantum states that could be checked for a quantum algorithm and its imple-
mentations. In this respect evaluation of Mermin polynomials is of particular interest:
violation of the classical bound has a physical meaning and the evaluation of Mermin
polynomials can be implemented on a quantum computer, as it was demonstrated by
Alsina et al. [2].

In this paper we make two different uses of Mermin polynomials. In our study of
Grover’s algorithm we build for each number of qubits a specific Mermin polynomial
which achieves maximal violation for the quantum state of highest GME that Grover’s
algorithm is meant to approach during its execution. Doing so we will not only show
that the states generated by the algorithm violate the classical bound but also that
the valuations of this specific Mermin polynomial behave similarly to the GME. In
our study of the QFT, we propose a different approach by choosing at each step of
the algorithm a Mermin polynomial whose valuation is maximal for the given state.
We show that this quantity is a local unitary invariant that can be compared to other
invariants. In the context of Shor’s algorithm for four qubits, we also obtain violation of

123

Mermin polynomials for non-locality and entanglement… Page 3 of 29 91

the Bell-likeMermin inequalities (also calledMABK in the literature) during the QFT
part of the algorithm. This amount of violation is not constant during the QFT, which
shows a qualitative change of the nature of entanglement involved. This differs from
the quantitative results obtained with the Groverian’s measure of entanglement [30]
for which it was proved that the amount of entanglement is nearly constant in Shor’s
algorithm during the QFT.Without being contradictory the present work illustrates the
fact that non-equivalent classes of entanglement under local unitary transformations
are achieved during the QFT part of Shor’s algorithm, as it was shown in [17].

The paper is organized as follows. After Sect. 2 presenting some background on
Grover’s algorithm, the QFT and Mermin polynomials, Sect. 3 presents our method
and results concerning the detection of entanglement in Grover’s algorithm and the
QFT. In particular we exhibitMermin inequalities violations in both algorithms. In this
section we also compare the results obtained with theMermin polynomials to previous
results [17] using the Cayley hyperdeterminant. Finally, Sect. 4 documents the code
developed for this evaluation, in order to make it reusable by anyone wishing to1. In
addition, Appendix A recalls known properties of the states in Grover’s algorithm and
Appendix B recalls the definition of the Cayley hyperdeterminant.

2 Background

This paper relies on pure state formalism: each considered state is a normalized vector
of theHilbert spaceH = C

2⊗C
2⊗· · ·⊗C

2.A separable state |ϕ〉 is a rank-one tensor,
i.e., |ϕ〉 = |ϕ1〉 ⊗ |ϕ2〉 ⊗ · · · ⊗ |ϕk〉, where |ϕi 〉 are single-qubit states. A tensor/state
|ϕ〉 is said to be of rank r if there are r rank-one tensors |ϕi 〉 = |ϕi

1〉⊗|ϕi
2〉⊗· · ·⊗|ϕi

k〉,
with i = 1, . . . , r , such that |ϕ〉 = ∑r

i=1 αi |ϕi 〉 with αi ∈ C, and r is minimal for this
property. An entangled state is a tensor of rank higher than 1.

The remainder of this section provides necessary background to the reader, regard-
ing Grover’s algorithm (2.1), some properties of the states during its execution (2.2),
the Quantum Fourier Transform (2.3) and the Mermin operators (2.4).

2.1 Grover’s algorithm

We summarize here Grover’s algorithm, widely described in the literature ([11,20]
and [25, chapter 6]).

Grover’s algorithm aims to find objects satisfying a given condition in an unsorted
database of 2n objects, i.e. to solve the following problem.

Given a positive integer n, N = 2n , Ω = {0, . . . , N − 1} and the characteristic
function f : Ω → {0, 1} of some subset S of Ω (f (x) = 1 iff x ∈ S), find in Ω an
element of S only by applying f to some elements of Ω .

Grover’s algorithm provides a quadratic speedup over its classical counterparts.
Indeed, assuming that each application of f is done in one step, it runs in O(

√
N)

instead of O(N).

1 The source code is available at https://quantcert.github.io/Mermin-eval.

123

https://quantcert.github.io/Mermin-eval

91 Page 4 of 29 H. de Boutray et al.

Fig. 1 Grover’s algorithm in circuit formalism

Figure 1 shows this algorithm as a circuit composed of several gates that we now
describe. H⊗n+1 is simply the Hadamard gate on each wire. When applied on the n
first registers initialized at |0〉, it computes the superposition of all states, i.e.,

H⊗n|0〉 = 1√
N

N−1∑

x=0

|x〉.

After H⊗n+1, the dashed box (hereafter called L) is repeated kopt =
⌊

π
4

√
N
|S|

⌋
times.

The circuit L is composed of the oracle U f and the diffusion operator D. The gate
U f computes the classical function f . It has the following effect on states:

∀(x, y) ∈ {0, . . . , N } × {0, 1}, U f (|x〉 ⊗ |y〉) = |x〉 ⊗ |y ⊕ f (x)〉.

On the circuit of Fig. 1 one can show that the last register remains unchanged when
applying the U f gate. Indeed after the Hadamard gate H , this last register becomes

H |1〉 = |0〉 − |1〉√
2

. Now consider a state |x〉 ⊗ |0〉 − |1〉√
2

. Then

U f

(

|x〉 ⊗ |0〉 − |1〉√
2

)

=

⎧
⎪⎨

⎪⎩

|x〉 ⊗ |1〉 − |0〉√
2

if f (x) = 1

|x〉 ⊗ |0〉 − |1〉√
2

otherwise.

In other words,

U f

(

|x〉 ⊗ |0〉 − |1〉√
2

)

= (−1) f (x)
(

|x〉 ⊗ |0〉 − |1〉√|2〉
)

.

One says that the oracleU f marks the solutions of the problem by changing their phase
to −1. To emphasize this, we adopt the usual convention which consists of ignoring
the last register and considering that U f has the following effect:

{
U f |x〉 = −|x〉,∀x ∈ S

U f |x〉 = |x〉,∀x /∈ S
.

The diffusion operator D = 2(|+〉〈+|)⊗n − I2n performs the inversion about the
mean. Indeed if |ϕ〉 = ∑N−1

i=0 αi|i〉 and ᾱ = 1
N

∑N−1
i=0 αi denotes the mean value of

the amplitudes of |ϕ〉, then D |ϕ〉 = ∑N−1
i=0 α′

i|i〉 with α′
i − ᾱ = ᾱ − αi.

123

Mermin polynomials for non-locality and entanglement… Page 5 of 29 91

(a) (b)

(c) (d)

Fig. 2 First iteration of loop L in Grover’s algorithm: the combs represent the amplitude of each element

Figure 2 provides a visualization of the effect of the beginning of the algorithm
on the amplitudes of |ϕ〉. For readability purposes, only 4 amplitudes are represented,
and only one element is searched (S = {x0}), shown with a square instead of a bullet.
The state is initialized to |0〉. The state resulting of applying H⊗n is the superposition
of all states |+〉⊗n (Fig. 2a). Then the oracle U f flips the searched element (Fig. 2b),
and the diffusion operator D performs the inversion about the mean (Fig. 2c, d).

The final measure yields the index of an element from S with high probability.

2.2 Properties of states in Grover’s algorithm

The evolution of the amplitudes of the state |ϕ〉 during the execution of the algorithm
is well known [25]. If we denote by θ the real number such that sin(θ/2) = √|S|/N ,
then after k iterations (i.e., after applying k times the circuit L), the state is:

|ϕk〉 = αk

∑

x∈S
|x〉 + βk

∑

x/∈S
|x〉 (1)

123

91 Page 6 of 29 H. de Boutray et al.

Fig. 3 States path (dotted) in relation with the variety of separable states X during Grover’s algorithm
execution in the space of pure states [14, Figure 2]

with αk = 1√|S| sin(
2k + 1

2
θ) and βk = 1√

N − |S| cos(
2k + 1

2
θ). The sequences

(αk)k and (βk)k are two real sequences, respectively, increasing and decreasing when

k varies between 0 and kopt =
⌊

π
4

√
N
|S|

⌋
.

An alternative representation of the evolution of the states during the execution
of Grover’s algorithm is proposed in [14]. An elementary algebra calculation (See
Appendix A, Proposition 2) shows that

|ϕk〉 = α̃k

∑

x∈S
|x〉 + β̃k |+〉⊗n (2)

with α̃k = αk − βk and β̃k = 2n/2βk . The sequences (α̃k) and (β̃k) are, respectively,
increasing and decreasing on {0, . . . , kopt } (see Appendix A, Proposition 3).

In particular, if one considers the case of one searched element |x0〉, i.e. S = {x0},
then Equation (2) becomes

|ϕk〉 = α̃k |x0〉 + β̃k |+〉⊗n . (3)

Figure 3 provides a graphical interpretation of Equation (3). The “curve” X repre-
sents the variety (set defined by algebraic equations) of separable states. This figure
illustrates the fact that during the execution of Grover’s algorithm, the quantum state
|ϕk〉 evolves as follows: it starts from the separable state |+〉⊗n and moves on the
dotted secant line until it gets close to the searched state |x0〉when k = kopt . All states
on the secant line are entangled (rank-two tensors).

In [14], it is proven that for states in superposition α|x0〉+β|+〉⊗n with α, β ∈ R+,
the GME is maximal when α = β. Let |ϕent 〉 hereafter denote the state (|x0〉 +
|+〉⊗n)/K , normalizedwith the factor K . Figure 3 suggests that the search should come
close to the state |ϕent 〉, around the step kopt/2. Thus, a maximum of entanglement is
expected close to this pivot step.

123

Mermin polynomials for non-locality and entanglement… Page 7 of 29 91

2.3 Quantum Fourier Transform (QFT)

The quantum analogous of the Discrete Fourier Transform (DFT) is the Quantum
Fourier Transform (QFT). It acts linearly on quantum registers and is a key step in
Shor’s algorithm, permitting to reveal the period of the function defining the factor-
ization problem [25,29].

In the context of Shor’s algorithm, the QFT is used to transform a periodic state
into another one to obtain its period. The periodic state |ϕl,r 〉 of n qubits with shift l
and period r is defined by

|ϕl,r 〉 = 1√
A

A−1∑

i=0

|l + ir〉 with A =
⌈
N − l

r

⌉

and N = 2n,

for 0 ≤ l ≤ N − 1 and 1 ≤ r ≤ N − l − 1 [30, Eq. 5].
For example, for the periodic 4-qubit states, with shift l = 1 and period r = 5,

there are A = ⌈ 16−1
5

⌉ = 3 basis elements, so:

|ϕ1,5〉 = 1√
3

(|1〉 + |6〉 + |11〉) = 1√
3

(|0001〉 + |0110〉 + |1011〉) .

When applied to one of the computational basis states |k〉 ∈ {|0〉, |1〉, . . . , |N −1〉}
(expressed here in decimal notation), the result of the QFT can be expressed by

QFT |k〉 = 1√
N

N−1∑

j=0

ωk j | j〉,

where ω = e
2iπ
N is the primitive N -th root of unity. Then, for any n-qubit state

|ψ〉 = ∑N−1
j=0 x j | j〉, we get

QFT |ψ〉 =
N−1∑

k=0

yk |k〉 with yk = 1√
N

N−1∑

j=0

x j · ωk j . (4)

The corresponding matrix is

QFTN = 1√
N

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 · · · 1
1 ω1 ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the circuit representation, the QFT can be decomposed into several one-qubit or
two-qubit operators. To obtain this decomposition three different kinds of gates are

123

91 Page 8 of 29 H. de Boutray et al.

Fig. 4 Quantum circuit representation of the Quantum Fourier Transform for a n-qubit register

used: the Hadamard gate, the SWAP gate and the controlled-Rk gates, defined by the
matrices and circuits

SW AP =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠ |x〉 • • |y〉

|y〉 • |x〉

and

cRk =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e
2iπ
2k

⎞

⎟
⎟
⎠ |x〉 Rk

|y〉 •

The complete circuit of the QFT is provided in Fig. 4, where the n-qubit SWAP
operation consists of swapping |x1〉 with |xn〉, |x2〉 with |xn−1〉, and so on.

Remark 1 One of the reasons that explain the exponential speed-up in Shor’s quantum
algorithm, is the complexity of the QFT which is quadratic with respect to the number
of registers. By comparison, classically, the complexity of the Fast Fourier Transform
algorithm that computes the DFT of a vector with 2n entries is in O(n2n).

2.4 Mermin polynomials andMermin inequalities

Entanglement variations during the execution of Grover’s algorithm have been studied
either by computing the evolution of the GeometricMeasure of Entanglement [27,33],
or by computing other measures of entanglement like the concurrence or measures
based on invariants [5,14,33]. Similarly, for Shor’s algorithm and in particular to
study the variation of entanglement within the QFT, numerical computation of the
Geometric Measure of Entanglement was carried out in [30]. Let us also mention
[17] where the evolution of entanglement in Grover’s and Shor’s algorithms is studied
qualitatively by considering the classes of entanglement reached during the execution
of the algorithms.

The authors of [5] proposed to exhibit the non-local behavior of the states generated
by Grover’s algorithm by testing a generalization of Bell’s inequalities known as
Mermin’s inequalities, based on Mermin polynomials [1,8].

123

Mermin polynomials for non-locality and entanglement… Page 9 of 29 91

Definition 1 (Mermin polynomials, [1]) Let
(
a j

)
j≥1 and

(
a′
j

)

j≥1
be two families of

one-qubit observables with eigenvalues in {−1,+1}. The Mermin polynomial Mn is
inductively defined by:

{
M1 = a1
∀n ≥ 2, Mn = 1

2Mn−1 ⊗ (an + a′
n) + 1

2M
′
n−1 ⊗ (an − a′

n)
(5)

where, in (5), M ′
k is obtained from Mk by interchanging operators with and without

the prime symbol.

Example 1 For n = 2, the Mermin polynomial is M2 = 1

2
(a1 ⊗ a2 + a1 ⊗ a′

2 + a′
1 ⊗

a2 − a′
1 ⊗ a′

2). The operator M2 is, up to a factor, the CHSH operator used to prove
Bell’s Theorem [9].

One can note that a one-qubit observable a with eigenvalues in {−1,+1} can be
written as a normed linear combination a = αX+βY +γ Z of the Pauli matrices X =(
0 1
1 0

)

,Y =
(
0 − i
i 0

)

and Z =
(
1 0
0 − 1

)

, with the constraint |α|2+|β|2+|γ |2 = 1.

Mermin’s inequalities

〈Mn〉LR ≤ 1 and 〈Mn〉QM ≤ 2
n−1
2 (6)

respectively, formalize that the expectation value 〈Mn〉 of Mn is bounded by 1 under

the hypothesis LR of local realism, while it is bounded by 2
n−1
2 in quantummechanics

(QM).
The violation of the firstMermin inequality shows non-locality which is only possi-

ble under the hypothesis of quantum mechanics and if the quantum state is entangled.
More precisely the maximal violation of Mermin’s inequalities occurs for GHZ -like
states [1,8,22], i.e. states equivalent to |GHZ〉 = 1√

2
(|0〉⊗n + |1〉⊗n) by local trans-

formations.
One of the advantages of Mermin’s inequalities is that they can be tested by a

physical experiment. Recently the violation of Mermin’s inequalities was tested for
n ≤ 5 qubits on a small quantum computer [2].

3 Method and results

In this sectionwe present themain results of this study, obtained by evaluatingMermin
polynomials on states generated at different steps of Grover’s algorithm and the QFT.
As explained in the introduction our goal is to exhibit quantum properties of those
states that can be experimentally checked. When it violates the classical bound, a
Mermin polynomial detects entanglement – a resource that has been proved several
times to appear in those algorithms. We obtain those violations in both algorithms.
It is also known that the amount of violation of Mermin’s inequalities is not in one-
to-one correspondence with the quantity of entanglement involved [3]. The question

123

91 Page 10 of 29 H. de Boutray et al.

of measuring the quantity of entanglement is also a difficult question, as it is known
that the notion of absolutely maximally entangled states does not exist already in the
four-qubit case [16]. Here we compare evaluation of Mermin polynomials to different
types of entanglement measures. In Grover’s algorithm one uses a specific Mermin
polynomial, which is fixed once for all the algorithm. By carefully choosing this
polynomial one shows that its evaluation behaves like the GME. In the QFT algorithm,
previous work [30] concluded to small variations of the GME. Here, by choosing
differently which Mermin polynomial we evaluate at each state, we show that the
entanglement classes change during the QFT, as it was already observed in [17].

Once two families (a j)1≤ j≤n and (a′
j)1≤ j≤n of observables are chosen, one can

define theMermin test function fMn by fMn (ϕ) = 〈ϕ|Mn|ϕ〉. Inequalities (6) tell that
fMn (ϕ) > 1 implies that |ϕ〉 is non-local. We present in this section two approaches
to choose the parameters (a j)1≤ j≤n and (a′

j)1≤ j≤n of Mn to satisfy the previous
inequality for some states generated by the quantum algorithm of choice.

Thefirst approach evaluates each state that the algorithmgoes throughwith the same
function fMn , with a unique polynomial Mn chosen prior to state computation. This
approach has the advantage of providing a fast calculation ((a j)1≤ j≤n and (a′

j)1≤ j≤n

are computed only once), but the function fMn is not a measure of entanglement, since
it is not invariant by local unitary transformations, i.e., we do not have fMn (ϕ) =
fMn (g.ϕ) for all transformations g ∈ LU = U2(C)n and all quantum states |ϕ〉 (|g.ϕ〉
is defined as such: for g = (g1, . . . , gn) and G = g1 ⊗ . . . ⊗ gn , |g.ϕ〉 = G |ϕ〉).

The second approach is to choose a different Mn for each state |ϕ〉, by optimizing
fMn (ϕ) for each state traversed by the algorithm. Thismeans that we are finding values
for (a j) and (a′

j) many times for a single run. This approach was for example used in
[5]. We use it in Sect. 3.2.1 to define a quantity μ(ϕ), invariant under the group LU
of local unitary transformations (see Proposition 1).

3.1 Grover’s algorithm properties

Hereafter we simplify the calculations by taking S = {x0}, i.e., by considering that
Grover’s algorithm is only searching for a single element x0. We want to show two
properties:

1. Grover’s algorithm exhibits non-locality.
2. Parameters of theMermin test function can be computed so that the function values

increase and then decrease for the successive states |ϕk〉 in Grover’s algorithm. The
maximum is reached at an integer kmax in {kopt/2�, �kopt/2�}.

Property 1 is in contradiction with [5], a detailed explanation is given in Remark 2.
Property 2makes the chosenMermin test function behave like the GeometricMeasure
of Entanglement.

Next section details the method we followed for finding a goodMermin polynomial
establishing these properties.

123

Mermin polynomials for non-locality and entanglement… Page 11 of 29 91

3.1.1 Method

The definition of Mermin polynomials provides degrees of freedom in the choice
of (a j) j≥1 and (a′

j) j≥1 (an infinite number of parameters). We reduce that choice
by imposing that the two sequences (a j) j≥1 and (a′

j) j≥1 are constant, i.e. ∀ j, a j =
a and a′

j = a′. This restriction strongly reduces calculations, and it will be sufficient
to achieve our objectives.

Let us denote by a and a′ the two one-qubit observables that will be used to write
our Mermin polynomial. We have a = αX + βY + γ Z and a′ = α′X + β ′Y + γ ′Z
with the constraints |α|2 + |β|2 + |γ |2 = 1 and |α′|2 + |β ′|2 + |γ ′|2 = 1.

The degrees of freedom are the 6 complex numbers α, β, δ, α′, β ′ and δ′ with the
two normalization constraints. Let A = (α, β, δ, α′, β ′, δ′) be the six-tuple of these
variables.

In order to satisfy Property 2, we search for a six-tuple of parameters A such that
fMn reaches its maximum for the state ϕkopt/2. We also would like this choice of A to
be independent of the states generated by the algorithm. According to the geometric
interpretation presented in Sect. 2.2, the state ϕkopt/2 should tend to the state |ϕent 〉 =
1
K (|x0〉+|+〉⊗n)when n tends to infinity (the approximation improves as n increases).
Moreover the state |ϕent 〉 is a tensor of rank two with an overlap 〈x0|+〉⊗n = 1/

√
2n

between the states |x0〉 and |+〉⊗n which tends to 0 as n increases, i.e., we expect
the state |ϕent 〉 to behave like a GHZ -like state when n is large (by definition the
GHZ state is SLOCC equivalent to any non-biseparable rank-two tensor). This point
is important because GHZ -like states are the ones that maximize the violation of
classical inequalities by Mermin polynomials [1,8,22]. Therefore by choosing a tuple
of parameters A maximizing fMn (ϕent) we expect to satisfy Properties 1. and 2..

We use a random walk in R
6 to maximize fMn (ϕent). We operate the walk for a

fixed number of steps, starting from an arbitrary point. At each step, we choose a
random direction, and move toward it to a new point. If the value of fMn (ϕent) at that
new point is higher than at the previous one, then that point is the start point for the
next step, otherwise a new point is chosen.

Once the proper coefficient for Mn found, we compute the values of each fMn (ϕk)

for k in {0, . . . , kopt } to validate Properties 1. and 2..

Example 2 When searching the state |0000〉, the highest value of fM4(ϕent) obtained
by this randomwalk is for A = (−0.7,−0.3,−0.7,−0.5, 0.7,−0.5). Then, A is used
to compute M4, and then fM4(ϕk),∀k ∈ {0, . . . , kopt }.
Remark 2 Some comments are in order at this point to compare our approach with the
work of [5]. First in [5] all calculations are done using the density matrices formalism
instead of the vector/tensor approach we use here. But this difference is meaningless,
because we are only considering pure states, so, every computation in the density
matrix formalismcanbedone equivalentlywithin the vector state formalism.Moreover
in [5] the optimization is done at each step of the algorithm with respect to the state
computed by the algorithm, while we compute the parameters only once with respect
to a targeted state |ϕent 〉. Finally, as mentioned at the beginning of Sect. 3.1.1, we also
restrict ourselves to two operators a and a′ and thus all optimizations are performed

123

91 Page 12 of 29 H. de Boutray et al.

Fig. 5 Violation of Mermin’s inequalities during Grover’s algorithm execution for 4 ≤ n ≤ 12 qubits

Fig. 6 Maximums of fMn (ϕk) for 4 ≤ n ≤ 12 qubits

on six parameters instead of 6n. This allows us to perform the calculation for a larger
number of qubits (up to 12).

3.1.2 Results

Thanks to our implementation of this method in SageMath, described in Sect. 4, we
obtain the values depicted in Fig. 5, for n from 4 up to 12 qubits. The searched element
x0 is always the first element |0〉 of the canonical basis, but other searched elements
would give similar results, by symmetry of the problem.

The lower bound for the number n of qubits is set to 4 because for n ≤ 3 the
algorithm has no time to show any advantage, is not very reliable and does not exhibit
non-locality. The upper bound is set to 12 because of technological limitations: com-
putations for 13 qubits or more become too expensive.

We see that the two expected properties hold for all values of n: the classical limit
is violated and the Mermin evaluation increases up to the middle of the executions,
and then decreases (the maximal values are given in Fig. 6).

Remark 3 In [5] similar curves (Figure 3) were obtained for n ∈ {2, 4, 6, 8} qubits
showing the increasing-decreasing behavior, but the violation ofMermin’s inequalities
– the non-locality – was not established for n = 6 and n = 8, whereas it is obtained
in our calculation. Recall from Remark 2 that the calculation of [5] is not exactly the
same as the one performed in this paper. The curves of [5] are obtained by maximizing
fMn (ϕk) at each step of the algorithm with a larger number of parameters. Therefore
as we obtain violation ofMermin’s inequalities via a restricted calculation, the authors
of [5] should also have observed it. We suspect errors in the implementation of the
calculation of Equations (19) of [5] as we have redone this calculation for n = 6 based
on Equations (18) and (20) of [5], and we have obtained the violation of Mermin’s
inequalities shown in Fig. 7.

123

Mermin polynomials for non-locality and entanglement… Page 13 of 29 91

Fig. 7 Violation ofMermin’s inequalities duringGrover’s algorithm execution for 6 qubits using [5]method

Fig. 8 Comparison between results of the computations and theoretical Mermin boundary. The curve with
points as dots corresponds to the evaluation of fMn (ϕent) and the curve with points as crosses corresponds
to the theoretical upper bound for the violation of the Mermin inequality defined by Mn

Remark 4 The curve for n = 12 in Fig. 5 should be compared to the curve of Figure 1
of [27] where the evolution of the GME of the states generated by Grover’s algorithm
is given for n = 12 qubits. In our setting it is not a surprise that both curves are similar
because in all of our calculations the function fMn is defined by the set of parameters
that maximizes its value for |ϕent 〉. Similar behavior for other invariants in the context
of Grover’s algorithm have also been observed in [7,14,23].

Figure 8 provides another argument explaining why we expected violation of Mer-
min’s inequalities in Grover’s algorithm when n increases. It can be deduced from
the geometric description of the algorithm (Sect. 2.2) that the quantum state |ϕ�kopt/2�〉
should be close to |ϕent 〉 and thus behave like it with respect to the Mermin polyno-
mial. Despite the fact that fMn (ϕent) does not reach the theoretical upper bound that is
obtained for states LOCC equivalent to |GHZn〉, one sees that the difference between
fMn (ϕent) and the classical bound 1 increases as a function of n.

3.2 Quantum Fourier Transform

To exhibit non-local behavior of states generated at each step of the Quantum Fourier
Transformwe restrict ourselves to periodic four-qubit states for the following reasons:

1. as explained in Sect. 2.3, the QFT in Shor’s algorithm is applied to periodic states
[25];

2. as we will see in Sect. 3.2.2 the four-qubit case is sufficient to obtain violation of
Mermin’s inequalities;

123

91 Page 14 of 29 H. de Boutray et al.

Fig. 9 Quantum circuit representation of the Quantum Fourier Transform for a 4-qubit register

3. we want to compare the present approach with a recent study of entanglement
in Shor’s algorithm in the four-qubit case, proposed by two of the authors of the
present paper [17].

3.2.1 Method

When we apply the QFT to periodic states we have no a priori geometric informa-
tion about the type of states that will be generated. In fact it depends on two initial
parameters that define the periodic state |ϕl,r 〉: its shift l and its period r . There-
fore there are no reasons for restricting the choice of parameters in the calculation
of fMn (ϕ

l,r). For the four-qubit case this implies that our optimization will be car-
ried over the 24 parameters defining M4, hereafter denoted α1, …, α24 (such that
a1 = α1X +α2Y +α3Z , …, a4 = α10X +α11Y +α12Z , a′

1 = α13X +α14Y +α15Z ,
…, and a′

4 = α22X + α23Y + α24Z), and this, for each state generated, in opposition
to Sect. 3.1.

For k ≥ 0, let |ϕl,r 〉k denote the state reached after the first k gates in the QFT
(Fig. 9) initialized with the periodic state |ϕl,r 〉 with shift l and period r .

We are interested by the evolution of the function q defined for k ≥ 0 by

q(k) = max
α1,...,α24

fM4

(
ϕ
l,r
k

)
. (7)

In [17] two of the authors of the present paper have studied the evolution of entan-
glement for periodic four-qubit states through QFT by computing the absolute value
of an algebraic invariant called the Cayley hyperdeterminant and denoted by Δ2222.
This polynomial of degree 24 in 16 variables is a well-known invariant in quantum
information theory and its absolute value is known to be a measure of entanglement
[13,21,24,26]. We provide the definition of Δ2222 in Appendix B.

Surprisingly, the two approaches, which are of different natures – an algebraic
definition for the hyperdeterminant and an operator-based construction for Mermin
evaluation – would sometimes present similar behavior (see Fig. 10).

In [17] it was observed that the evolution of entanglement for four-qubit periodic
states through QFT shows three different behaviors with respect to Δ2222.

123

Mermin polynomials for non-locality and entanglement… Page 15 of 29 91

(a) (b)

Fig. 10 Comparison of entanglement evaluation through the QFT for periodic state (l, r) = (9, 1) using
the measures given by the absolute value of the hyperdeterminant and the Mermin evaluation

– Case 1. The polynomial Δ2222 is nonzero when evaluated on |ϕl,r 〉 and does not
vanish during the transformation. In terms of four-qubit classification [32] it means
that the transformed states remain in the so-called Gabcd class. This happens for
(l, r) ∈ {(1, 3), (2, 3)}.

– Case 2.ThepolynomialΔ2222 is zero for the periodic state |ϕl,r 〉 and is nonzero dur-
ing the QFT. This happens for (l, r) ∈ {(0, 3), (0, 5), (2, 1), (3, 1), (3, 3), (4, 1),
(4, 3), (5, 1), (5, 3), (6, 1), (6, 3), (7, 1), (9, 1)(10, 1), (11, 1), (12, 1)}.

– Case 3. The polynomial Δ2222 is zero for the periodic state |ϕl,r 〉 and it remains
equal to zero all along theQFT for all the other (l, r) configurations (in {0, . . . , N−
1} × {1, . . . , N − r}).
Before presenting the results let us point out that now the calculated quantity is

invariant under local unitary transformations, i.e. under the group LU = U2(C)n .

Proposition 1 Let |ϕ〉 ∈ (C2)
⊗n

be a n-qubit state and (ai) and (a′
i) be families of

one-qubit observables that define a Mermin polynomial Mn according to Definition 1.
Let

μ(ϕ) = max
ai ,ai ′

〈ϕ|Mn|ϕ〉. (8)

Then μ(ϕ) is LU-invariant.

Proof First one recalls that a one-qubit observable A such that Sp(A) = {−1, 1} can
always be written as A = αX + βY + γ Z with α, β, γ ∈ R and α2 + β2 + γ 2 = 1.
For the action g.A = g†Ag on A by conjugation with a unitary matrix g ∈ U2(C),
one has g.A = Ã = α̃X + β̃Y + γ̃ Z with α̃, β̃, γ̃ reals such that α̃2 + β̃2 + γ̃ 2 = 1.
Indeed Ã is also a one-qubit observable such that Sp(Ã) = {−1, 1}.

Let us denote by λ = (α1, β1, γ1, α
′
1, β

′
1, γ

′
1, . . . , αn, βn, γn, α

′
n, β

′
n, γ

′
n) a tuple of

6n parameters that define a Mermin polynomial Mn(λ). Then

μ(ϕ) = max
λ∈R6n ,α2

i +β2
i +γ 2

i =1,α′2
i +β ′2

i +γ ′2
i =1

〈ϕ|Mn(λ)|ϕ〉

exists, because it is the maximum of a degree n polynomial in (at most) 6n variables
under the constraints α2

i + β2
i + γ 2

i = 1 and α′2
i + β ′2

i + γ ′2
i = 1. Let us denote by

123

91 Page 16 of 29 H. de Boutray et al.

(a) (b)

Fig. 11 Evolution of the maximal values of Mermin operators in the QFT steps. Examples of input |ϕ(l,r)〉
in Case 1 from [17]

λ′ a tuple of parameters that maximizes 〈ϕ|Mn(λ)|ϕ〉, i.e.,

μ(ϕ) = 〈ϕ|Mn(λ
′)|ϕ〉.

Let |ψ〉 be a n-qubit state LU -equivalent to |ϕ〉. Thus there exists g =
(g1, . . . , gn) ∈ LU such that |ψ〉 = |g.ϕ〉 = G |ϕ〉 with G = g1 ⊗ . . . ⊗ gn .
Then 〈ϕ|Mn(λ

′)|ϕ〉 = (〈ϕ| G†
)
G Mn(λ

′) G† (G |ϕ〉) = 〈ψ |Mn(λ
′′)|ψ〉 for some

tuple of parameters λ′′. Therefore

μ(ϕ) ≤ μ(ψ).

But |ϕ〉 = G†|ψ〉 also holds, so a similar reasoning provides the inequality μ(ϕ) ≥
μ(ψ) and thus the equality. ��

In the next section we plot and analyze different curves of the approximation q̃ of
q in the four-qubit case for different choices of (l, r).

3.2.2 Results

In order to compute the values of the function q defined by (7), we optimize its
parameters to approximate it and denote by q̃ the approximation resulting from this
optimization. Curves of q̃(k) are shown on Figs. 11, 12 and 13, for k ∈ {0, . . . , 11}
and for different choices of shift l and period r , respectively, in Cases 1, 2 and 3.

Let us start with general comments.

– All examples in Figs. 11, 12 and 13 present violations of the Mermin inequality,
and the amount of violation evolves during the algorithm. This contrasts with [30]
where the authors found almost no evolution of the GME during the QFT. Those
statements are not contradictory as entanglement and non-locality are not the same
resource but it shows that the Mermin polynomials detect variations of the nature
of the states that are not measured by the GME.

– The sets {0, 1}, {4, 5}, {7, 8} and {9, 10, 11} for k correspond to states before and
after gates of the QFT that do not modify entanglement (Hadamard, SWAP). That
explains why the function is constant on those intervals, as it was already the case
for the curves k �→ |Δ2222(ϕ

l,r
k)| in [17].

123

Mermin polynomials for non-locality and entanglement… Page 17 of 29 91

(a) (b)

(c) (d)

Fig. 12 Evolution of the maximal values of Mermin operators in the QFT steps. Examples of input |ϕ(l,r)〉
in Case 2 from [17]

(a) (b)

(c) (d)

Fig. 13 Evolution of the maximal values of Mermin operators in the QFT steps. Examples of input |ϕ(l,r)〉
in Case 3 from [17]

– States corresponding to Cases 1 and 2 of [17] violate the classical bound during the
execution of the QFT. Only some states corresponding to Case 3 produce constant
curves with some of them equal to the classical bound (not drawn). It is for instance
the case for (l, r) = (2, 4)which is a separable state that remains separable during
the algorithm. Figure 13 illustrates different possible behaviors of the states in
Case 3. These variations were not detected in [17] by the evaluation of |Δ2222|.

123

91 Page 18 of 29 H. de Boutray et al.

The amount of violation of non-locality measured during the QFT is not connected
to the change of SLOCC classes computed in [17] for the same algorithm and input
state. Indeed, states in the same SLOCC class reach different values of the maximal
violation of the Mermin inequality. For instance, if one considers the periodic states
|ϕl,r 〉 for (l, r) = (2, 2) and (l, r) = (0, 11) (Fig. 13a, b), it is shown in [17] that
these two states are SLOCC equivalent (i.e. can be inter-converted by a reversible
local operation), but their evolution during the QFT is quite different. The value of
q̃(k) fluctuates around 1.10 for (l, r) = (2, 2), whereas it is in the interval [1.65, 2.18]
for (l, r) = (0, 11).

Similarly the cases (l, r) = (0, 15) and (1, 1) (Fig. 13c, d) correspond to two
states SLOCC equivalent to |GHZ4〉 at the beginning of the algorithm. It is clear for
(l, r) = (0, 15) because |ϕ0,15〉 = |GHZ4〉 and q̃(k) reaches the maximal possible
value at the beginning of the algorithm. The maximal violation of Mermin inequality

for four qubits is 2
√
2 ≈ 2.81 (2

n−1
2 for n = 4), but this value is nowhere to be

approached for (l, r) = (1, 1) where the value of q̃(k) is close to 1 at all steps of the
run. In fact the state

|ϕ1,1〉 =
√
16

15
|++++〉 − 1√

15
|0000〉 (9)

is a state on the secant line joining |++++〉 and |0000〉, as described in Sect. 2.2.
This state is indeed SLOCC equivalent to |GHZ4〉 but it is closer to a separable state
if one considers the GME.

4 Implementation

This section explains the code developed for this article and relates it to the notations
from Sect. 2. This code can be found at https://quantcert.github.io/Mermin-eval. It
uses the open-source mathematics software system SageMath2 based on Python. The
code is a module named mermin_eval, and usage examples can be found in the GitHub
repository. Note that all the results of this article have been double checked, by first
being obtained on Maple3 and then only being generalized on SageMath.

The code is provided and presented for several reasons: so the readers can see how
we obtained the results presented in Sect. 3.1.2, and they can reproduce our compu-
tations by running the code. But the code can also be extended to other evaluation
methods of Grover algorithm, or adapted to other quantum algorithms, since it is
structured in several well-documented functions.

This section is divided in two parts: we first explain the code used for Grover’s
algorithm in Sect. 4.1, and then the code used for the Quantum Fourier Transform in
Sect. 4.2.

2 http://www.sagemath.org.
3 https://www.maplesoft.com/.

123

https://quantcert.github.io/Mermin-eval
http://www.sagemath.org
https://www.maplesoft.com/

Mermin polynomials for non-locality and entanglement… Page 19 of 29 91

4.1 Grover’s algorithm implementation

For Grover’s algorithm, the main function grover is reproduced in Listing 1. The
parameter target_state_vector is the searched state |ϕ0〉. The function first exe-
cutes an implementation grover_run of the Grover algorithm, detailed in Sect. 4.1.1,
and stores in the list end_loop_states the states after each iteration of the loop L.
Then but independently, a call to the function grover_optimize (Sect. 4.1.2) opti-
mizes Mermin operator. The result is stored in the matrix M_opt. Finally both these
results are used to evaluate entanglement after each iteration of L with a call to the
function grover_evaluate (Sect. 4.1.3), also responsible of printing the evaluations
at each step.

def grover(target_state_vector):
end_loop_states = grover_run(target_state_vector)

M_opt = grover_optimize(target_state_vector)

grover_evaluate(end_loop_states , M_opt)

Listing 1 Main function for Grover’s entanglement study

4.1.1 Execution

The function grover_run given in Listing 2 takes as input the target state and returns
a list of states composed of the states at the end of each loop iteration.

def grover_run(target_state_vector):
layers , k_opt = grover_layers_kopt(target_state_vector)
N = len(target_state_vector)
V0 = vector ([0, 1] + [0]*(2*N-2))

states = run(layers , V0)
end_loop_states = states [0]
for i in range(k_opt):

end_loop_states.append(states [2*i+1])

return end_loop_states

Listing 2 Function running Grover’s algorithm

This function operates in two steps. The first step is to build the circuit for Grover
algorithm, which is achieved by the function grover_layers_kopt. The circuit format
is a list of layers: each layer being a list of matrices (all the operations performed at
a given time) and each matrix representing an operation performed on one or more
wires. For example, if H is the Hadamard matrix, I2 and I4 are the identity matrix
(in dimensions 2 and 4) and X is the first Pauli operator, then the circuit in Fig. 14 is
represented by the list [[H,I4], [X,X,I2], [I4,H], [H,H,H]].

The next step is to run the circuit, which is achieved by run that returns the list of
the states after each layer. The function run takes as input the circuit (layers) and the
initial state (V0). This function both allows us to separate syntax and semantics, and
is reusable in any future context involving circuits.

The for-loop then filters out all the intermediate states which are not at the end
of a loop iteration. For example, if we consider Grover’s algorithm on three qubits

123

91 Page 20 of 29 H. de Boutray et al.

Fig. 14 Example for the circuit formalism in grover_ent

Fig. 15 End loop counting example

shown in Fig. 15, we would have the first state |ϕ0〉, and the states |ϕ3〉 and |ϕ5〉 in
end_loop_states.

This implementation of the simulation ofGrover’s algorithm has its limits though. It
is computationally expensive to multiply matrices beyond a certain number of qubits.
To push it a little further, we used another implementation for Grover’s algorithm,
less versatile but more efficient. This method is presented in Listing 3. In this case,
two important differences are first that there is no more use for the ancilla qubit (the
last wire in the circuit definition of Grover’s algorithm, see Fig. 1), which divides
by two the number of elements in a state vector, and second that almost no matrix
multiplication is used. Indeed, the loop is now handled by functions operating directly
on the state vector. The first function is oracle_artificial, and it only flips the
correct coefficient in the running state (this is the behavior explained in Sect. 2.1).
The second function diffusion_artificial performs the inversion about the
mean.

def grover_run(target_state_vector):
N = len(target_state_vector)
n = log(N)/log (2)
k_opt = round ((pi/4)*sqrt(N))
H = matrix(field , [[1, 1],

[1, -1]])/sqrt (2)
hadamard_layer = kronecker_power(H, n)

V0 = vector ([1]+[0]*(N-1))

V = hadamard_layer * V0
end_loop_states = [V]

for k in range(k_opt):
V = oracle_artificial (target_state_vector , V)
V = diffusion_artificial (V)
end_loop_states.append(V)

return end_loop_states

Listing 3 Optimized implementation of Grover’s algorithm

123

Mermin polynomials for non-locality and entanglement… Page 21 of 29 91

4.1.2 Optimization

The grover_optimize function shown in Listing 4 computes an approximation of an
optimal Mermin operator, as explained in Sect. 3.1.1. The Mermin operator Mn is an
implicit function of (α, β, δ, α′, β ′, δ′), here implemented as (a,b,c,m,p,q). Because
of this, optimizing the Mermin operator is finding the optimal (α, β, δ, α′, β ′, δ′) for
our Mermin evaluation.

def grover_optimize(target_state):
n = log(len(target_state))/log (2)
plus = vector ([1 ,1])/sqrt (2)
plus_n = kronecker_power(plus , n)
phi = (target_state + plus_n).normalized ()

def M_phi(a,b,c,m,p,q):
return M_eval(a,b,c,m,p,q, phi)

(a,b,c,m,p,q),v = optimize(M_phi , (1,1,1,1,1,1), 5,
10**(-2), 10**2)

return M_from_coef(n,a,b,c,m,p,q)

Listing 4 Optimization function for Grover’s algorithm

To optimize the Mermin operator, first the state |ϕent 〉 = (|x0〉 + |+〉⊗n)/K (with
K the normalizing factor) is computed and stored in phi, then fMn represented by
M_eval is used to define fMn (|ϕent 〉) as M_phi. Note that in themathematical notations,
fMn (|ϕent 〉) is an implicit function of (α, β, δ, α′, β ′, δ′). This implicit relation ismade
explicit as M_phi is a function of (a,b,c,m,p,q).

The optimize function takes as input a function (here M_phi), a first point to start
the optimization from (here (1,1,1,1,1,1)), the step sizes bounds and a maximal
number of iterations on a single step (here 102). The random walk starts with a step
size of 5 and ends with a step size of 10−2.

The optimization function proceeds with a random walk. It iterates until it finds a
local maximum (for all points p in a neighborhood around the point found popt , their
evaluation by the function given as the first parameter is less than the evaluation of
the point found f (p) ≤ f (popt)). To find this optimum, the process starts from an
arbitrary point (given as an argument) and at each step, an exploration of the space is
done around the current point until the evaluation on the argument function increases.
If an increase cannot be found before the fixed maximal number of iterations, the
step size is reduced, otherwise the same step is repeated with the same step size. The
function ends when the step size reaches the fixed minimal size of the steps.

Remark 5 This optimization can be expensive, so to speed up the calculation, a
memoization step is hidden here: if (a,b,c,m,p,q) has already been computed for
target_state, this result has been stored on disk at this point and is now loaded.

123

91 Page 22 of 29 H. de Boutray et al.

4.1.3 Evaluation

The function grover_evaluate shown in the Listing 5 is the simplest of the three: it
computes fMn (|ϕk〉) = 〈ϕk |Mn|ϕk〉 for each |ϕk〉 in the end_loop_states list with
Mn here being M_opt, and prints them.

def grover_evaluate(end_loop_states , M_opt):
for state in end_loop_states:

print((state.transpose ().conjugate ()*M_opt*state))

Listing 5 Evaluation function for Grover’s algorithm

To overview the code as a whole, we can exhibit the link with Fig. 5. For this
figure, each graph has been obtained by using a code line such as in Listing 6 (where
string_to_ket is a function used to convert a string of a specific format into a vector,
in this case the vector |0000〉). So, for four qubits, we set the target state as |0000〉, for
five qubits as |00000〉, and so on. This is enough for symmetry reasons (searching for
|1001〉 instead of |0000〉 yields similar results).

>>> grover(string_to_ket("0000"))
0.173154027401573
1.01189404012534
-0.469906068136016

Listing 6 Mermin evaluation in Grover algorithm example

4.2 Quantum Fourier Transform implementation

For the QFT, the main function qft is reproduced in Listing 7. The parameter state is
the state ran through theQFT, generally a periodic state |ϕl,r 〉 generated by the function
periodic_state (Listing 8). The function qft first calls an implementation qft_run

of the QFT, detailed in Sect. 4.2.1, and stores the computed states in the list states.
Then the states are directly evaluated. The important difference compared to Grover’s
algorithm implementation is the fact that we are not using a separate optimization
step, the optimization process is included in the evaluation process: each evaluation
requires an optimization. The evaluation process is thus performed by the function
qft_evaluate (Sect. 4.2.2), printing the evaluation as well.

def qft_main(state):
states = qft_run(state)
return qft_evaluate(states)

Listing 7 Main function for QFT entanglement study

def periodic_state (l,r,nWires):
N = 2** nWires
result = vector(N)
for i in range(ceil((N-l)/r)):

result[l+i*r] = 1
return result.normalized ()

Listing 8 Function used to generate the periodic state |ϕl,r 〉

123

Mermin polynomials for non-locality and entanglement… Page 23 of 29 91

4.2.1 Execution

The function qft_run (Listing 9) uses the same circuit format as grover_run presented
in Sect. 4.1.1. This circuit is built by qft_layers (Listing 10) and run by run. In this
case however, the states do not need to be filtered, resulting in an almost trivial qft_run
function.

def qft_run(state):
layers = qft_layers(state)
states , _ = run(layers , state)
return states

Listing 9 Function running the QFT

The qft_layers function uses two functions not detailed here. swap returns amatrix
corresponding to the swap of two wires wire1 and wire2 and the identity on the other

wires concerned. The R method returns the controlled rotation of angle e
2iπ
2k , with the

rotation being performed on the wire target controlled by the wire control. The two
matrices built by these functions have a size of 2**size. With these two functions,
qft_layers builds the circuit for the QFT using R on the whole width of the circuit
when a rotation is needed and using swap only at the end to build the global swap (in
fact, swap is also used in R and that is the reason why this implementation of swap on
two wires have been chosen instead of a more general arbitrary permutation gate).

def qft_layers(state):
def swap(wire1 ,wire2 ,size):

...
def R(k,target ,control ,size):

...
H = matrix(field , [[1, 1],

[1, -1]])/sqrt (2)
I2 = matrix.identity(field , 2)
nWires = log(len(state))/log (2)
layers = []

for wire in range(nWires):
layers.append ([I2]*wire + [H] + [I2]*(nWires -wire -1))
for k in range(2, nWires -(wire -1)):

layers.append ([R(k, wire , k+(wire -1), nWires)])

global_swap = matrix.identity(field , 2** nWires)
for wire in range(nWires /2):

global_swap *= swap(wire , nWires -1-wire , nWires)
layers.append ([global_swap])

return layers

Listing 10 Function building the circuit of the QFT

4.2.2 Evaluation

In this case again, the evaluation is conceptually simpler than in Grover’s algorithm.
Indeed, since the optimization needs to be performed for each evaluation, the result

123

91 Page 24 of 29 H. de Boutray et al.

printed at each step is simply the optimal point reached by the optimize function (the
same as described in Sect. 4.1.2). In this case, a notable difference in the usage of
optimize is the presence of 3*n*2 coefficients. This is explained by the fact that, this
time, we do not want a trend for the evaluation’s evolution and a “good enough” Mn .
This means that we do not stand satisfied by the constant an = αX + βY + δZ but
we have α, β and δ variable as explained in 3.2.1 (where they become (αi)1≤i≤6n).

Because of this, the function M_func (Listing 11) we optimize is now calling
M_eval_all instead of M_eval. The difference is that M_eval took only 3 × 2 coeffi-
cients to compute Mn with fixed ai = αX + βY + δZ and a′

i = α′X + β ′Y + δ′Z ,
whereas this time the coefficients of ai and a′

i are variable, thus M_eval_all takes as
arguments two lists of triples _a_coefs and _a_prime_coefs (each triple encoding
one ai or a′

i). The function coefficients_packing reshapes as two lists of triples the
flat list of reals that M_func requires as input.

def qft_evaluate(states):
n = log(len(states [0]))/log (2)
for state in states:

rho = matrix(state).transpose ()*matrix(state)

def M_func(_a_a_prime_coefs):
_a_coefs , _a_prime_coefs = coefficients_packing (

_a_a_prime_coefs)
return M_eval_all(n, _a_coefs , _a_prime_coefs , rho)

_,value = optimize(M_func , [1]*3*n*2, 5, 10**(-2),
10**2)

print value

Listing 11 Evaluation function for the QFT

4.3 Implementation recap

Finally, to conclude this section, we recall the functions reusable in a general con-
text, the run function can be used for general purpose quantum circuit simulation and
the Mermin evaluation process can be used for arbitrary state entanglement evalua-
tion. An issue previously mentioned was the correctness between the process and the
simulation, and here this issue is tackled by structured and clear code. This structure
also helps the code to be more modular, for instance, if the user wants to change the
optimization method for more speed or precision, it can be easily achieved.

Remark 6 Note that the actual implemented functions have additional parameters that
are ignored here for simplicity’s sake. For example, each function has a verbose mode,
to display more information about its run.

5 Conclusion

In this paper, we have shown that both Grover’s algorithm and the QFT generate states
that violate Mermin’s inequalities. We provided, for different settings, curves mea-

123

Mermin polynomials for non-locality and entanglement… Page 25 of 29 91

suring the evolution of the non-local behavior of the states through the algorithms.
Evaluation of Mermin polynomials detects entanglement when it violates the clas-
sical bound and we compared our numerical results on non-locality evolution with
the evolution of values obtained from several measures of entanglement for the same
algorithms. Understanding the connection between entanglement and non-local prop-
erties of quantum states is a difficult question and we did not intend to provide new
theoretical perspectives on this subject. Instead our goal was more to focus on an
operational level by studying how specific properties of quantum states generated by
those algorithms behave.

This work is a step towards contributions in quantum program verification, by
checking state properties, such as entanglement or violation of classical Bell inequal-
ity, or temporal properties, such as the increase or decrease of a quantity related to
non-locality, during the execution of a quantum program. In the present work we
check properties during the execution of the program, for a fixed number of qubits. A
promising possibility is to check properties statically, without executing the program
and once for all numbers of qubits. A theoretical foundation for this static verification
is the quantumHoare logic [34], an adaptation of the Hoare logic [15] to quantum pro-
grams. Mermin polynomials studied in this paper seem promising to check properties
during program execution, since Mermin evaluation corresponds to an experimental
measurement that could be performed on a quantum computer (see for instance [2]
for examples of Mermin evaluation on a 5-qubit computer).

Acknowledgements This project is supported by the French Investissements d’Avenir program, project
ISITE-BFC (contract ANR-15-IDEX-03), and by the EIPHI Graduate School (contract ANR-17-EURE-
0002). The computations have been performed on the supercomputer facilities of the Mésocentre de calcul
de Franche-Comté.
We thank the reviewers of the previous versions of this paper for their valuable comments and remarks, that
have helped improving its content.

Appendix A Explicit states for Grover’s algorithm

Proposition 2 [14, Observation 1] The state |ϕk〉 after k iterations of Grover’s algo-
rithm can be written as follows:

|ϕk〉 = α̃k

∑

x∈S
|x〉 + β̃k |+〉⊗n (10)

with α̃k = cos(2k+1
2 θ)√|S| − sin(2k+1

2 θ)√
N − |S| and β̃k = 2n/2 sin(

2k+1
2 θ)√

N − |S| .

Proof With |ϕ0〉 = |+〉⊗n , we can write:

|ϕk〉 = Lk |ϕ0〉 = ak√|S|
∑

x∈S
|x〉 + bk√

N − |S|
∑

x/∈S
|x〉

where L is the loop (oracle and diffusion operator) in Grover’s algorithm.

123

91 Page 26 of 29 H. de Boutray et al.

The oracle is a reflection about (
∑

x∈S |x〉)⊥ = ∑
x/∈S |x〉 and the diffusion operator

is a reflection about |+〉⊗n . The composition of these two symmetries is a rotation
whose angle θ is the double of the angle between

∑
x/∈S |x〉 and |+〉⊗n . So,

|+〉⊗n = 1√|S| sin(
θ

2
)
∑

x∈S
|x〉 + 1√

N − |S| cos(
θ

2
)
∑

x/∈S
|x〉

1√
N

(
∑

x∈S
|x〉 +

∑

x/∈S
|x〉

)

= 1√|S| sin(
θ

2
)
∑

x∈S
|x〉 + 1√

N − |S| cos(
θ

2
)
∑

x/∈S
|x〉

1√
N

∑

x∈S
|x〉 = 1√|S| sin(

θ

2
)
∑

x∈S
|x〉

1√
N

= 1√|S| sin(
θ

2
)

sin(
θ

2
) =

√ |S|
N

.

The fact that L is a rotation of angle θ gives ak = sin (θk) and bk = cos (θk) with
θk = kθ + θ/2. Equation (1) then comes from αk = 1√|S| sin(

2k+1
2 θ) and βk =

1√
N−|S| cos(

2k+1
2 θ).

With this, we can now take α̃k = αk − βk and β̃k = 2n/2βk which gives us

|ϕk〉 = αk

∑

x∈S
|x〉 + βk

∑

x/∈S
|x〉

= (αk − βk)
∑

x∈S
|x〉 + βk

N−1∑

x=0

|x〉

= α̃k

∑

x∈S
|x〉 + β̃k |+〉⊗n

since |+〉⊗n =
(

1√
2

)n ∑N−1
x=0 |x〉. ��

Proposition 3 In Proposition 2, α̃k increases for k between 0 and π
4

√
N
|S| − 1

2 and β̃k

decreases on the same interval.

Proof The optimal number of iterations of the loop L in Grover’s algorithm is the
smallest value kopt of k such that ak = 1, i.e., θkopt = π/2.With |S| � N , sin (θ/2) =√|S|/N gives θ ≈ 2

√|S|/N and θk ≈ (2k + 1)
√|S|/N . Finally (2kopt + 1)

√|S|/N
optimally approximates π/2 if kopt =

⌊
π
4

√
N
|S| − 1

2

⌉
=

⌊
π
4

√
N
|S|

⌋
.

Moreover, ak = sin (θk) and αk = 1√|S|ak are increasing and bk = cos (θk) and

βk = 1√
N−|S|bk are decreasing for k from 0 to

(
π
4

√
N
|S| − 1

2

)
. From the expressions

α̃k = αk − βk and β̃k = 2n/2βk , we get the result of the proposition. ��

123

Mermin polynomials for non-locality and entanglement… Page 27 of 29 91

Appendix B Cayley hyperdeterminant12222

Let |ϕ〉 = ∑
i, j,k,l∈{0,1} ai, j,k,l |i jkl〉 be a four-qubit state. The algebra of polynomial

invariants for the four-qubit Hilbert space can be generated by the four polynomials
H , L , M and D defined as follows [21]:

H = a0000a1111 − a1000a0111 − a0100a1011 + a1100a0011
−a0010a1101 + a1010a0101 + a0110a1001 − a1110a0001

is an invariant of degree 2.

L =

∣
∣
∣
∣
∣
∣
∣
∣

a0000 a0010 a0001 a0011
a1000 a1010 a1001 a1011
a0100 a0110 a0101 a0111
a1100 a1110 a1101 a1111

∣
∣
∣
∣
∣
∣
∣
∣

and M =

∣
∣
∣
∣
∣
∣
∣
∣

a0000 a0001 a0100 a0101
a1000 a1001 a1100 a1101
a0010 a0011 a0110 a0111
a1010 a1011 a1110 a1111

∣
∣
∣
∣
∣
∣
∣
∣

are two invariants of degree 4.
Consider the partial derivative

bxt := det

(
∂2A

∂ yi∂z j

)

of the quadrilinear form A = ∑
i, j,k,l∈{0,1} ai, j,k,l xi y j zk tl with respect to the variables

y and z. This quadratic formwith variables x and t can be interpreted as a bilinear form
on the three-dimensional space Sym2(C2), i.e., there is a 3× 3 matrix Bxt satisfying

bxt = [x20 , x0x1, x21] Bxt

⎡

⎣
t20
t0t1
t21

⎤

⎦ .

Then D = det(Bxt) is an invariant of degree 6.
Let’s introduce the invariant polynomials

U = H2 − 4(L − M), V = 12(HD − 2LM),

S = 1

12
(U 2 − 2V) and T = 1

216
(U 3 − 3UV + 216D2).

Then the Cayley hyperdeterminant is [21]:

Δ2222 = S3 − 27T 2.

References

1. Alsina, D., Cervera, A., Goyeneche, D., Latorre, J.I., Życzkowski, K.: Operational approach to Bell
inequalities: application to qutrits. Phys. Rev. A 94(3), 032102 (2016)

123

91 Page 28 of 29 H. de Boutray et al.

2. Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a 5-qubit quantum computer.
Phys. Rev. A 94(1), 012314 (2016)

3. Brunner, N., Gisin, N., Scarani, V.: Entanglement and non-locality are different resources. New J. Phys.
7, 88 (2005)

4. Biham, O., Nielsen, M.A., Osborne, T.J.: Entanglement monotone derived from Grover’s algorithm.
Phys. Rev. A 65(6), 062312 (2002)

5. Batle, J., Ooi, C.H.R., Farouk, A., Alkhambashi, M.S., Abdalla, S.: Global versus local quantum
correlations in the Grover search algorithm. Quantum Inf. Process. 15(2), 833–849 (2016)

6. Braunstein, S.L., Pati, A.K.: Speed-up and entanglement in quantum searching. Quantum Inf. Comput.
2(5), 399–409 (2002)

7. Chakraborty, S., Banerjee, S., Adhikari, S., Kumar, A.: Entanglement in the Grover’s search algorithm.
arXiv:1305.4454 [quant-ph] (2013)

8. Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body
non-separability. Phys. Rev. Lett. 88(17), 170405 (2002)

9. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable
theories. Phys. Rev. Lett. 23(15), 880–884 (1969)

10. Ekert, A., Jozsa, R.: Quantum algorithms: entanglement-enhanced information processing. Philos.
Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 356, 1769–1782 (1998)

11. Grover, L.K.:AFast quantummechanical algorithm for database search. In: Proceedings of theTwenty-
Eighth Annual ACM Symposium on Theory of Computing, STOC ’96. New York, NY, USA. ACM,
pp. 212–219 (1996)

12. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474(1), 1–75 (2009)
13. Gour, G., Wallach, N.R.: On symmetric SL-invariant polynomials in four qubits. In: Howe, R., Hun-

ziker, M., Willenbring, J.F. (eds.) Symmetry: Representation Theory and Its Applications. Honor of
Nolan R. Wallach, Progress in Mathematics, pp. 259–267. Springer, New York, NY (2014)

14. Holweck, F., Jaffali, H., Nounouh, I.: Grover’s algorithm and the secant varieties. Quantum Inf. Process.
15(11), 4391–4413 (2016)

15. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580
(1969)

16. Higuchi, A., Sudbery, A.: How entangled can two couples get? Phys. Lett. A 273(4), 213–217 (2000)
17. Jaffali, H., Holweck, F.: Quantum Entanglement involved in Grover’s and Shor’s algorithms: the four-

qubit case. Quantum Inf. Process. 18(5), 133 (2019)
18. Jozsa, R., Linden, N.: On the role of entanglement in quantum computational speed-up. Proc. R. Soc.

Lond. Ser. A Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003)
19. Kendon, V.M., Munro, W.J.: Entanglement and its role in Shor’s algorithm. Quantum Inf. Comput.

6(7), 630–640 (2006)
20. Lavor, C., Manssur, L.R.U., Portugal, R.: Grover’s Algorithm: Quantum Database Search.

arXiv:quant-ph/0301079 (2003)
21. Luque, J.-G., Thibon, J.-Y.: The polynomial invariants of four qubits. Phys. Rev. A 67(4), 042303

(2003)
22. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states.

Phys. Rev. Lett. 65(15), 1838–1840 (1990)
23. Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43(9),

4273–4278 (2002)
24. Miyake, A., Wadati, M.: Multipartite entanglement and hyperdeterminants. Quantum Inf. Comput.

2(7), 540–555 (2002)
25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th, Anniversary

edn. Cambridge University Press, Cambridge (2010)
26. Osterloh, A., Siewert, J.: Entanglementmonotones andmaximally entangled states inmultipartite qubit

systems. Int. J. Quantum Inf. 04(03), 531–540 (2006)
27. Rossi,M., Bruß, D.,Macchiavello, C.: Scale invariance of entanglement dynamics inGrover’s quantum

search algorithm. Phys. Rev. A Atom. Mol. Opt. Phys. 87(2), 1–5 (2013)
28. Shimony, A.: Degree of entanglement. Ann. N. Y. Acad. Sci. 755(1), 675–679 (1995)
29. Shor, P.W., Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings

35th Annual Symposium on Foundations of Computer Science. Santa Fe, NM, USA, : IEEE Comput.
Press, Soc, pp. 124–134 (1994)

123

http://arxiv.org/abs/1305.4454
http://arxiv.org/abs/quant-ph/0301079

Mermin polynomials for non-locality and entanglement… Page 29 of 29 91

30. Shimoni,Y., Shapira,D., Biham,O.: Entangled quantum states generated byShor’s factoring algorithm.
Phys. Rev. A 72(6), 062308 (2005)

31. Toth, G., Guehne, O.: Entanglement detection in the stabilizer formalism. Phys. Rev. A 72(2), 022340
(2005)

32. Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different
ways. Phys. Rev. A 65(5), 052112 (2002)

33. Wei, T.-C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and
multipartite quantum states. Phys. Rev. A 68(4), 042307 (2003)

34. Ying, M.: Floyd–Hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. 33(6), 1–49
(2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Mermin polynomials for non-locality and entanglement detection in Grover's algorithm and Quantum Fourier Transform
	Abstract
	1 Introduction
	2 Background
	2.1 Grover's algorithm
	2.2 Properties of states in Grover's algorithm
	2.3 Quantum Fourier Transform (QFT)
	2.4 Mermin polynomials and Mermin inequalities

	3 Method and results
	3.1 Grover's algorithm properties
	3.1.1 Method
	3.1.2 Results

	3.2 Quantum Fourier Transform
	3.2.1 Method
	3.2.2 Results

	4 Implementation
	4.1 Grover's algorithm implementation
	4.1.1 Execution
	4.1.2 Optimization
	4.1.3 Evaluation

	4.2 Quantum Fourier Transform implementation
	4.2.1 Execution
	4.2.2 Evaluation

	4.3 Implementation recap

	5 Conclusion
	Acknowledgements
	Appendix A Explicit states for Grover's algorithm
	Appendix B Cayley hyperdeterminant Δ2222
	References

