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Abstract
Employing an informational quantifier for nonclassicality of bosonic field based on the
Wigner–Yanase skew information, we investigate the dynamics of field nonclassicality
in the Jaynes–Cummings model evolving from several typical initial atom–field states:
coherent states, Fock states, and thermal states for the field, and ground state, excited
state, symmetric superposition state, and maximally mixed state for the atom. We
reveal some intriguing features of the field dynamics and their sensitivity on the initial
states from an informational perspective. The results show that field nonclassicality can
be generated in most cases and exhibits complex dynamic patterns involving collapses
and revivals. A remarkable observation is that the initial coherent field states, assisted
by the atom, can be converted to almost maximally nonclassical field states constrained
by the average photon number, even though all coherent states are the most classical
and possess the same minimal nonclassicality among pure states. The field dynamics
may be exploited to estimate the initial atom as well as the field states, prepare desired
evolving states and process quantum information.

Keywords Nonclassicality · Wigner–Yanase skew information · Jaynes–Cummings
model

1 Introduction

Radiation fields have played an instrumental and ubiquitous role in nature and sci-
ence. While the classical field theory has been immensely successful in technologies,
its quantum extension is necessary for the investigation of the microscopic world, as
evidenced by the inception of quantum mechanics and quantum field theory. Nonclas-
sicality of fields has become a fruitful subject with the rapid development of quantum
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optics and cavity quantum electrodynamics [1–5]. With the emergence of quantum
information [6], nonclassicality of fields has attracted more attention and is playing
an increasingly important role in quantum information processing [1–6].

Nonclassicality (with respect to coherent states) is a fundamental quantum feature
with many theoretical implications and practical applications. In quantum optics, the
coherent states and mixtures of them (i.e., states whose Glauber–Sudarshan distri-
butions are genuine probability distributions) are customarily identified as classical
states [7–9], while other states, including the non-vacuum Fock states, squeezed states,
Schrödinger cat states, etc., are regarded as nonclassical ones [1–3]. In earlier days of
quantum optics, these nonclassical states appear more as theoretical predictions than
realities. However, with the advance of technologies, they have now been routinely
realized and manipulated in laboratory experiments [10,11] and have further been
demonstrated to be indispensable for the successful implementation of many quantum
tasks.

Motivated by both theoretical considerations and experimental needs, characteri-
zation and quantification of nonclassicality have been vigorously pursued in the last
decades from many perspectives due to the richness of the concept. For example,
various quantifiers for nonclassicality have been proposed, such as the Mandel Q
factor [12,13], various distance-based measures employing either different norms or
entropic quantities [14–22], measures based on the algebraic (convex) structure of the
states [23–25], the nonclassical depth [26–30], the negativity of the Wigner functions
[31], the entanglement potentials [32], the Wehrl entropy difference [33], the operator
ordering sensitivity [34], the generalized Wigner–Yanase skew information [35,36],
etc. Moreover, as a quantum feature, nonclassicality has been regarded as a kind of
quantum resource [37], with the conversion between nonclassicality and other quan-
tum features such as entanglement, quantum correlations, and metrological power
being under active studies [32,38–47].

In practice, when fields propagate in the medium, they inevitably interact with other
systems such as the environment, which usually result in exchange of energy and
information. A natural question arises in this context: How is the field nonclassicality
influenced by its interaction with other systems and initial states? This issue, which is of
importance in understanding the generation and evolution of nonclassicality, has been
addressed extensively and intensively by many authors, in particular in the paradigm
of the Jaynes–Cummings model [48], which accounts for the simplest atom–field
interaction and yet exhibits rich dynamics [49–82]. The dynamics of both the atom and
the field in the Jaynes–Cummings model have attracted a lot of attention. It was shown
that various nonclassical effects manifest. For the atom, most of the previous studies
are about the collapses and revivals of several physical quantities, such as the excitation
occupation probability and atomic inversion [49–69], while for the field, the Mandel
Q factor, antibunching effect, squeezing, sub-Poissonian statistics, marginal entropy
and quantum correlations have been investigated extensively [70–82]. However, none
of the above quantities can characterize all aspects of field nonclassicality, and it is
desirable to explore the field dynamics from as many perspectives as possible in order
to gain a more complete picture of the dynamics. Here we pursue an informational
approach to the dynamics of field nonclassicality in the Jaynes–Cummings model with
the help of generalized Wigner–Yanase skew information.
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The paper is organized as follows: In Sect. 2, we review the recently introduced
nonclassicality quantifier of bosonic field states based on generalized Wigner–Yanase
skew information [35]. In Sect. 3, we describe the Jaynes–Cummings model, analyze
the dynamics of the field nonclassicality, and illustrate its various features. We further
compare them with other quantities of the field dynamics such as the von Neumann
entropy and fidelity. Finally, we conclude with a summary and discussion in Sect. 4.
Some mathematical details for the derivation of the reduced field states of the Jaynes–
Cummings model are presented in Appendix.

2 Quantifying field nonclassicality

The basic ingredients of a single-mode bosonic field consist of the annihilation opera-
tor a and its adjoint, the creation operator a†, which satisfy the canonical commutation
relation [a, a†] = 1. Various features such as classicality and nonclassicality including
squeezing, sub-Poissonian statistics and antibunching of bosonic field states have been
extensively studied in quantum optics. Here we recall a recently introduced informa-
tional quantifier for nonclassicality of the bosonic field state ρ based on generalized
Wigner–Yanase skew information [35]:

N (ρ) = 1

2
tr([√ρ, a][√ρ, a]†), (1)

or more explicitly (noting that [X ,Y ] = XY − Y X denotes the commutator between
operators),

N (ρ) = 1

2
+ tr(ρa†a) − tr(

√
ρa†√ρa). (2)

Furthermore, simple manipulation shows that the nonclassicality can be equivalently
expressed as

N (ρ) = 1

2
(I (ρ, Q) + I (ρ, P)), (3)

with

Q = a + a†

√
2

, P = a − a†

i
√

2

being the conjugate quadratures and

I (ρ, X) = −1

2
tr([√ρ, X ]2) (4)

being the Wigner–Yanase skew information of the quantum state ρ skew to the observ-
able (Hermitian operator) X [83]. Since the Wigner–Yanase skew information is a kind
of quantum Fisher information with many significant applications [83–91], the non-
classicality quantifier N (ρ) is well motivated and has potential applications in quantum
metrology [35].
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By rewriting the Wigner–Yanase skew information, given by Eq. (4), as

I (ρ, X) = 1

2
tr([√ρ, X ][√ρ, X ]†) (5)

for Hermitian operator X , and comparing Eqs. (1) and (5), we see readily that the
nonclassicality N (ρ) is actually a natural generalization of the Wigner–Yanase skew
information: One simply replaces the Hermitian operator X by the non-Hermitian
annihilation operator a.

It has been shown that N (ρ) has some nice and desirable properties required for
nonclassicality [35], for example, it is nonnegative and convex with respect to quantum
state, and invariant under the displacement or rotation in phase space in the sense that

N (UρU †) = N (ρ), (6)

whereU = eza
†−z∗a or e−iθa†a, z ∈ C, θ ∈ R. For pure quantum states, N (ρ) ≥ 1/2

where the minimum value 1/2 is achieved if and only if ρ is a coherent state |α〉 (i.e.,
eigenstate of the annihilation operator, a|α〉 = α|α〉), while for any classical state ρ

which can be expressed as a probabilistic mixture of coherent states, N (ρ) ≤ 1/2.
Thus if N (ρ) > 1/2, we can conclude that ρ is nonclassical. However, the converse
is not true. In this sense, we use the term nonclassicality quantifier (rather than mea-
sure) for N (ρ), which may be interpreted as a witness or probe for nonclassicality.
Moreover, from the metrological point of view, as can be seen from Eq. (3), N (ρ) is
essentially a kind of total average quantum Fisher information, and can be further inter-
preted as quantum uncertainty and coherence [87,88]. Put it succinctly, it quantifies
quantumness in some sense and has direct physical and informational significance.

For most well known states, N (ρ) can be easily calculated. For the coherent state
|α〉, its nonclassicality is N (|α〉) = 1/2, while for the squeezed coherent state Sζ |α〉
with Sζ = exp(ζa†2/2 − ζ ∗a2/2), we have [35]

N (Sζ |α〉) = 1

2
cosh(2|ζ |).

It is clear that N (Sζ |α〉) > 1/2 for ζ �= 0; therefore, the squeezed coherent state
is nonclassical. Moreover, as |ζ | increases, N (Sζ |α〉) also increases: The more the
squeezing, the more nonclassical the state is, which is consistent with physical intu-
ition. For the Fock states |n〉 which are eigenstates of the number operator N = a†a,
N |n〉 = n|n〉, the nonclassicality is

N (|n〉) = n + 1

2
,

which is neat and captures the physical essence of the Fock states. It is amusing here
to note that even the vacuum state |0〉 has nonclassicality 1/2, which is reminiscent of
(and well consistent with) the physics of vacuum fluctuations and zero-point energy
in quantum field. Of course, this has the origin in the noncommutability between a
and a†: [a, a†] = 1. In this context, we emphasize that in quantum optics, although
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any coherent state (in particular the vacuum state) is regarded as classical, it is still a
quantum state, fully obeys quantum mechanics laws, and possesses certain nonclassi-
cality (quantumness). This is manifested by N (ρ) = 1/2 for any coherent state ρ [35].
In this sense, the classicality of coherent states seems a historically stuck misnomer,
even though it is widely used.

From the expression of N (ρ) given in Eq. (2), for an arbitrary quantum state ρ, we
have

N (ρ) ≤ 1

2
+ trρa†a,

which implies that the Fock states achieve the maximal nonclassicality among the set
of quantum states with fixed average photon number. This stands in sharp contrast
to the coherent states, which achieves the minimal value 1/2 among all pure states.
Indeed, the coherent states are the most classical pure states, while the Fock states
are the most nonclassical: They stand on two opposite and extremal ends. Another
important class of quantum states are the Fock-diagonal states

ρF =
∞∑

n=0

pn|n〉〈n|.

From direct calculations, we have

N (ρF) = 1

2
+

∞∑

n=0

npn −
∞∑

n=0

(n + 1)
√
pn pn+1. (7)

3 Field nonclassicality in the Jaynes–Cummingsmodel

Two of the most fundamental physical systems are the (discrete) qubit described
by a two-level atom (with two energy eigenstates, the ground state |g〉 and excited
state |e〉) and the (continuous) harmonic oscillator (described by a single-mode field
with an infinitely many energy eigenstates |n〉, n = 0, 1, 2, · · · ). In 1963, the same
year when Wigner and Yanase introduced the celebrated notion of skew information
[83], Jaynes and Cummings introduced a model now named after them to describe
the interaction between a qubit (atom) and a harmonic oscillator (field) [48], as an
idealization of the atom–field coupling in free space. Now this model, which constitutes
the central paradigm of cavity quantum electrodynamics and quantum optics with rich
characteristics and dynamics [49–82], is widely used to describe the typical situation
in cavity quantum electrodynamics where a single atom is coupled to a cavity mode,
as well as in an ion trap where the internal ionic states are coupled, via laser beams,
to the harmonic oscillator motional states of the ion in the trap [92]. In particular, the
model is of both fundamental and practical importance for manipulating atoms with
fields, or vice versa [10,11].
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Fig. 1 The Jaynes–Cummings model of atom–field coupling

The complete Hamiltonian of the Jaynes–Cummings model, in the rotating-wave
approximation, reads

H = Ha ⊗ 1 + 1 ⊗ H f + HI ,

with the atom free evolution Hamiltonian Ha = ωσz/2, the field free evolution Hamil-
tonian H f = μa†a, and the atom–field interaction

HI = λ(σ+a + σ−a†).

Here 1 refers to the identity operator on the field space or the atom space, depending on
the context. We have taken the Planck constant � to be 1, ω is the transition frequency
of the two-level atom, μ is the frequency of the field, σz = |e〉〈e| − |g〉〈g| is the
third Pauli operator, σ+ = |e〉〈g| and σ− = |g〉〈e| are atomic raising and lowering
operators, respectively, and λ is the interaction strength parameter. The difference
ω − μ is the detuning parameter. The model is pictorially depicted in Fig. 1.

Here we employ the nonclassicality quantifier N (·) given in Eq. (1) to study the
field dynamics evolving from several typical initial atom–field states. For the resonant
Jaynes–Cummings interaction with ω −μ = 0, the unitary time-evolution operator at
time t in the interaction picture can be expressed as [2]

e−i t HI = cos(λt
√
N + 1)|e〉〈e| − i

sin(λt
√
N + 1)√

N + 1
a|e〉〈g|

+ cos(λt
√
N )|g〉〈g| − ia† sin(λt

√
N + 1)√

N + 1
|g〉〈e|

with N = a†a being the field number operator. Since the nonclassicality quantifier
N (·) is invariant under phase-space rotations [35], and the partial trace is invariant
under local unitary transformations of the atom, we may consider the field state defined
in Eq. (9) and calculate its nonclassicality by Eq. (2) without loss of generality. More
precisely, due to the fact that (with proof given in Appendix)

N
(

tra
(
e−i t H (ρa ⊗ ρ f )e

it H )) = N
(

tra
(
e−i t HI (ρa ⊗ ρ f )e

it HI
))

, (8)
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we may work in the interaction picture for evaluating nonclassicality of the evolved
states. Evolving from the initial atom–field product state ρa ⊗ ρ f , the reduced field
state at time t in the interaction picture can be calculated as

ρ f (t) = tra
(
e−i t HI (ρa ⊗ ρ f )e

it HI
)
, (9)

where tra denotes the partial trace over the atom. For the initial field states ρ f , we
distinguish four important and representative classes:

A. coherent states |α〉 with α �= 0,

B. Fock states |n〉 with n > 0,

C. thermal states

ρn̄ = 1

1 + n̄

∞∑

n=0

( n̄

1 + n̄

)n|n〉〈n|

with n̄ being the average photon numbers.
D. Vacuum state |0〉.
For the initial atomic states, we consider four typical cases: excited state |e〉, ground

state |g〉, superposition state (|e〉+ |g〉)/√2, and the maximally mixed state (|e〉〈e| +
|g〉〈g|)/2, which is actually 1/2 (normalized identity operator).

The various combinations of the initial atomic and field states will induce rich
dynamics of the Jaynes–Cummings model, in particular of the field, as illustrated
below.

3.1 Field initially in coherent states

First, we consider the case when the field is initially prepared in the coherent state
ρ f = |α〉〈α| with the average photon number tr(|α〉〈α|a†a) = |α|2. For both pure and
mixed initial atomic states ρa , the reduced field states ρ f (t) at time t can be obtained
analytically through Eq. (9), and then by Eq. (2), the field nonclassicality N (ρ f (t))
can be evaluated readily.

The field nonclassicality N (ρ f (t)) versus the scaled time λt, evolving from various
initial states ρa⊗|α〉〈α|, is depicted in Fig. 2 for the initial field states to be the coherent
states |α〉 (with |α|2 = 1, 20) and the initial atomic states ρa to be the excited state
|e〉, the ground state |g〉, the superposition state (|e〉 + |g〉)/√2, and the maximally
mixed state 1/2.

From Fig. 2, we see that field nonclassicality can be generated as time goes, although
initially the field is in (classical) coherent states. For example, considering the scenario
of the field in coherent state |α〉 with |α|2 = 20, for both the initial excited and
ground states of the atom, the evolved field nonclassicality periodically increases to
the maximal value close to that allowed by the average photon number constraint and
then decreases, and the pattern repeats in a slightly modified fashion.

For the initial superposition of the excited and ground states of the atom, the max-
imal value of the evolved field nonclassicality is only about one half of the case of
excited or ground state and is actually similar to that evolved from the maximally
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Fig. 2 Field nonclassicality N (ρ f (t)) versus λt, evolving from the initial atom–field states ρa ⊗ |α〉〈α|
with various initial atomic states ρa = |e〉〈e|, |g〉〈g|, (|e〉 + |g〉)(〈e| + 〈g|)/2, 1/2, and the initial coherent
field states |α〉, |α|2 = 1, 20.

mixed atomic state. Moreover, the maximal values for the latter two cases come much
later and stay there approximately for much longer time (noting the different ranges of
the scaled time λt between the top two frames and the other two frames in Fig. 2). We
also see that the field nonclassicality dynamics are quite different for large and small
amplitudes (or average photon numbers) of the initial coherent states. It is remark-
able to observe that coherent state |α〉 constitutes a kind of potential resources for
nonclassicality, with large amplitude |α| (equivalently, average photon number |α|2)
corresponding to large potentiality of nonclassicality, even though all coherent states
are classical and possess the same amount of nonclassicality 1/2.

For comparison, we depict in Fig. 3 the corresponding marginal entropy S(ρ f (t)) =
−tr(ρ f (t)log2ρ f (t)) of the reduced field. We see that for the case of average
photon number 20, when the nonclassicality is maximal, the corresponding von Neu-
mann entropy is minimal, close to zero, indicating an almost pure field state at the
instant. In this context, taking into account the fact that the nonclassicality at that
instant is maximal, one may guess that the almost pure field state with the maxi-
mal nonclassicality (and minimal von Neumann entropy) is close to the maximally
nonclassical Fock state |20〉 under the average photon number constraint. However,
this is not the case, as can be seen from Fig. 4, in which the corresponding fidelity
F(ρ f (t), |n̄〉〈n̄|) = 〈n̄|ρ f (t)|n̄〉, for n̄ = |α|2 = 1, 20, is depicted. It is also interest-
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Fig. 3 Marginal entropy S(ρ f (t)) of the reduced field versus λt, evolving from the initial atom–field states
ρa ⊗ |α〉〈α| with various initial atomic states ρa = |e〉〈e|, |g〉〈g|, (|e〉 + |g〉)(〈e| + 〈g|)/2, 1/2, and the
initial coherent field states |α〉, |α|2 = 1, 20.

ing to note that for the initial atomic states with the symmetric superposition state and
the maximally mixed state, the evolved fidelities F(ρ f (t), |n̄〉〈n̄|) turn out to be the
same.

3.2 Field initially in Fock states

Next, we consider the case when the field is initially prepared in the Fock state |n〉,
which is the most nonclassical state for fixed average photon number n. From the
derivations given in Appendix, the reduced field state at time t is

ρ f (t) = cos2(λt
√
n + 1)|n〉〈n| + sin2(λt

√
n + 1)|n + 1〉〈n + 1|,

and its nonclassicality is

N (ρ f (t)) = n − cos2(λt
√
n + 1) − n + 1

2
| sin(2λt

√
n + 1)|.
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Fig. 4 Fidelity F(ρ f (t), |n̄〉〈n̄|) between the reduced field state ρ f (t) and the Fock state |n̄〉 (for n̄ = |α|2 =
1, 20) versus λt, evolving from the initial atom–field states ρa ⊗ |α〉〈α| with various initial atomic states
ρa = |e〉〈e|, |g〉〈g|, (|e〉 + |g〉)(〈e| + 〈g|)/2, 1/2, and the initial coherent field states |α〉, |α|2 = 1, 20.

We plot in Fig. 5 the field nonclassicality N (ρ f (t)) versus the scaled time λt,
evolving from various initial atom–field states ρa ⊗ |n〉〈n| with the initial atomic
states ρa to be |e〉, |g〉, (|e〉 + |g〉)/√2, 1/2, and n = 1, 20.

It is clear that the field nonclassicality N (ρ f (t)) exhibits periodic yet different
patterns for different initial atomic states. The collapses and revivals of nonclassicality
are apparent and quite regular. The maximal value n + 1/2 can be reached more
periodically for the initial excited or ground state than for the superposition or the
maximally mixed state. Comparing Figs. 2 and 5, we also see the sharp different
dynamics caused by the initial coherent field states and the Fock states.

3.3 Field initially in thermal states

Now, we consider the case when the initial field state is the thermal state

ρn̄ =
∞∑

n=0

n̄n

(1 + n̄)n+1 |n〉〈n|,
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Fig. 5 Field nonclassicality N (ρ f (t)) versus λt, evolving from the initial atom–field states ρa ⊗ |n〉〈n|
with various initial atomic states ρa = |e〉〈e|, |g〉〈g|, (|e〉+|g〉)(〈e|+〈g|)/2, 1/2, and the initial Fock field
states |n〉, n = 1, 20.

which is a mixed classical state. We depict in Fig. 6 the field nonclassicality N (ρ f (t))
versus the scaled time λt, evolving from various initial atom–field states ρa ⊗ρn̄ with
the initial atomic states ρa to be |e〉, |g〉, (|e〉 + |g〉)/√2, 1/2, and n̄ = 1, 20.

It can be seen that field nonclassicality is generated as long as the atom is not initially
prepared in the maximally mixed state. Besides, N (ρ f (t)) increases as n̄ increases.
Actually from the expression of ρ f (t) given in Appendix, for large n̄, the weights of
higher Fock states are enhanced, which contribute more to the nonclassicality. The
oscillating nature of nonclassicality is apparent in all cases.

3.4 Field initially in the vacuum state

Finally, we consider the case when the field is initially prepared in the vacuum |0〉,
which may be regarded simultaneously as a coherent, Fock and thermal state. This
seemingly trivial initial state generates nontrivial dynamics. We depict in Fig. 7 the
field nonclassicality N (ρ f (t)) versus the scaled time λt, evolving from various initial
combined states ρa ⊗ |0〉〈0| with the initial atomic states ρa to be |e〉, |g〉, (|e〉 +
|g〉)/√2, 1/2.

We have two interesting observations: First, the ground state and the excited state
have radically different influences on the field dynamics: While the excited state leads
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Fig. 6 Field nonclassicality N (ρ f (t)) versus λt, evolving from the initial combined states ρa ⊗ ρn̄ with
various initial atomic states ρa = |e〉〈e|, |g〉〈g|, (|e〉 + |g〉)(〈e| + 〈g|)/2, 1/2, and the initial thermal field
states ρn̄ , n̄ = 1, 20.

to periodic oscillation of the field nonclassicality, the ground state leads to a constant
and relatively low value. Actually the field state remains to be the vacuum state.
Second, when the initial atomic state is the maximally mixed state, the resulting field
nonclassicality is below 1/2 (the value taken by all coherent states) and oscillates,
indicating quantum fluctuations from the vacuum.

4 Conclusion

We have investigated the dynamics of field nonclassicality in the Jaynes–Cummings
model by the nonclassicality quantifier N (ρ), which is based on generalized Wigner–
Yanase skew information. For several typical initial atomic and field states, we have
illustrated the evolved field nonclassicality pictorially.

Our results show that field nonclassicality can be generated by the interaction
between the atom and the field via the Jaynes–Cummings coupling. The dynamics
of the field nonclassicality exhibits a complex pattern, reveals the interconversion
between atomic coherence and field nonclassicality, and indicates high sensitivity to
the initial states.
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Fig. 7 Field nonclassicality N (ρ f (t)) versus λt, evolving from the initial combined states ρa ⊗|0〉〈0| with
the initial vacuum field states |0〉 and various initial atomic states ρa = |e〉〈e|, (|g〉〈g|, (|e〉 + |g〉)(〈e| +
〈g|)/2, 1/2.

An interesting observation is that in the field dynamics, a coherent field state,
assisted by the atom and via the Jaynes–Cummings coupling, can be converted to a
nonclassical state whose nonclassicality achieves almost the maximal value allowed
by the energy constraint specified by the coherent state amplitude. This is remarkable
since all coherent states, irrespective of their average photon numbers, possess the
same amount of nonclassicality. We have unveiled an intrinsic link between the average
photon number (energy) and nonclassicality.

Our results shed informational insight on the atom–field interaction. The nonclas-
sicality quantifier N (ρ) is a general quantity with informational and metrological
meaning, and it may be useful in characterizing nonclassicality in other physical mod-
els involving radiation fields and in quantifying quantum resources therein. Those
topics will be worthy of further investigation.

Appendix

For the purpose of completeness and convenience of evaluating the field nonclas-
sicality, we first prove Eq. (8) and then derive the standard results concerning the
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reduced field states of the Jaynes–Cummings model evolving from several typical
initial atom–field states.

To establish Eq.(8), noting that [Ha ⊗ 1, 1 ⊗ H f ] = 0, and

[σz ⊗ 1, HI ] = λ(σzσ+ − σ+σz) ⊗ a + λ(σzσ− − σ−σz) ⊗ a†

= 2λ(σ+ ⊗ a − σ− ⊗ a†),

[1 ⊗ a†a, HI ] = λσ+ ⊗ (a†a2 − aa†a) + λσ− ⊗ (a†aa† − a†2a)

= λ(σ− ⊗ a† − σ+ ⊗ a).

Therefore, if μ = ω, noting that Ha = ωσz/2 and H f = μa†a, we have

[Ha ⊗ 1 + 1 ⊗ H f , HI ] = 0,

from which we obtain

e−i t H = e−i t(Ha⊗1+1⊗H f )e−i t HI = (e−i t Ha ⊗ 1)(1 ⊗ e−i t H f )e−i t HI .

Consequently,

tra
(
e−i t H (ρa ⊗ ρ f )e

it H )

= tra
(
(e−i t Ha ⊗ 1)(1 ⊗ e−i t H f )e−i t HI (ρa ⊗ ρ f )e

it HI (1 ⊗ eit H f )(eit Ha ⊗ 1)
)

= e−i t H f tra
(
e−i t HI (ρa ⊗ ρ f )e

it HI
)
eit H f .

By the phase-space rotation invariance of N (·) in Eq. (6), we obtain

N
(

tra
(
e−i t H (ρa ⊗ ρ f )e

it H )) = N
(

tra
(
e−i t HI (ρa ⊗ ρ f )e

it HI
))

,

which is the desired result.
Next, we derive reduced field states in the Jaynes–Cummings model. If the atom–

field is initially in a pure product state |ψa〉|ψ f 〉 with the initial atomic state

|ψa〉 = √
p|e〉 + √

1 − p|g〉, 0 ≤ p ≤ 1

and the initial field

|ψ f 〉 =
∞∑

n=0

qn|n〉,

then the atom–field state at time t is

|
(t)〉 = e−i t HI (|ψa〉|ψ f 〉)

=
∞∑

n=0

(
an(t)|g〉|n〉 + bn(t)|e〉|n〉)
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with

an(t) = √
1 − pqn cos(λt

√
n) − i

√
pqn−1 sin(λt

√
n),

bn(t) = √
pqn cos(λt

√
n + 1) − i

√
1 − pqn+1 sin(λt

√
n + 1).

The reduced field state can be expressed as

ρ f (t) = tra |
(t)〉〈
(t)|

=
∞∑

m,n=0

(
an(t)a

∗
m(t) + bn(t)b

∗
m(t)

)|n〉〈m|.

For the mixed initial atomic state

ρa = pe|e〉〈e| + (1 − pe)|g〉〈g|, 0 ≤ pe ≤ 1

and mixed initial field state

ρ f =
∞∑

n=0

pn|n〉〈n|,

the evolved state can be obtained by linear combinations and the reduced field state
can be expressed as

ρ f (t) = tra

(
e−i t HI (ρa ⊗ ρ f )e

it HI
)

=
∞∑

n=0

cn(t)|n〉〈n|.

which is a Fock-diagonal state with the coefficients

cn(t) = pe

(
pncos2(λt

√
n + 1) + pn−1sin2(λt

√
n)

)

+ (1 − pe)
(
pncos2(λt

√
n) + pn+1sin2(λt

√
n + 1)

)
.

In the following, we present the explicit expressions of an(t), bn(t) and cn(t) when
the initial field states ρ f are the coherent states |α〉, the Fock states |n〉 and the thermal
states

ρn̄ = 1

1 + n̄

∞∑

n=0

( n̄

1 + n̄

)n|n〉〈n|

with n̄ being the average photon numbers.
A. Field initially in coherent states
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Let the field be initially in the coherent state

|ψ f 〉 = |α〉 = e− |α|2
2

∞∑

n=0

αn

√
n! |n〉,

with the average photon number n̄ = |α|2. For the initial state of the atom, we consider
two cases:

(1) If the atom is initially in the superposition state |ψa〉 = √
p|e〉 + √

1 − p|g〉,
then the initial atom–field state is |ψa〉 ⊗ |α〉, and the reduced field state at time t can
be obtained as

ρ f (t) =
∞∑

m,n=0

(
an(t)a

∗
m(t) + bn(t)b

∗
m(t)

)|n〉〈m|

with

an(t) = √
1 − pe− |α|2

2
αn

√
n! cos(λt

√
n)

−i
√
pe− |α|2

2
αn−1

√
(n − 1)! sin(λt

√
n),

bn(t) = √
pe− |α|2

2
αn

√
n! cos(λt

√
n + 1)

−i
√

1 − pe− |α|2
2

αn+1

√
(n + 1)! sin(λt

√
n + 1).

(2) If the atom is initially in the mixed state ρa = pe|e〉〈e| + (1 − pe)|g〉〈g|, then
the initial atom–field state is ρa ⊗ |α〉〈α|, and the reduced field state at time t can be
obtained from linear combinations as

ρ f (t) = e−|α|2
∞∑

m,n=0

(
peαn−1α∗m−1 sin(λt

√
n) sin(λt

√
m)√

(n − 1)!(m − 1)!

+ (1 − pe)αn+1α∗m+1 sin(λt
√
n + 1) sin(λt

√
m + 1)√

(n + 1)!(m + 1)!
+ peαnα∗m cos(λt

√
n + 1) cos(λt

√
m + 1)√

n!m!
+ (1 − pe)αnα∗m cos(λt

√
n) cos(λt

√
m)√

n!m!
)

|n〉〈m|.

B. Field initially in Fock states
Next we consider the case when the field is initially in a Fock state |ψ f 〉 = |n〉. For

the initial atomic state, we consider two cases:
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(1) If the atom is initially in the superposition state |ψa〉 = √
p|e〉 + √

1 − p|g〉,
then the initial atom–field state is |ψa〉 ⊗ |n〉, and the reduced field state at time t is

ρ f (t) =
(
(1 − p) cos2(λt

√
n) + p cos2(λt

√
n + 1)

)
|n〉〈n|

+p sin2(λt
√
n + 1)|n + 1〉〈n + 1|

+(1 − p) sin2(λt
√
n)|n − 1〉〈n − 1|

+i
√
p(1 − p) sin(λt

√
n + 1) cos(λt

√
n)|n〉〈n + 1|

−i
√
p(1 − p) sin(λt

√
n + 1) cos(λt

√
n)|n + 1〉〈n|

+i
√
p(1 − p) cos(λt

√
n + 1) sin(λt

√
n)|n〉〈n − 1|

−i
√
p(1 − p) cos(λt

√
n + 1) sin(λt

√
n)|n − 1〉〈n|.

(2) If the atom is initially in a mixed state ρa = pe|e〉〈e|+ (1 − pe)|g〉〈g|, then the
initial atom–field state is ρa ⊗ |n〉〈n|, and the reduced field state at time t is

ρ f (t) = (1 − pe)sin2(λt
√
n)|n − 1〉〈n − 1|

+ pesin2(λt
√
n + 1)|n + 1〉〈n + 1|

+
(
pecos2(λt

√
n + 1) + (1 − pe)cos2(λt

√
n)

)
|n〉〈n|.

C. Field initially in thermal states
Finally we consider the case when the field is initially in the thermal state

ρ f = ρn̄ =
∞∑

n=0

1

1 + n̄
(

n̄

1 + n̄
)n|n〉〈n|.

For the initial atomic state, we also consider two cases:
(1) If the atom is initially in the pure state |ψa〉 = p|e〉 + √

1 − p2|g〉, then the
initial atom–field state is |ψa〉〈ψa | ⊗ ρn̄, and by linear combination, the reduced field
state at time t is

ρ f (t) =
∞∑

n=0

1

1 + n̄
(

n̄

1 + n̄
)n

[(
(1 − p) cos2(λt

√
n)

+ p cos2(λt
√
n + 1)

)
|n〉〈n|

+p sin2(λt
√
n + 1)|n + 1〉〈n + 1|

+(1 − p) sin2(λt
√
n)|n − 1〉〈n − 1|

+i
√
p(1 − p) sin(λt

√
n + 1) cos(λt

√
n)|n〉〈n + 1|

−i
√
p(1 − p) sin(λt

√
n + 1) cos(λt

√
n)|n + 1〉〈n|

+i
√
p(1 − p) cos(λt

√
n + 1) sin(λt

√
n)|n〉〈n − 1|

− i p
√

1 − p2 cos(λt
√
n + 1) sin(λt

√
n)|n − 1〉〈n|

]
.
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(2) If the atom is initially in the mixed state ρa = pe|e〉〈e| + (1 − pe)|g〉〈g|, then
the initial atom–field state is ρa ⊗ ρn̄, and the reduced field state at time t is

ρ f (t) =
∞∑

n=0

cn(t)|n〉〈n|

with

cn(t) = n̄n

(n̄ + 1)n+1 (peun(t) + (1 − pe)vn(t))

where

un(t) = cos2(λt
√
n + 1) + n̄ + 1

n̄
sin2(λt

√
n),

vn(t) = cos2(λt
√
n) + n̄

n̄ + 1
sin2(λt

√
n + 1).

D. Field initially in vacuum states
This is actually included in the above cases.
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