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Abstract
Recently, a new class of monogamy relations (actually, exponentially many) was pro-
vided by Christopher Eltschka et al. in terms of squared concurrence. Their approach
is restricted to the distribution of bipartite entanglement shared between different sub-
systems of a global state. We have critically analysed those monogamy relations in
three as well as in four-qubit pure states using squared negativity.We have been able to
prove that in the case of pure three-qubit states those relations are always true in terms
of squared negativity. However, if we consider the pure four-qubit states, the results
are not always true. Rather, we find opposite behaviour in some particular classes of
four-qubit pure states where some of the monogamy relations are violated. We have
provided analytical and numerical evidences in support of our claim.

Keywords Entanglement · Monogamy · Negativity

1 Introduction

Entanglement is one of themost important ideas in quantum information theory and it is
in fact themain formof quantumcorrelationwhich shows clear advantages over several
aspects of classical theory. Classification and characterization of entanglement have
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always been a challenging field of research. One important feature of entanglement
is that it could be used as a resource that allows one to perform certain quantum
information tasks, e.g. dense coding [1], teleportation [2], quantum computation [3,4],
etc. Now, as far as the number of parties is concerned, bipartite entanglement is well
understood at least for two-qubit system, whereas for multipartite systems only few
ideas are available.

Monogamy is one of the most important properties of entanglement that provide
us the information about the distribution of entanglement in a multipartite system
[5]. Monogamy was possibly first studied by Coffman et al. [6] in terms of squared
concurrence. Concurrence is defined as a bipartite measure of entanglement. For a
two-qubit state ρAB , concurrence is defined by,C(ρAB) = max{0, λ1−λ2−λ3−λ4}
where λ1, λ2, λ3, λ4 are the square root of the eigenvalues of the matrix ρAB((σy ⊗
σy)ρ

∗
AB(σy⊗σy)) in decreasing order, σy is the Pauli spinmatrix and ρ∗

AB is conjugate
of ρAB . For pure bipartite states, concurrence can be computed through C(ρAB) =
2
√
detρA where ρA is obtained from ρAB by taking partial trace over the subsystem

B. We will use the notation CAB instead of C(ρAB) for any state ρAB . The CKW
(Coffman, Kundu, Wootters) inequality [6] is given by,

C2
A|BC ≥ C2

AB + C2
AC (1)

where C denotes the measure of concurrence for a bipartite state. The meaning of
the above CKW inequality could be stated as: sum of the amount of entanglement
(measured in terms of square of the concurrence) shared between parties A, B and the
amount of entanglement shared between the parties A, C cannot exceed the amount
of entanglement between the parties A and BC. They had also conjectured that the
extension of their monogamy relation for n-qubit states would be as follows:

C2
A1|A2A3...An

≥ C2
A1A2

+ C2
A1A3

+ · · · . + C2
A1An

. (2)

This conjecture later proved by Osborne et al. [7]. Since the introduction of CKW
inequality, several works had been done on monogamy where CKW inequality is
modified, generalized and also replaced by other entanglement measures [8–12]. All
such investigations enable us to understand the entanglement behaviour of composite
quantum systemsmore profoundly. In [13,14], the authors tried to describemonogamy
property without using CKW type inequality [6]. Recently, C. Eltschka et. al. [15]
provided a new kind of monogamy relation for multipartite (say, N number of parties)
d dimensional pure states. They adopt the methodology that any functional relation
between measures of entanglement in different subsets of parties could be considered
as a monogamy relation because the free distribution of entanglement between differ-
ent parties has been constrained by it. The monogamy relations in the compact form
are [15] given by,

∑

��=S⊂{1,2,...,N }
(−1)|S∩T |+1C2

S|Sc ≥ 0 (3)
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where � �= T ⊆ {1, 2, . . . , N }. There are actually 2N − 1 number of monogamy
relations where we find one inequality for each T , and when |T | (the cardinality of T )
is odd, we shall get only the trivial inequality 0 ≥ 0. Inspired by their results, we have
studied in this paper three-qubit and four-qubit systems through another quantity, the
squared negativity.

Negativity is an important measure of entanglement [16]. It is an entanglement
monotone and invariant under local unitary operations. The negativity is a rare bipartite
entanglement measure which is easy to compute for pure as well for mixed bipartite
states. From Peres criterion [17], it is known that for a separable state partial transpose
of its densitymatrix will also be a densitymatrix. Partial transpose in general preserves
hermiticity but not positivity. Thus, after taking partial transpose on a density matrix
representing a bipartite state, if we obtain at least one negative eigenvalue, then we
could certainly say that the state is an entangled state. The definition of negativity for
a bipartite state ρAB (pure or mixed) is given by,

N (ρAB) = ‖ρtA
AB‖1 − 1

2
(4)

where ‖X‖1 = tr
√
XX† and partial transposition is taken with respect to subsystem

A. In other words, the negativity is the absolute sum of negative eigenvalues of ρ
tA
AB

and it measures how much ρ
tA
AB fails to be a positive definite matrix. We will use the

notation NAB instead of N (ρAB).
We have organized our paper as follows: In Sect. 2, we will discuss motivation of

our work. In Sects. 3 and 4, we will discuss monogamy relations for three-qubit and
four-qubit pure states, respectively. Section 5 ended with conclusion.

2 Motivation

The generalized T inversion map [15] is,

IT (ρ) =
∑

S⊆{1,2,...,N }
(−)|S∩T |(TrScρ) ⊗ ISc (5)

where T is any subset of {1, 2, . . . , N }. Using positivity property of IT (.), for two
semi definite positive operator M1 and M2 one has

TrS[M1IT (M2)] ≥ 0. (6)

As TrS[(M1)TrSc(M2)] = TrS[TrSc (M1)TrSc (M2)] putting Eq. (5) in (6), one will
get

∑

S⊆{1,2,...,N }
(−)|S∩T |TrS[TrSc(M1)TrSc (M2)] ≥ 0 (7)
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where T is any subset of {1, 2, . . . , N }. This inequality is called shadow inequality
[18,19].

Now, if one consider M1 = M2 = |ψN ,D〉 an N partite D dimensional pure state,
then one can directly get the monogamy inequalities,

∑

��=S⊂{1,2,...,N }
(−1)|S∩T |+1C2

S|Sc ≥ 0 (8)

where � �= T ⊆ {1, 2, . . . , N } and here CS|Sc is concurrence of the pure state along
the bipartition. So, the relation (8) is direct consequences of shadow inequality or
rather the algebraic property of generalized T inverter.

Again, the shadow enumerator polynomial [18] is,

SM1M2(x, y) =
N∑

j=0

S j (M1M2)x
N− j y j (9)

where the coefficient is defined as follows

S j (M1M2) =
∑

|T |= j

∑

S⊆{1,...,N }
(−1)|S∩T c|A/

S(M1, M2) (10)

(thefirst sum is over all subset of size j) andA/
S(M1, M2) = TrS[TrSc (M1)TrSc(M2)].

If in particular M1 = M2 = |ψN ,D〉, then the inequalities (8) will imply that
S j (|ψN ,D〉) ≥ 0.

Further, S j (M1M2) can be written in terms of coefficient of Shor–Laflamme enu-
merator [20] which is

S j (M1M2) =
N∑

l=0

KN− j (l; N )A/
l (M1, M2) (11)

where KN− j (l; N ) is the Krawtchouk polynomial

Km(l; N ) =
∑

α

(−1)α
(
n − l

m − α

)(
l

α

)
.

Now, when M1 = M2 = |ψN ,D〉, then A/
l (M1, M2) = (N

l

)
D−min(l,N−l).

Therefore,

S j (|�N ,D〉) =
N∑

l=0

KN− j (l; N )

(
N

l

)
D−min(l,N−l). (12)

If for a pure state |ψN ,D〉, S j (|ψN ,D〉) becomes negative, then an Absolute Maximally
Entangled (AME) [20] state on N parties having D dimension cannot exist as it will
contradict S j (|ψN ,D〉) ≥ 0.
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A particular example is |ψ4,2〉, where S0(|ψ4,2〉) = ∑4
l=0(−1)l

(4
l

)
2−min(l,4−l) =

− 1
2 < 0. Therefore, there does not exist a 4 partite 2 local dimensional AME state

[20].
The inequalities (8) are very important class of monogamy inequalities, as because

in one hand, it is derived from an algebraic property of generalized T inverter and on
the other hand, it helps one in excluding the existence of AME states in N partite D
local dimensions. A simple question that arises from their work is whether this type
of monogamy holds for other entanglement measures or not. In our work, we have
examined the above set of monogamy relations using negativity as an entanglement
measure for three and four-qubit pure states.

3 Monogamy relations for three-qubit pure states

We start this section with a relation between negativity and concurrence.

Theorem 1 [10] For an N partite pure state |ψA1A2...AN 〉 in a 2 ⊗ 2 ⊗ . . . ⊗ 2(N
times) system, the negativity of bipartition A1|A2 . . . AN is half of its concurrence, i.e.
NA1|A2...AN = 1

2CA1|A2...AN .

Proof is given in “Appendix 3”.
We will use the above theorem to form monogamy relations for three- and four-

qubit systems from relation (3) with respect to squared negativity. For a three-qubit
pure state, from monogamy relation (3), we have

∑

φ �=S⊂{1,2,3}
(−1)|S∩T |+1C2

S|Sc ≥ 0 (13)

where we will get one inequality for each � �= T ⊆ {1, 2, 3}, i.e. total 23 − 1 =
7 monogamy relations. When |T | is odd we shall obtain trivial inequality 0 ≥ 0.
Expanding (13) for T = {1, 2}, T = {1, 3}, T = {2, 3}, we get, respectively

C2
1|23 + C2

2|13 ≥ C2
3|12 (14)

C2
1|23 + C2

3|12 ≥ C2
2|13 (15)

C2
2|13 + C2

3|12 ≥ C2
1|23. (16)

Now, using Theorem 1 for 2⊗2⊗2 dimensional pure states, we haveCi | jk = 2×Ni | jk
and thus from (14), (15), (16) we can write,

N 2
1|23 + N 2

2|13 ≥ N 2
3|12 (17)

N 2
1|23 + N 2

3|12 ≥ N 2
2|13 (18)

N 2
2|13 + N 2

3|12 ≥ N 2
1|23. (19)
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The above three monogamy inequalities can also be written compactly as

∑

φ �=S⊂{1,2,3}
(−1)|S∩T |+1N 2

S|Sc ≥ 0 (20)

where one inequality is associated for each � �= T ⊂ {1, 2, 3}, i.e. total (23 − 2) = 6
inequalities. When |T | is odd we shall get only the trivial inequality 0 ≥ 0. Thus,
Theorem 1 completely determines the monogamy relations in terms of squared nega-
tivity from the relation (13). Next, we will consider pure four-qubit states and observe
whether it is similar to that of three-qubit case or not.

4 Monogamy relations for four-qubit pure states

For a four-qubit pure state, relation (3) looks like

∑

φ �=S⊂{1,2,3,4}
(−1)|S∩T |+1C2

S|Sc ≥ 0 (21)

where one inequality is associated for each� �= T ⊆ {1, 2, 3, 4}, i.e. total 24−1 = 15
monogamy relations, out of which eight are trivial inequalities 0 ≥ 0 when |T | is an
odd number. The inequalities (21) are given in details in “Appendix 1”. We now state
another relation between concurrence and negativity in the following theorem.

Theorem 2 For an N partite pure state |ψA1A2...AN 〉 in a d1⊗d2⊗. . .⊗dN dimensional
system where each di > 2 ∀i = 1, 2, . . . , N, NA1|A2...AN > 1

2CA1|A2...AN .

Proof is given in “Appendix 3”.
As stated in Theorem 2, the replacement of concurrence by negativity in the relation

(21) is not always possible like in the three-qubit case, since in some expressions, the
focus party is of dimension 4, hence Theorem 1 will not be applicable to such cases.

We now denote δi , ∀i = 1, 2, . . . , 15 as follows,

δi =
∑

φ �=S⊂{1,2,3,4}
(−1)|S∩T |+1N 2

S|Sc (22)

where we obtain, for each � �= T ⊆ {1, 2, 3, 4}, total 24 − 1 = 15 expression.
When |T | is odd we shall get zero in the right hand side of (22). We take the nonzero
expressions as δ1, δ2, . . . δ7 and δ8 = δ9 = . . . = δ15 = 0. Expansion of expressions
(22) are given in “Appendix 1”.

Whenever δi ≥ 0, ∀i = 1, 2, . . . , 7, we have the relations (30)–(36), given in
“Appendix 1”, are true. As there exist infinitely many SLOCC inequivalent classes
for four-qubit pure states, we will consider the four-qubit generic class [21] and other
important four-qubit classes to check the sign of δi ’s ∀i = 1, 2, . . . , 7.
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4.1 Monogamy relations in some particular classes of four-qubit pure states

Generic Class: The generic class of pure states is dense under SLOCC in four-qubit
state space. It even contains uncountable SLOCC inequivalent subclasses [22]. We
denote this class by A and is defined as

A = {au1 + bu2 + cu3 + du4 | a, b, c, d ∈ C

and |a|2 + |b|2 + |c|2 + |d|2 = 1}

where u1 ≡ |�+〉|�+〉, u2 ≡ |�−〉|�−〉, u3 ≡ |�+〉|�+〉, u4 ≡ |�−〉|�−〉, |�±〉 =
|00〉±|11〉√

2
and |�±〉 = |01〉±|10〉√

2
We now consider two special subclasses of generic

class [22] of four-qubit pure states

B = {au1 + au2 + cu3 + cu4 | a, c ∈ C

and 2(|a|2 + |c|2) = 1}

and

D = {au1 + bu2 + cu3 + du4 | a, b, c, d ∈ R

and |a|2 + |b|2 + |c|2 + |d|2 = 1}

For states in subclassB, we have N1|234 = N2|134 = N3|124 = N4|123 = 1
2 , N12|34 =

N14|23 = |a|2 + |c|2 + 4|ac| and N13|24 = |a2 − c2|. So,
δ1 = δ2 = δ5 = δ6 = |a2 − c2|2 ≥ 0,
δ3 = δ4 = |a|4 + |c|4 + 16|ac|[|a|2 + |c|2] + 2[18|ac|2 + Re(a2c∗2)] ≥ 0, as

Re(a2c∗2) ≤ |a2c∗2| = |a2c2|.
Due to the difficulties in finding the sign of δ7, numerical simulation (Fig. 1) has

been performed with 105 random pure states from class B, which clearly shows that
δ7 < 0 for most of the cases.

In particular, if we take a and c as real numbers, then we have obtained the graph
of δ7 versus a (Fig. 2).

For the states in subclass D (see details in “Appendix 2”) due to the difficulty in
computation of sign of δi , ∀i = 1, 2, . . . , 7, we present numerical evidences using
105 random pure states from class D which shows δ1 = δ2 ≥ 0 (Fig. 3),

Also, δ3 = δ4 ≥ 0 & δ5 = δ6 ≥ 0 (Figs. 8, 9 in “Appendix 2”) in all cases. But,
numerical evidences for δ7 (Fig. 4) show that it is negative for most of the cases except
for a small number.

Cluster States: Cluster states are used in quantum nonlocality test [23], quantum
error correction code [24], etc. Four-qubit cluster states [25] can be written as

|ψ〉 = a|0000〉 + b|0011〉 + c|1100〉 − d|1111〉
where a, b, c, d ∈ C and |a|2+|b|2+|c|2+|d|2 = 1. Calculating negativity for this

state, we observe that δi ≥ 0 ∀i = 1, 2, . . . , 6 (see “Appendix 2”). For δ7, numerical
simulation with 105 random states from this class has been performed (Fig. 5), which
shows that for most of the cases δ7 < 0.
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Fig. 1 δ7 for states in B

Fig. 2 a vs δ7 for state in B

Dicke States: A four-qubit Dicke state [26] is given by,

|S(4, k)〉 =
√
k!(4 − k)!

4!
∑

permutation

|0〉⊗(4−k)|1〉⊗k

where the summation is over all possible permutations of the product state having
k(≤ 4) qubit in excited state |1〉 and remaining (4 − k) qubits are in ground state.
|S(4, 0)〉 = |0000〉 and |S(4, 4)〉 = |1111〉, are separable states. |S(4, 1)〉 = |W 〉 and
|S(4, 3)〉 = |W̃ 〉. For |W 〉 and |W̃ 〉, we get, δi = 1

4 ∀i = 1, 2, . . . , 6 and δ7 = 0
(see “Appendix 2”). When k = 2, we get |S(4, 2)〉 = (|0011〉 + |1100〉 + |0110〉 +
|1001〉 + |1010〉 + |0101〉)/√6. For this state, we have δi = 25

36 > 0, ∀i = 1, 2, . . . , 6
and this time, δ7 = − 13

12 < 0 (see “Appendix 2”).

123
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Fig. 3 δ1 for states in D

Fig. 4 δ7 for states in D

Generalized GHZ State: Four-qubit generalized GHZ state is |GGHZ〉 =
a|0000〉 + b|1111〉 where a, b ∈ C and |a|2 + |b|2 = 1. Simple calculations have
yielded that N1|234 = N2|134 = N3|124 = N4|123 = N12|34 = N13|24 = N14|23 = |ab|.
Hence δi = |ab|2 > 0, ∀i = 1, 2, . . . , 7.

Generalized W State: Four-qubit generalized W state is given by, |GW 〉 =
a|0001〉 + b|0010〉 + c|0100〉 + d|1000〉 where a, b, c, d ∈ C and |a|2 + |b|2 +
|c|2 + |d|2 = 1. Simple calculations (see “Appendix 2”) have revealed that δi ≥ 0
∀i = 1, 2, . . . , 6 and δ7 = 0. Obviously, the results forW state can be derived directly
from the generalized W state.

123



30 Page 10 of 18 P. Char et al.

Fig. 5 δ7 for cluster states

4.2 Monogamy relations in superposition of some pure states

Superposition of |W 〉 and |W̃ 〉 states: Consider the superposition of |W 〉&|W̃ 〉 as
|ψ〉 = a|W̃ 〉 + beiθ |W 〉 where a, b ∈ (0, 1), a2 + b2 = 1& θ ∈ [0, 2π). Here,
N1|234 = N2|134 = N3|124 = N4|123 = 1

4

√
3 + 4a2b2 and N12|34 = N13|24 =

N14|23 = 1
2 . Therefore, we have δi = 1

4 > 0 ∀i = 1, 2, . . . , 6 and δ7 = a2b2 > 0.
Superposition of |GW 〉 and |0000〉: Suppose, |ψ〉 = √

p|GW 〉 + √
1 − p|0000〉

where 0 < p < 1, |GW 〉 = a|0001〉 + b|0010〉 + c|0100〉 + d|1000〉, a, b, c, d ∈ C

such that |a|2+|b|2+|c|2+|d|2 = 1. For this case, we have δi ≥ 0, ∀i = 1, 2, . . . , 6
and δ7 = 0 (see “Appendix 2”).

Superposition of |GGHZ〉 and |W 〉: Consider, |ψ〉 = c1(a1|0000〉 + b1|1111〉) +
c2(|0001〉+ |0010〉+ |0100〉+ |1000〉)/2, a1, b1, c1, c2 ∈ C such that |a1|2 +|b1|2 =
1 and |c1|2 + |c2|2 = 1. Considering c1a1, c1b1, c2 as a, b, c, respectively |ψ〉 =
a|0000〉 + b|1111〉 + c

2 (|0001〉 + |0010〉 + |0100〉 + |1000〉) where a, b, c ∈ C such
that |a|2 + |b|2 + |c|2 = 1. For this case we have δi ≥ 0, ∀i = 1, 2, . . . , 6 (see
“Appendix 2”). Due to the difficulty in computation of sign of δ7, numerical evidence
(Fig. 6) is presented using 105 random pure states from this class. Figure 6 clearly
explains that δ7 can be positive, negative or even zero for states in this superposed
class (Fig. 6).

Particularly assuming, a = b = √
p/2 and c = √

1 − p where p ∈ (0, 1) and we
have obtained p vs δ7 graph (Fig. 7).

For the four-qubit case, we consider different physically important pure states and
some subclasses of generic class. It is observed that the relations (30)–(35) are well
satisfied for all the mentioned classes and states in this paper, but peculiar behaviour
of the relation (36) have been noticed here. We have proved that the relation (36) holds
for generalized GHZ state, generalized W state, superposition of |W 〉 and |W̃ 〉 state,
superposition of generalizedW and ground state |0000〉, whereas violation is observed
in subclassesB,D of four-qubit pure generic class, Dicke |S(4, 2)〉 and by cluster state.
Themost counter-intuitive result has been noticed through the superposition ofW state
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Fig. 6 δ7 for superposition states of |GGHZ〉 and |W 〉

Fig. 7 p vs δ7 for superposition of |GHZ〉 and |W 〉

and generalized GHZ state where we see (36) has been violated as well as satisfied for
large number of random states. Another important observation of our work enlightens
the fact that superposition of states also plays a crucial role on status of (36), contrary
to (30)–(35). δ7 = 0 for |W 〉 and |W̃ 〉 but for their superposition δ7 > 0. Similar,
peculiar behaviour of (36) has been observed for superposition of |GGHZ〉 and |W 〉,
where δ7 changes sign near p = 0.55 (approx.) (Fig. 7), i.e. in this case, (36) violated
and satisfied depending on the value of p.

5 Conclusion

In conclusion, we have analysed a new set of monogamy relations in terms of squared
negativity for three-qubit and four-qubit pure states. With the help of theorem 1, we
have proved three monogamy relations (17)–(19) analytically and compactly. We can
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write them as

∑

φ �=S⊂{1,2,3}
(−1)|S∩T |+1N 2

S|Sc ≥ 0

where we will get one inequality for each � �= T ⊂ {1, 2, 3}. In four-qubit case for
squared negativity, we see that the six relations (30)–(35) plus eight trivial inequalities
(0 ≥ 0), i.e. total fourteen monogamy relations of type

∑

φ �=S⊂{1,2,3,4}
(−1)|S∩T |+1N 2

S|Sc ≥ 0

where we will get one inequality for each � �= T ⊂ {1, 2, 3, 4} are always true
in all the considered cases of this paper. We have observed that for three-qubit case
when T = {1, 2, 3}, we get a trivial inequality 0 ≥ 0 and in four-qubit case when
T = {1, 2, 3, 4}, the corresponding inequities (36) show different behaviours for
different classes. That is why we have excluded the case when T is the set of all
parties. We conjecture that for N -qubit pure states the monogamy relations are

∑

φ �=S⊂{1,2,...,N }
(−1)|S∩T |+1N 2

S|Sc ≥ 0

where we will get one inequality for each � �= T ⊂ {1, 2, . . . , N }, i.e. total (2N − 2)
inequalities, and when |T | is odd, we will get the trivial inequality 0 ≥ 0. We hope
our result will provide further insight into entanglement distribution of multipartite
systems and could be applied on possible areas of quantum key distributions and
quantum cryptography.
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Appendix 1

C2
1|234 + C2

2|134 + C2
13|24 + C2

14|23 ≥ C2
3|124 + C2

4|123 + C2
12|34 f or T = {1, 2} (23)

C2
3|124 + C2

4|123 + C2
13|24 + C2

14|23 ≥ C2
1|234 + C2

2|134 + C2
12|34 f or T = {3, 4} (24)

C2
1|234 + C2

3|124 + C2
12|34 + C2

14|23 ≥ C2
4|123 + C2

2|134 + C2
13|24 f or T = {1, 3} (25)

C2
4|123 + C2

2|134 + C2
12|34 + C2

14|23 ≥ C2
1|234 + C2

3|124 + C2
13|24 f or T = {2, 4} (26)

C2
1|234 + C2

4|123 + C2
12|34 + C2

13|24 ≥ C2
2|134 + C2

3|124 + C2
14|23 f or T = {1, 4} (27)

C2
2|134 + C2

3|124 + C2
12|34 + C2

13|24 ≥ C2
1|234 + C2

4|123 + C2
14|23 f or T = {2, 3} (28)

C2
1|234 + C2

2|134 + C2
3|124 + C2

4|123 ≥ C2
12|34 + C2

13|24 + C2
14|23 f or T = {1, 2, 3, 4} (29)

δ1 = N 2
1|234 + N 2

2|134 + N 2
13|24 + N 2

14|23 − N 2
3|124 − N 2

4|123 − N 2
12|34 f or T = {1, 2}
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δ2 = N 2
3|124 + N 2

4|123 + N 2
13|24 + N 2

14|23 − N 2
1|234 − N 2

2|134 − N 2
12|34 f or T = {3, 4}

δ3 = N 2
1|234 + N 2

3|124 + N 2
12|34 + N 2

14|23 − N 2
4|123 − N 2

2|134 − N 2
13|24 f or T = {1, 3}

δ4 = N 2
4|123 + N 2

2|134 + N 2
12|34 + N 2

14|23 − N 2
1|234 − N 2

3|124 − N 2
13|24 f or T = {2, 4}

δ5 = N 2
1|234 + N 2

4|123 + N 2
12|34 + N 2

13|24 − N 2
2|134 − N 2

3|124 − N 2
14|23 f or T = {1, 4}

δ6 = N 2
2|134 + N 2

3|124 + N 2
12|34 + N 2

13|24 − N 2
1|234 − N 2

4|123 − N 2
14|23 f or T = {2, 3}

δ7 = N 2
1|234 + N 2

2|134 + N 2
3|124 + N 2

4|123 − N 2
12|34 − N 2

13|24 − N 2
14|23 f or T = {1, 2, 3, 4}

δ8 = δ9 = . . . = δ15 = 0 when |T | is odd number .

N 2
1|234 + N 2

2|134 + N 2
13|24 + N 2

14|23 ≥ N 2
3|124 + N 2

4|123 + N 2
12|34 f or T = {1, 2} (30)

N 2
3|124 + N 2

4|123 + N 2
13|24 + N 2

14|23 ≥ N 2
1|234 + N 2

2|134 + N 2
12|34 f or T = {3, 4} (31)

N 2
1|234 + N 2

3|124 + N 2
12|34 + N 2

14|23 ≥ N 2
4|123 + N 2

2|134 + N 2
13|24 f or T = {1, 3} (32)

N 2
4|123 + N 2

2|134 + N 2
12|34 + N 2

14|23 ≥ N 2
1|234 + N 2

3|124 + N 2
13|24 f or T = {2, 4} (33)

N 2
1|234 + N 2

4|123 + N 2
12|34 + N 2

13|24 ≥ N 2
2|134 + N 2

3|124 + N 2
14|23 f or T = {1, 4} (34)

N 2
2|134 + N 2

3|124 + N 2
12|34 + N 2

13|24 ≥ N 2
1|234 + N 2

4|123 + N 2
14|23 f or T = {2, 3} (35)

N 2
1|234 + N 2

2|134 + N 2
3|124 + N 2

4|123 ≥ N 2
12|34 + N 2

13|24 + N 2
14|23 f or T = {1, 2, 3, 4} (36)

Appendix 2

The subclass of four-qubit pure generic state D is D = {au1 + bu2 + cu3 +
du4 | a, b, c, d ∈ R and |a|2 + |b|2 + |c|2 + |d|2 = 1}

For the states in subclass D we have

N1|234 = N2|134 = N3|124 = N4|123 = 1

2
,

N13|24 = {|(a + b)2 − (c + d)2| + |(a − b)2 − (c − d)2| + |(a + c)2 − (b + d)2|
+|(a − c)2 + (b − d)2| + |(a + d)2 − (b + c)2| + |(a − d)2 − (b − c)2|}/4,

N14|23 = {|(a + b)2 − (c − d)2| + |(a − b)2 − (c + d)2| + |(a + c)2

−(b − d)2| + |(a − c)2 + (b + d)2| + |(a + d)2

−(b − c)2| + |(a − d)2 − (b + c)2|}/4,
N12|34 = |ab| + |ac| + |ad| + |bc| + |bd| + |cd|.

δ1 = δ2 = N 2
13|24 + N 2

14|23 − N 2
12|34,

δ3 = δ4 = N 2
12|34 + N 2

14|23 − N 2
13|24,

δ5 = δ6 = N 2
12|34 + N 2

13|24 − N 2
14|23,

δ7 = 1 − N 2
12|34 − N 2

13|24 − N 2
14|23.

The numerical simulations using 105 pure random states from class D shows that
δ3 = δ4 ≥ 0 (Fig. 8) and δ5 = δ6 ≥ 0 (Fig. 9).

123
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Fig. 8 δ3 for state in subclass D

Fig. 9 δ5 for state in subclass D

Four-qubit cluster state is |ψ〉 = a|0000〉 + b|0011〉 + c|1100〉 − d|1111〉 where
a, b, c, d ∈ C and |a|2 + |b|2 + |c|2 + |d|2 = 1. Negativities of cluster state are
N12|34 = |bc + ad| ,

N13|24 = N14|23 = |ab| + |ac| + |ad| + |bc| + |bd| + |cd|,
N1|234 = N2|134 =

√
(|a|2 + |b|2)(|c|2 + |d|2),

N3|124 = N4|123 =
√

(|a|2 + |c|2)(|b|2 + |d|2).
δ3 = δ4 = N 2

12|34 + N 2
14|23 − N 2

13|24 = |bc + ad|2 ≥ 0,

δ5 = δ6 = N 2
12|34 + N 2

13|23 − N 2
14|24 = |bc + ad|2 ≥ 0,

δ1 = 4(|ac|2 + |bd|2) + (|bc|2 + |ad|2) + 2(|bcad| − Re(bca∗d∗)) + 2L ≥ 0,

123
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δ2 = 4(|ab|2 + |cd|2) + (|bc|2 + |ad|2) + 2(|bcad| − Re(bca∗d∗)) + 2L ≥ 0

[∵ |bc||ad| ≥ Re(bca∗d∗)],

where L is sum of product of {|ab|, |ac|, |ad|, |bc|, |bd|, |cd|} taken two at a time
except the product |bc||ad|.

The |W 〉 and |W̃ 〉 states are

|W 〉 = 1

2
(|0001〉 + |0010〉 + |0100〉 + |1000〉)

|W̃ 〉 = 1

2
(|1110〉 + |1101〉 + |1011〉 + |0111〉)

Negativities of |W 〉 and W̃ states are N1|234 = N2|134 = N3|124 = N4|123 =
√
3
4 and

N12|34 = N13|24 = N14|23 = 1
2 . Hence, δi = 1

4 > 0 ∀i = 1, 2, . . . , 6, but δ7 = 0. The
negativities of |S(4, 2)〉 among different bipartition are N1|234 = N2|134 = N3|124 =
N4|123 = 1

2 and N12|34 = N13|24 = N14|23 = 5
6 . Thus, δi = 25

36 > 0, ∀i = 1, 2, . . . , 6
and δ7 = − 13

12 < 0.
Generalized W state is
|GW 〉 = a|0001〉 + b|0010〉 + c|0100〉 + d|1000〉 where a, b, c, d ∈ C and |a|2 +

|b|2 + |c|2 + |d|2 = 1.
The negativities are

N1|234 = |d|
√

|a|2 + |b|2 + |c|2,
N2|134 = |c|

√
|a|2 + |b|2 + |d|2,

N3|124 = |b|
√

|a|2 + |d|2 + |c|2,
N4|123 = |a|

√
|b|2 + |c|2 + |d|2,

N12|34 =
√

(|a|2 + |b|2)(|c|2 + |d|2),
N13|24 =

√
(|a|2 + |c|2)(|b|2 + |d|2),

N14|23 =
√

(|b|2 + |c|2)(|a|2 + |d|2).

δ1 = 4|c|2|d|2, δ2 = 4|a|2|b|2, δ3 = 4|b|2|d|2, δ4 = 4|a|2|c|2, δ5 =
4|a|2|d|2, δ6 = 4|b|2|c|2 and δ7 = 0. So δi ≥ 0 ∀i = 1, 2, . . . , 6.

Superposition of |GW 〉 and |0000〉 is |ψ〉 = √
p|GW 〉 + √

1 − p|0000〉 where
0 < p < 1,|GW 〉 = a|0001〉 + b|0010〉 + c|0100〉 + d|1000〉, a, b, c, d ∈ C s.t.
|a|2 +|b|2 +|c|2 +|d|2 = 1. The Negativities are, N1|234 = p|d|√|a|2 + |b|2 + |c|2,

N2|134 = p|c|
√

|a|2 + |b|2 + |d|2,
N3|124 = p|b|

√
|a|2 + |d|2 + |c|2,

N4|123 = p|a|
√

|b|2 + |c|2 + |d|2,

123
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N12|34 = p
√

(|a|2 + |b|2)(|c|2 + |d|2),
N13|24 = p

√
(|a|2 + |c|2)(|b|2 + |d|2),

N14|23 = p
√

(|b|2 + |c|2)(|a|2 + |d|2).

δ1 = 4p2|c|2|d|2, δ2 = 4p2|a|2|b|2, δ3 = 4p2|b|2|d|2, δ4 = 4p2|a|2|c|2, δ5 =
4p2|a|2|d|2, δ6 = 4p2|b|2|c|2. So δi ≥ 0 ∀i = 1, 2, . . . , 6.

Superposition of |GGHZ〉 and |W 〉 state is
|ψ〉 = a|0000〉+b|1111〉+ c

2 (|0001〉+|0010〉+|0100〉+|1000〉)where a, b, c ∈ C

s.t. |a|2 + |b|2 + |c|2 = 1.
N1|234 = N2|134 = √

16|a|2|b|2 + 12|b|2|c|2 + 3|c|4/4 = N3|124 = N4|123,
N12|34 = |c|2

2 +
√
2|a|2|b|2 + 2|b|2|c|2 − 2

√|a|2|b|4(|a|2 + 2|c|2) = N13|24 =
N14|23.

Since N1|234 = N2|134 = N3|124 = N4|123 and N12|34 = N13|24 = N14|23 we have
δi = N 2

12|34 ≥ 0∀i = 1, 2, . . . , 6.

Appendix 3

Theorem 1 For an N partite pure state |ψA1A2...AN 〉 in a 2⊗2⊗. . .⊗2(N times) system
the negativity of bipartition A1|A2 . . . AN is half of its concurrence, i.e. NA1|A2...AN =
1
2CA1|A2...AN [10].

Proof For simplicity we write, A1 = A and A2A3 . . . AN = B. By Schmidt decom-
position, any bipartite state can be written as |ψA|B〉 = ∑

i
√

λi |φi
A〉 ⊗ |φi

B〉 where λi

are Schmidt coefficients and {|φi
A〉}, {|φi

B〉} are orthogonal basis for the subsystems A
and B.

Now, ρAB = ∑
i, j

√
λiλ j |φi

A〉
〈
φ
j
A

∣∣∣ ⊗ |φi
B〉

〈
φ
j
B

∣∣∣

�⇒ ρ
tA
AB = ∑

i, j

√
λiλ j |φ j ′

A 〉
〈
φi ′
A

∣∣∣ ⊗ |φi
B〉

〈
φ
j
B

∣∣∣
So, we have

NAB = ‖ρtA
AB‖1 − 1

2

= 1

2
{‖

∑

i, j

√
λiλ j |φ j ′

A 〉
〈
φi ′
A

∣∣∣ ⊗ |φi
B〉

〈
φ
j
B

∣∣∣‖1 − 1}

= 1

2
{‖

∑

i, j

√
λiλ j |φ j ′

A 〉
〈
φ
j
B

∣∣∣ ⊗ |φi
B〉

〈
φi ′
A

∣∣∣‖1 − 1}

= 1

2
{‖

∑

j

√
λ j |φ j ′

A 〉
〈
φ
j
B

∣∣∣ ⊗
∑

i

√
λi |φi

B〉
〈
φi ′
A

∣∣∣‖1 − 1}

= 1

2
{‖Z ⊗ Z†‖1 − 1} [Z =

2∑

j=1

√
λ j |φ j ′

A 〉
〈
φ
j
B

∣∣∣]
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= 1

2
{‖Z‖21 − 1} [‖A ⊗ B‖ = ‖A‖‖B‖]

= 1

2
{(√λ1 + √

λ2)
2 − 1}

= 1

2
× 2

√
λ1λ2 [

2∑

i=1

λi = 1]

= 1

2
× 2

√
det(ρA)

= 1

2
CAB

Hence, NA1|A2...AN = 1
2CA1|A2...AN (proved). ��

Theorem 2 For an N partite pure state |ψA1A2...AN 〉 in a d1⊗d2⊗. . .⊗dN dimensional
system where di > 2 ∀i = 1, 2, . . . , N, NA1|A2...AN ≥ 1

2CA1|A2...AN .

Proof For simplicity we write A1 = A & A2 ⊗ A3 ⊗ . . . ⊗ AN = B. Suppose,
d ≤ min{d1, d2.d3 . . . dN }, then by Schmidt decomposition for any bipartite state,
we write, |�A|B〉 = ∑d

i=1
√

λi |φi
A〉 ⊗ |φi

B〉 where λi are Schmidt coefficients and
{|φi

A〉}, {|φi
B〉} are orthogonal basis for the subsystems A and B, respectively. By the

similar calculations from theorem 1 we can say that ��

NAB = 1

2
{‖Z‖21 − 1} = 1

2
{[

d∑

i=1

√
λi ]2 − 1}

= 1

2
(2

d∑

i �= j=1

√
λiλ j ) ≥ 1

2
× 2 ×

(
d

2

)
√√√√

d∏

i=1

λi ≥ 1

2
× 2

√√√√
d∏

i=1

λi

�⇒ NAB ≥ 1

2
× 2

√
λ1λ2 . . . λd

�⇒ NAB ≥ 1

2
× 2

√
det(ρA)

�⇒ NAB ≥ 1

2
CAB

where Z = ∑d
i=1

√
λi |φi

A〉〈φi
B

∣∣, ‖A ⊗ B‖ = ‖A‖‖B‖ and
∑d

i=1 λi = 1
Hence, NA1|A2...AN ≥ 1

2CA1|A2...AN (proved).
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